(d, h) X-axis -> indep. -> bis is is in india. (+) Y-axis -> dep- -> (h,d) de sir india.

19	Ехре	RIMENT 1
1	ANALYS	SIS OF DATA
	LAB	REPORT
	,,,,	Date: Thu, 24 October
Name:!	Haneum Shalfat	Partner's Name:
Registrati		gistration No:
Section: .	<u>q</u>	Instructor's Name:

PURPOSE

To learn basic data analysis and use it to uncover correlations and empirical relationships between experimental variables.

Note: For this lab, a thorough reading of the Introduction and Appendix B is required.

I. INTRODUCTION

The data for this lab have been collected from an experiment that has already been performed. The basic procedure of the experiment consists of filling a cylindrical container with water to a certain height (h) and measuring the time (t) it takes to drain the container by allowing the water to escape through a circular hole with diameter (d) at the bottom of the container. The height and diameter (h) and (d) are the independent variables of the experiment, and time, (t), is the dependent variable.

The objective of the experiment and the analysis that you will carry out

h (cm)	d = 1.5 mm	d = 2.0 mm	d = 3.0 mm	d = 5.0 mm
30.0	73.0	41.2	18.4	6.80
10.0	43.5	23.7	10.5	3.90
4.0	26.7	15.0	6.80	2.20
1.0	13.5	7.20	3.70	1.50

III. DATA

8. Use the data in Table 1.1 to fill in Table 1.2

Table 1.2

	t (s)			
d (mm)	h = 1.0 cm	h = 4.0 cm	h = 10.0 cm	h = 30.0 cm
1.5	13.5	26.7	47.5	43.0
2.0		15.0	23.7	41.2
3.0	7.20	6.80	10.5	18.4
	3.1	2.20	3.90	6.80
5.0	1.50	2.70		

9. For h = 30 cm, use Tables 1.1 and 1.2 and fill in Table 1.3.

Table 1.3

t (s)	d (mm)	$1/d^2 (\text{mm}^{-2})$
77.0	1.50	8.44
41.2	2.00	0.254
18.4	3.00.	0.11
6.80	5.00	0.04

10. For d = 2.0 mm, fill in Table 1.4 below:

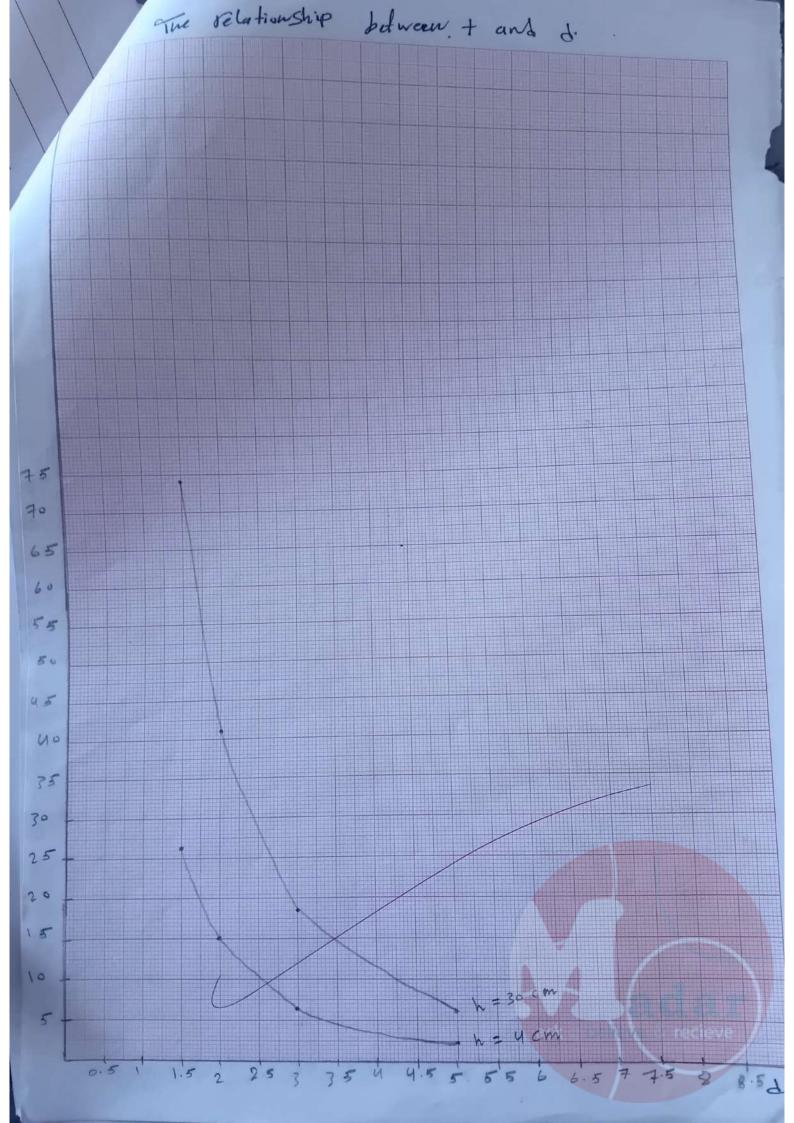
Table 1.4

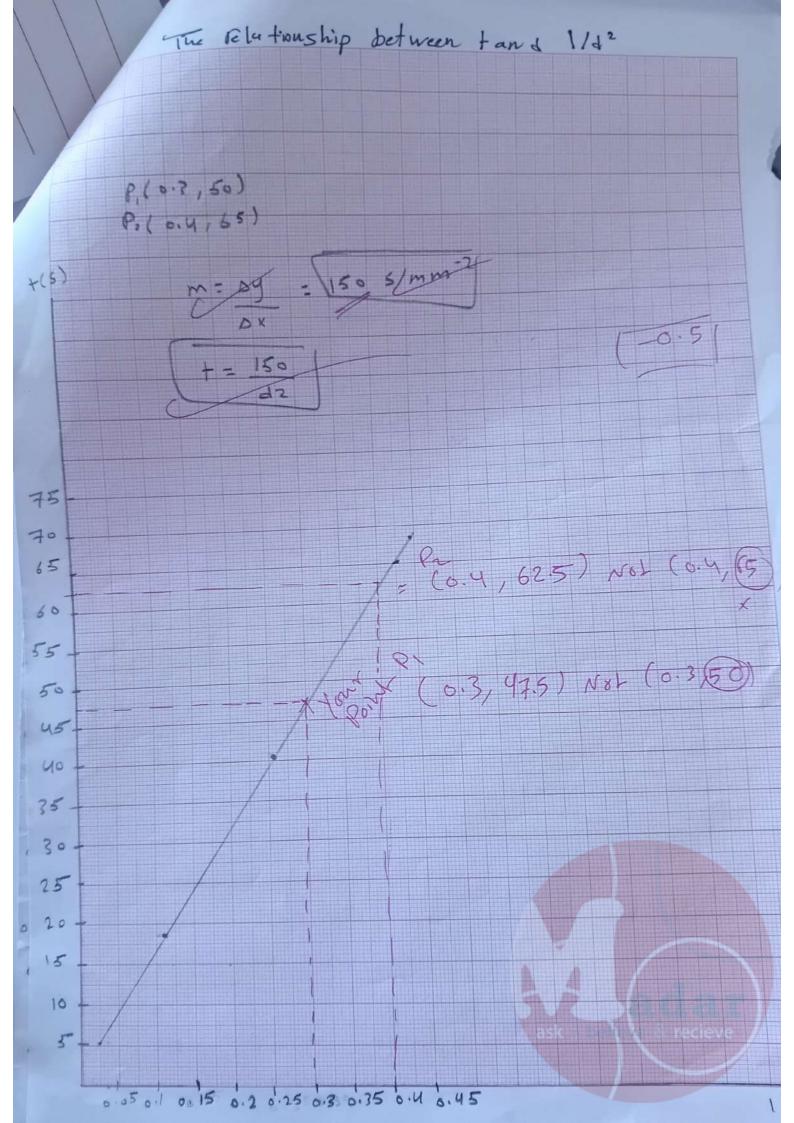
		Lograt	Log ₁₀ h
t (s)	h (cm)	Log ₁₀ t	2000
41. 2	30.0	1.61	1. 48
1	10.0	1.38	1.00
CS		1.18	0.60
15.0		0.1	0.00
7.20	1.09	0.86	

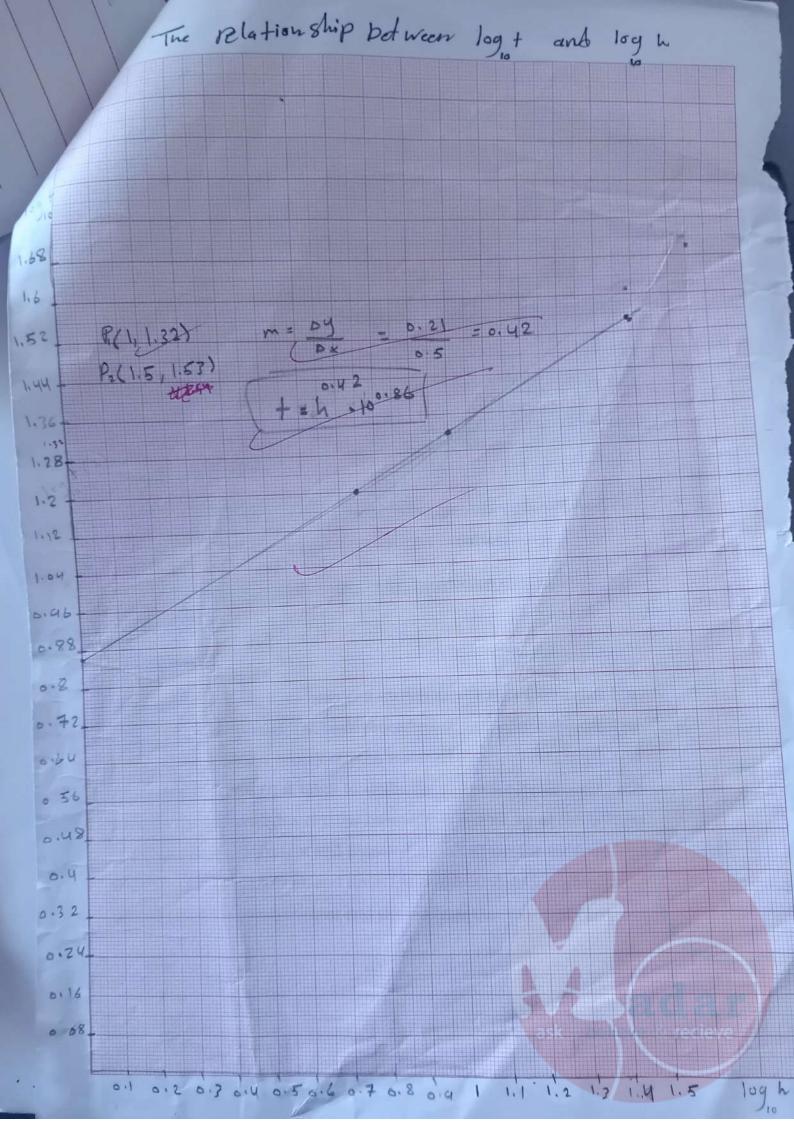
V. ANALYSIS OF DATA

1. Plot your results.

Using a scale that utilizes at least 2/3 of the sheet of graph paper, plot on the same graph paper (using the same axes) the function t(h) (i.e., t vs. h) for each diameter (d) used. Connect the data points from each case with a smooth curve, and label each curve with the corresponding d.


Similarly, on a second sheet of graph paper, plot the function d(t) (i.e., d vs. t) for each value of the height (h). Connect the points corresponding to each value of h with a smooth curve and label each curve with the appropriate value of h.


- Plot t versus $1/d^2$ for h = 30 cm.
- Plot Log₁₀t versus Log₁₀h for d = 2 mm.


Use your graphs to answer the following questions:

2.	From your graph of (h) versus (t) for $d = 1.5$ mm, extrapolate the
	curve toward the origin. Does it pass through it? Would you expect it
	ves, when no hierget there is no water so the draining fine - 0
3.	What type of relationship (direct or inverse) do you see between the time t and diameter d for a fixed value of h ? Why?
	inverse
4.	From the graph of tversus $1/d^2$, determine the empirical relationship
	between time t and hole diameter d for $h = 30$ cm.
	t = 150 l
	X2

EXPERIMENT 2

MEASUREMENTS AND UNCERTAINTIES

LAB REPORT

I. PURPOSE:

To learn how to estimate errors in experimental measurements.

II. INTRODUCTION

In this lab you will estimate the density of a cylindrical piece of brass using measurements of its mass, diameter, and height. You will estimate the error in your measurements and the resulting error in your density estimate.

III. EQUIPMENT

- Pan balance
- Vernier caliper (Figures 2.1, 2.2)
- Brass rod
- Piece of paper tape

- Meter stick
- Micrometer (Figure 2.3)
- Wooden or plastic disc

given by $V=\pi$ $(d/2)^2L$, where Lis the length of the rod and d its diameter. For this:

- 4. Measure L using a vernier caliper.
- 5. Measure *d* using a micrometer.
- 6. Repeat each measurement five times.
- 7. Measure the mass of the brass rod once.

V. DATA ANALYSIS

PART 1: ESTIMATING π

1. Record your data in Table 2.1 below:

Table 2.1

D= 3.74 cm	$\Delta D = \pm 0.0025cm$	$\frac{\Delta D}{D} = 6.684 \times 10^{-4}$
C=11.8 cm	ΔC = ± 0.05 cm	$\frac{\Delta C}{C} = 4.237 \times 10^{-3}$

2. Using the measured values of (D) and (C), calculate an estimate of π .

$$\pi = \frac{C}{D} = \frac{11.8}{3.74} = \frac{3.1550.8}{3.74}$$

3. Calculate the error, $\Delta \pi$, in your estimate of π . Show your calculations in detail.

Remember:
$$\Delta \pi = \pi \cdot \sqrt{\left(\frac{\Delta D}{D}\right)^2 + \left(\frac{\Delta C}{C}\right)^2}$$

 $\Delta \pi = 3.15508 (4.468 \times 10^{-3}) + (1.795 \times 10^{-5}) = 3.15508 \times 4.289 \times 10^{-3}$ = 0.0135

4. Compare your estimate of π with the accepted value ($\pi_{accepted}$ =3.14159).

topled volue

= # 13.14159 - 37155081 +100.1/+

expermental orror

3.14159

= 1.349 % = 0.4294%

5. Which error contributes most to π ? Explain your answer in detail.

DC , DD > 75 P 52

DC = 4.237 + 10-3 The error in circumfetence = 50 = 6.84 + 10-4 is more become we used ruler and the ruler is tess occurate.

PART 2: DETERMINATION OF DENSITY

- 1. Record your measured values of L in Table 2.2 below.
- 2. Calculate the error, $\Delta \overline{L}$, in the average measured length and enter the result in Table 2.2.

 $S = DL = \sqrt{\frac{1}{N(N-1)}} \frac{N}{2} (1; -\overline{L})^2$

Table 2.2

	Trial No.	L _i (cm)	$(L_i - \overline{L})^2$ (cm ²)	$\overline{L} = 5.93 \text{ cm}$ (cm)
	1	5.au cm	0.0001 cm2	
	2	5.93 cm	0	5
	3	5.42 cm/	0.0001002	$\sum_{i=1}^{5} (L_i - \overline{L})^2 = 0.0002$
	4			1=1
j	5			
3	$\Delta \overline{L} = \pm 5.7$	17 × 16-3 m	$\frac{\Delta \overline{L}}{L} = 9.73 *$	10-4

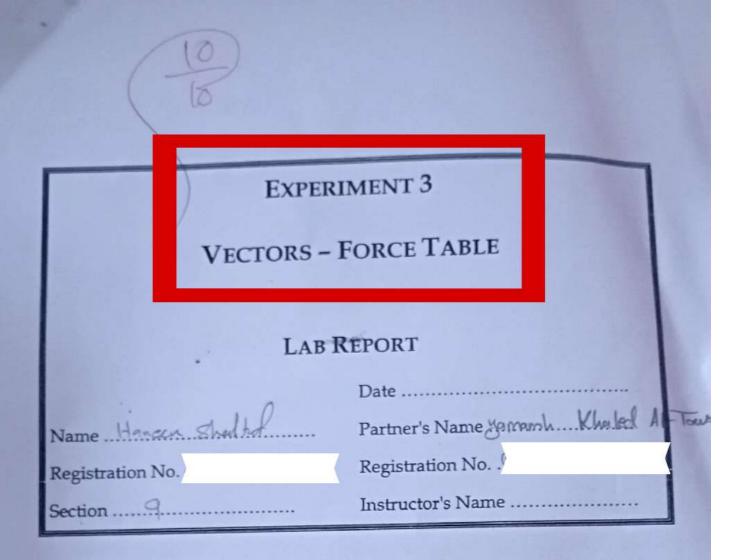
- 3. Record your measured values of d in Table 2.3 below.
- 4. Calculate the error, $\Delta \overline{d}$, in the average measured diameter and enter the result in Table 2.3.

Table 2.3

			(cm)
Trial No.	d_i (cm)	$(a_i - a)$	$\bar{d} = 0.57$
1	0.58 cm	0.000 cm2	
2	0.56 cm	0.0001 cm2	5(1 7)2 - 0.0002
3	0.57 CM	6	$\sum_{i=1}^{5} (d_i - \bar{d})^2 = 0.000^2$
4			
5	/		
$\Delta d = \pm 5$.	77 *10-3		$\frac{\Delta \overline{d}}{\overline{d}} = 0.0101$

5. Record your measured value of m in Table 2.4 below. Estimate the error Δm and calculate the ratio $\frac{\Delta m}{m}$.

Table 2.4


m =	13.69	g
$\Delta m =$	10.010	g
$\frac{\Delta m}{m} =$	7.30 218-4	

Remember: $|\Delta m|$ is the smallest division of the balance used.

6. Calculate ρ , the density of the rod, using the value of π , determined in part 1, and the measured values of \overline{h} , \overline{d} , and mass m, determined in part 2.

7. Calculate
$$\Delta \rho$$
 using $\Delta \rho = \rho \cdot \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta \pi}{\pi}\right)^2 + \left(\frac{2\Delta \overline{d}}{\overline{d}}\right)^2 + \left(\frac{\Delta \overline{L}}{\overline{L}}\right)^2}$

	Show the details of your calculation. $\Delta \rho = 9.009 \sqrt{(2.30*10^{-4})^2 + (4.278 \times 10^{-7})^2 + (2.40019)^2 + (9.73 \times 10^{-7})^2 + (4.278 \times 10^{-7})^2 + (2.40019)^2 + (9.73 \times 10^{-7})^2 + (9.73 \times 10$
8.	Order the errors $\Delta \pi$, $\Delta \overline{d}$, $\Delta \overline{L}$, and Δm according to their contribution to the error in ρ .
	AT SAT SAM SAD
9.	The accepted value of ρ is: $\rho_{accepted} = 8.3$ g/cm ³ . Your measured value
	is in the range $[\bar{p} - \Delta \bar{p}, \bar{p} + \Delta \bar{p}]$. Is paccepted within the range?
10). Justify your answer in step 9.
11	State and discuss three sources of error in this experiment.
	1. Tool effor 2. Reading effor 3- Effor in colculation

I. PURPOSE:

In this experiment, you will subject an object (a ring) to two (three) horizontal forces whose resultant is not zero, and experimentally determine the third (fourth) force that will balance them. You will also determine this force (magnitude and direction) computationally and graphically and compare your answers. Thus, you will apply your knowledge of vector addition in a practical setting.

II. INTRODUCTION - THEORETICAL BACKGROUND:

Physical quantities can be classified into either: (i) scalar quantities, or (ii) vector quantities. A scalar quantity is defined by its magnitude only. Mass, length, and time are scalars. On the other hand, a vector quantity is defined by both magnitude and direction. Displacement, velocity, acceleration, and force are vector quantities.

Addition of scalar quantities is done algebraically. But in vector addition,

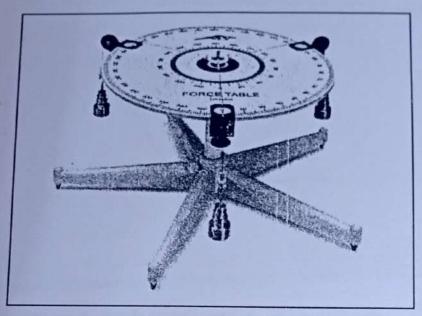


Figure 3.4: Force Table.

IV. PROCEDURE - PART 1

- 1. On the force table:
- Clamp two pulleys at the rim of the force table such that one is at an angle of 30° and the other one at an angle of 120°. Hang from the former a mass m_1 and at the latter a mass m_2 . The values of m_1 and m_2 will be provided by your instructor. Fill in the table below.

$$F_1 = w_1 = m_1 g = ... g \cdot 2$$
 $F_2 = w_2 = m_2 g = ... N$
 $\theta_1 = 30^\circ$
 $\theta_2 = 120^\circ$

g is the acceleration of gravity and is approximately equal to 9.80 m/s² near the Earth's surface. The force diagram in Figure 3.5 shows the forces.

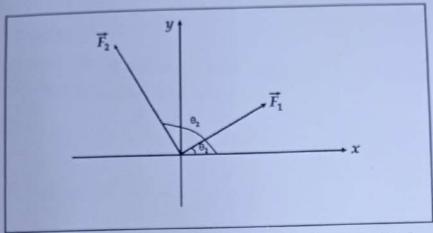
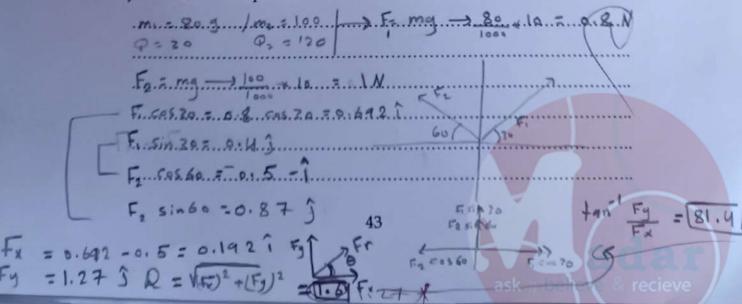
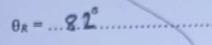


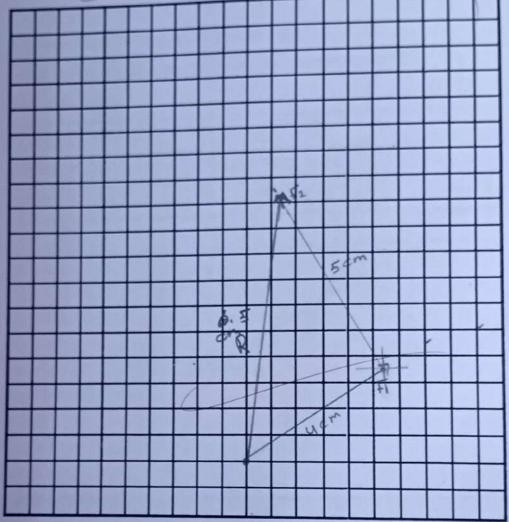
Figure 3.5: Schematic setup of forces in part 1 (for the case $m_1 < m_2$)

- With the use of a third pulley and a third hanging mass find the magnitude and direction of the equilibrium force that returns the ring to the equilibrium position. This third force is called the balance force; it is equal in magnitude and opposite in direction to the resultant of the two forces.


V. DATA ANALYSIS - PART 1

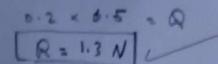
Find the resultant of the above two forces (magnitude, R and direction, θ_R) by:


a) Experimental method (Force Table)


Balance force (B)=	a:125×g=N	$\theta_B = 261.1$
Resultant (R)=	.0:125×g=N	$\theta_R = 21 \cdot 1$

b) Method of Components

Scale: 1 cm = N R =(N)



$$F_1 = 0.8 \stackrel{\wedge}{\longrightarrow} 30^{\circ}$$
 \longrightarrow 9 cm 7 lies

$$F_2 = 1 \text{ N} \longrightarrow 120^{\circ} \longrightarrow 5 \text{ cm}$$

The length of Q is 6.7 cm

1 cm - 3 0.2 N 6.5 cm - > R

VI. PROCEDURE - PART 2

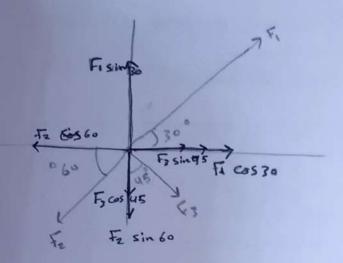
 Follow the procedure in part 1 above to find the resultant of the three forces with directions as shown in Figure 3.6.

Use the masses m_1 , m_2 , and m_3 (provided by your instructor).

Fill in the table below. $F_1 = w_1 = m_1 g = \dots N$ $F_2 = w_2 = m_2 g = \dots N$ $F_3 = w_3 = m_3 g = \dots N$ $0 = \frac{1}{30}$ $0 = \frac{1}{$

Figure 3.6: Setup of forces in part 2.

VII. Data Analysis - Part 2

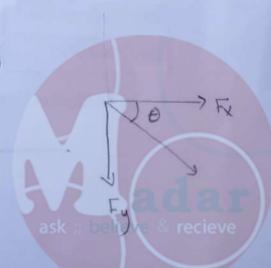

1. Find the resultant of the above three forces (magnitude, R, and direction, θR)

a) Experimental method (Force Table)

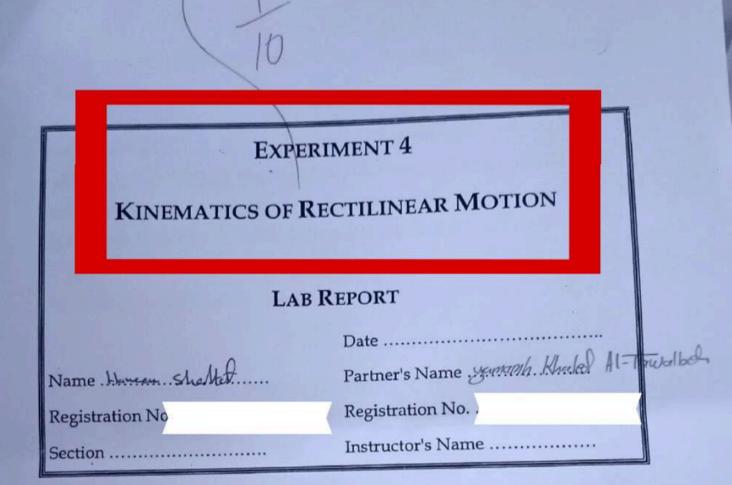
10.122 - 1.75	
0.113×8= N	OB = 168
0126 02- 1. 76	
N N	$\theta_R = -12$
	0.126 /2- 1. 20

b) Method of Components

$$m_1 = 2009$$
 $Q_1 = 30^{\circ}$ \longrightarrow $F_1 = 2N$
 $m_2 = 1009$ $Q_2 = 240^{\circ}$ \longrightarrow $F_2 = 1N$
 $m_3 = 809$ $Q_3 = 315^{\circ}$ \longrightarrow $F_3 = 0.8N$


$$F_2 \cos 60 = 0.5 - \hat{1}$$

 $F_2 \sin 60 = 0.866 - \hat{j}$


$$F_{3} \cos 45 = 0.566 - \hat{J}$$

 $F_{3} \sin 45 = 0.566 \hat{T}$

$$F_{x} = 1.73 - 0.5 + 0.566 = 1.7961$$

 $F_{y} = 1 - 0.866 - 0.566 = 1.7961$

$$F_r = \sqrt{(F_x)^2 + (F_y)^2} = 1.85 N$$

$$0 = +on^{-1}(\frac{fy}{fx}) = -13.3^{\circ}$$

I. PURPOSE:

To study and analyze motion with variable acceleration in one dimension.

II. INTRODUCTION - THEORETICAL BACKGROUND

Kinematics is the study of the purely geometrical aspects of the motion of an object or particle, such as its trajectory in space, its displacement, velocity, and acceleration, and how they vary with time, without reference to its mass or the forces acting on it.

Motion of a particle or an object is described by measuring its position with respect to a coordinate system as a function of time. In this experiment, you will analyze motion along a straight line, also called rectilinear or one-dimensional motion.

IV. DATA ANALYSIS

A) AVERAGE VELOCITIES AND ACCELERATIONS

► Answer the following questions

From your recorded measurements in Table 4.2, can you determine during which time intervals the average velocities and accelerations are maximum?

minimum? 14 -> max = 1.0 -0.9 = 0.1 = 0.055

Velocity

Time interval during which the velocity is maximum:

Time interval during at which the velocity is minimum:

Acceleration

Time interval during which the average acceleration is maximum: 0.05.5.5

Time interval during which the average acceleration is minimum: ...0.5.5.5

(0.35, 0.44)

- 1. Calculate \overline{V}_i , $\Delta \overline{V}_i$, and \overline{a}_i .
- 2. Record the calculations in Table 4.2. Aceldation min 0.45-0.35

Table 4.2 - Useful Notes

- The average velocities (\overline{V}_i) are computed for equal time intervals of $\Delta t = 0.10$ s and entered in the squares corresponding to the centers of the appropriate intervals (similar to the ΔX_i 's).
- The successive velocity differences $\Delta \overline{V}_1$, $\Delta \overline{V}_2$, $\Delta \overline{V}_3$ etc. occur over equal time intervals of $\Delta t = 0.10$ s.
- The velocity differences $\Delta \overline{V}_i$ and the corresponding average accelerations are entered at times 0.1 s, 0.2 s, 0.3 s, etc.

(0.65, 5.75)

1.5

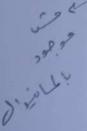
Table 4.2

Index	ti	X_i	ΔX_i	$ar{V}_i$	$\Delta ar{V}_i$	\overline{a}_i
(i)	(s)	(cm)	(cm)	(cm/s)	(cm/s)	(cm/s ²)
0	0.00	0		1		
	0.05		1.7	1.7 = 17		
1	0.10	1.7	'_		9	90
	0.15		2.6	2.6 = 26		
2	0.20	4.3		1	5	50
	0.25		3'1	31 = 31		
3	0.30	7.4			1	10
	0.35		3.2	3.2 -32	- 1	
4	0.40	10.6			0	0
	0.45		3.2	3.2 = 32		
5	0.50	1318			-9	-90
	0.55		2.3	2.3 = 23		
6	0.60	16.1			6	60
	0.65	,i	2.9	2.9 - 29	F - 14	
7	0.70	19			14	140
	0.75		4.3	4.3 = 43		
8	0.80	23.3			5	50
	0.85		4.3	4.8 = 48		
9	0.90	28.1		0.1		10
	0.95		4.9	4.9 -49	No.	
10	1.00	33	,	0.1		
,					ask ;; beh	

- B) ESTIMATING THE INSTANTANEOUS VELOCITY FROM THE APPROXIMATION OF AVERAGE VELOCITY.
- 1. Compute the instantaneous velocity at t = 0.6 s.
- 2. Record the data of X in Table 4.3 as listed in Table 4.2.
- 3. For each time interval (3rd column in Table 4.3), calculate \overline{V} and record your result in the last column of the table.

Table 4.3

t (s)	X (cm)	Δt (s)	ΔX (cm)	\overline{V} (cm/s)
$T_3 = 0.5$ $T_7 = 0.7$	X = 13, 8	0.2	2.3	11.5
$t_4 = 0.4$ $t_8 = 0.8$	$X_4 = 10.4$ $X_8 = 23.3$	0.4	12.7	31,75
$t_3 = 0.3$ $t_9 = 0.9$	X3= 7.4 X9= 28.1	0.6	20.7	34.5


► Answer the Following questions:

Considering your data analysis from your paper tape and the calculations in Table 4.3, can you shrink the interval $\Delta t'$ to less than 0.2 s (keeping t_i at the center of the time interval of the calculation)? Explain.

.....

What is your estimate of the instantaneous velocity at ti?

$$V_{inst}(t_i) = V_{inst}(t_i) = \dots$$

ask ;; believe & recieve

C) X-t GRAPH

Using the data in Table 4.2, plot X versus t. Label your axes and include their units. Connect the points with a smooth curve (Don't use a ruler). The slope of the tangent to the X-t curve at a given instant represents the instantaneous velocity at that instant. The X-t graph can be used to determine:

- The instantaneous velocity at any time during the motion.
- The average velocity for any time interval during the motion.
- Time intervals during which the moving object is stationary, speeding up, or slowing down.

► Answer the following

a) Calculate the instantaneous velocity at t = 0.6 s from the slope of the tangent (Figure 4.3) to your X versus t graph at t = 0.6 s. Show your calculations in detail on your graph.



Figure 4.3: Displacement versus time (non-uniform motion):

$$t_i = .0..6....s.$$

 $V_{inst}(t_i) = .2.7..2....cm/s.$

Compare the calculated instantaneous velocities with the value from Table 4.3.

From Hu graph 27.2 and the other 34.5 cm/s

The difference 7.3 is due to the effort.

b) During which intervals does the velocity increase, decrease, or remain constant? Mark the correct answer for each time interval by a (✓) in Table 4.4.

Table 4.4

t (s)	0.0 - 0.1	0.1 -	0.2 -	0.3 - 0.4	0.4 - 0.5	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	6.0 - 8.0	0.9 - 1.0
Increase	V	~	V	1		L		~	V.	
Decrease					~					
Constant				V						

D) V-t GRAPH

Refer to Table 4.2 and plot a histogram of \overline{V} versus time. See Figure 4.4 below. Label your axes and include their units.

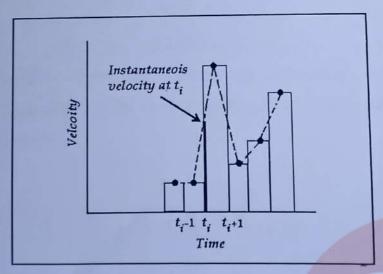


Figure 4.4: Histogram of \overline{V} versus time.

The height of the darkened line represents the value of the instantaneous velocity at t_i .

A velocity-vs-time graph can be used to determine:

- The instantaneous velocity at any time.

- The total displacement from the area under the curve.
- The acceleration from the slope of the graph.
- The intervals during which the velocity is constant, increasing, or decreasing.

In your histogram, connect the successive mid-points of the horizontal segments with straight lines.

By joining two successive mid-points with straight lines we are assuming that the acceleration is constant during the intervals separating the points. Therefore, the calculated average velocity for the time interval $[t_{i-1}, t_{i+1}]$ will equal the instantaneous velocity at the middle of this interval, at t_i . See Figure 4.4.

► Answer the following:

a) Use the graph to determine the value of the instantaneous velocity at t = 0.6 s. Show your work on the graph.

Compare with the instantaneous velocity from Table 4.3 above. Discuss.

The difference 8.8 is the for the error aler

b) Determine where the velocity is increasing, decreasing, or constant. Indicate the correct answer for each time interval by a ✓ in Table 4.5.

Table 4.6									
t (s)	0.05 - 0.15	0.15 - 0.25	0.25 - 0.35	0.35 - 0.45	0.4 5- 0.55	0.55 - 0.65	0.65 0.75	0.75 - 0.85	0.85 - 0.95
Increase	~	7	V				1	L	V
Decrease					/	A	4		
Constant (V		V	R	a	qa

c) Ask your instructor for which time interval $[t_i,t_f]$ to use for calculating the area under the \overline{V} -T curve; see Figure 4.5 below. Record the area in Table 4.6. This area represents the displacement made by the 0th point during the chosen time interval.

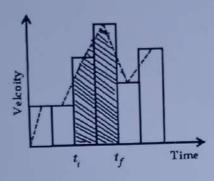
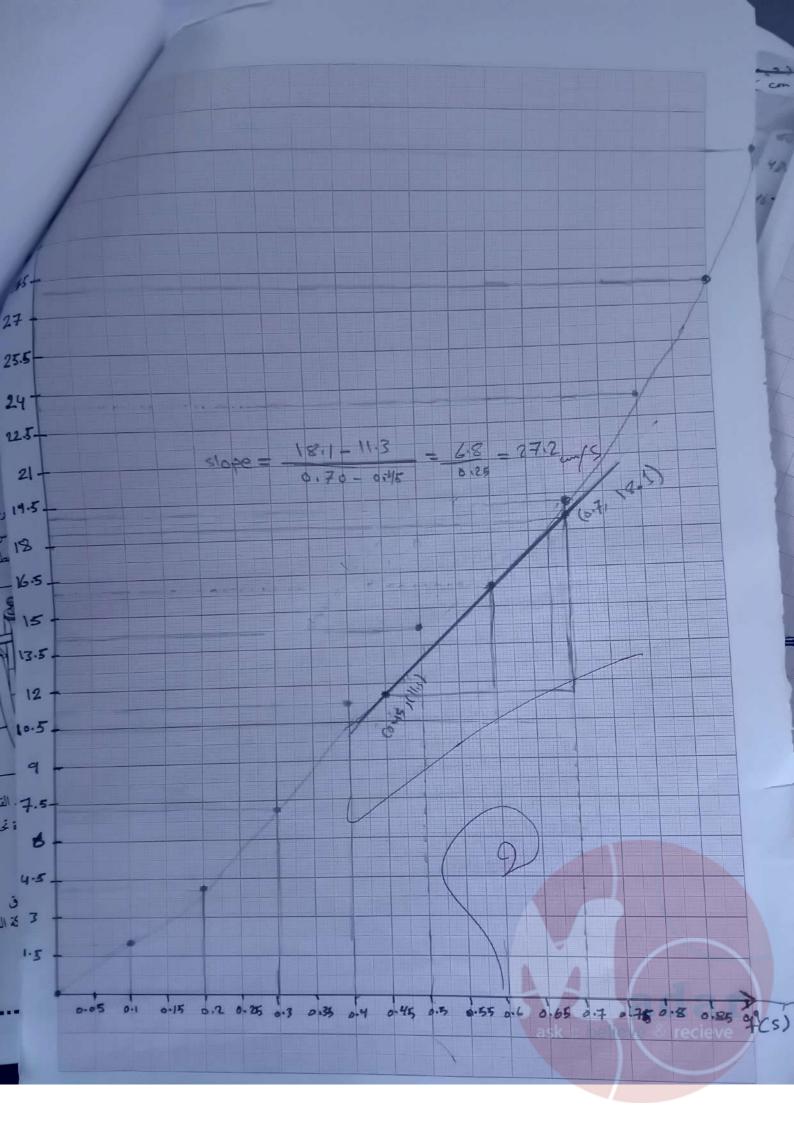
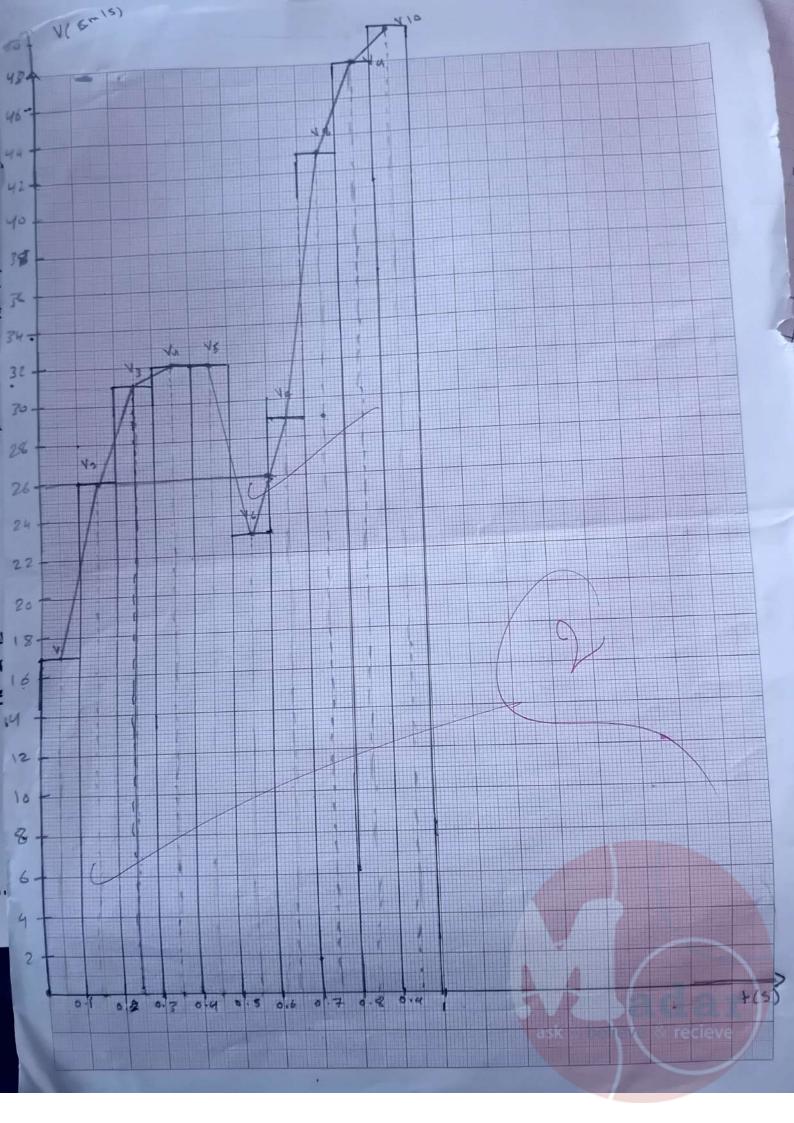


Figure 4.5: Finding the displacement from the area under the Velocity-Time graph.

Tabl	
$t_i = \emptyset$	t= 0.25
Area under the curve from V-t graph =	= \(\times \)
Displacement from the paper tape = 1	2 Changle area
Do the two measurements agree? Disc	russ.
Sume /es	


E) a-t GRAPH


Refer to Table 4.2 and plot a versus t. Label your axes. The a-t graph can be used to determine the maximum and minimum accelerations.

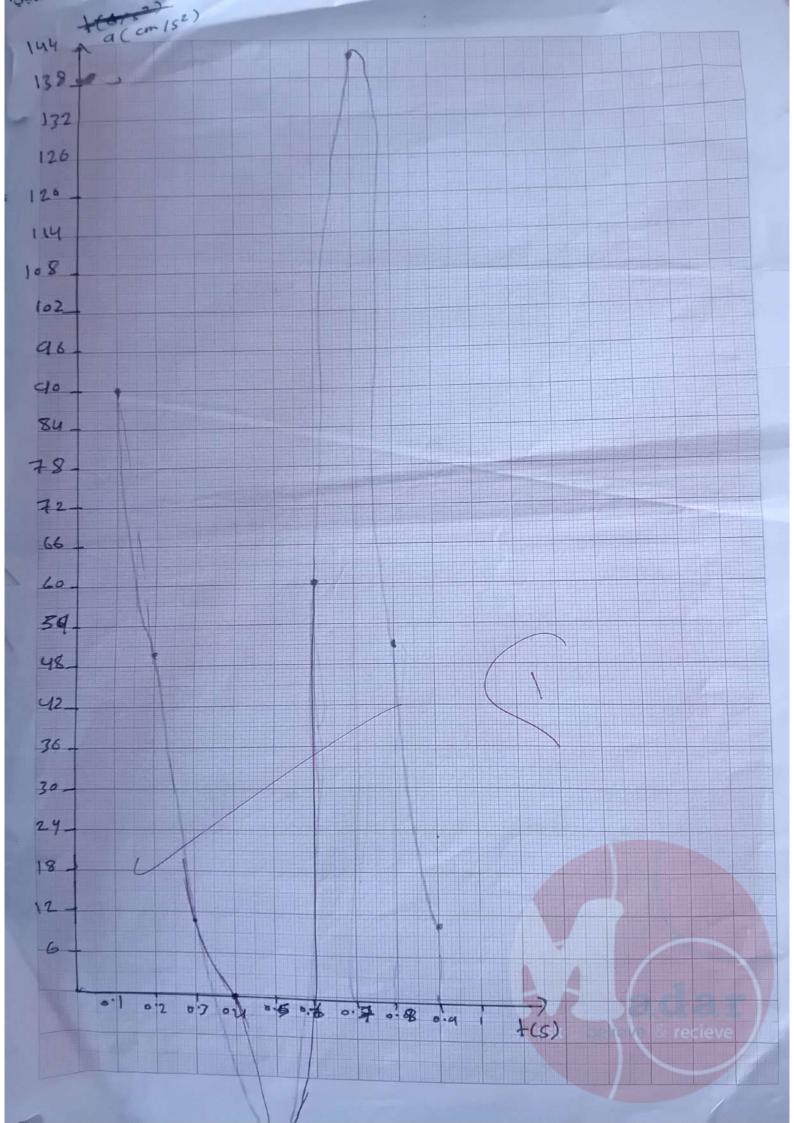

Record your results in Table 4.7.

Table 4.7

Maximum Acceleration	Minimum Acceleration				
amax = 140 cm/52	amin = 0 cm/52				
t(amax) = 0.705	$t(a_{min}) = 0.405^2$				

9.5

EXPERIMENT 5

FORCE AND MOTION

LAB REPORT

Name Harris Name grown I Haled A Tawahal Registration No. ...

Section Instructor's Name

I. PURPOSE

To verify Newton's second law for a mechanical system moving in one dimension, specifically, the relationship between the acceleration of the mechanical system, its mass, and the net force, acting on it. Two cases will be studied:

- 1- The net force is kept constant.
- 2- The mass is kept constant.

II. INTRODUCTION - THEORETICAL BACKGROUND

Newton's second law of motion gives the relationship between the mass of a mechanical system (m), its acceleration \vec{a} , and the net (resultant) force, \vec{F}_{mel} acting on it:

$$\vec{F}_{net} = m \vec{a}$$
 (5.1)

where $\vec{F}_{nel} = \sum \vec{F}_{ext}$, is the vector sum of all external forces acting on the object.

V. ANALYSIS OF DATA - PART 1

- 1. For each value of m_a , use Equation 5.7 and Table 5.1 to calculate the cart's velocity at each of the three photogate positions.
- 2. Record your results in the appropriate cells in the table.

Table 5.1

		$\Delta x = .4.$ cm m_h								5	1			
		$m_a = 0$			$m_a = 25 \text{ g}$			ma =	$m_a = 50 \text{ g}$			$m_a = 75 \text{ g}$		
		t	Δt	υ	t	Δt	υ	t	Δt	υ	t	Δt	υ	
4	-8	(s)	(s)	(cm/s)	(s)	(s)	(cm/s)	(s)	(s)	(cm/s)	(s)	(s)	(cm/s)	
(1.5359)	٥	0	0	10	01	0	0 1	04	0	0	0	0	0	
	0.141	1.868	ø-127	2844	1.566	0.101	40	1.805	0.110	36	1.411	0.112	36	
2.414	0.100	24/1	0.85	4633	2.154	0.080	50	2.467	0.042	43		10.042	43	
(2.35)	0.08	2.943	0.06	5661	2.635	0.068	59	3.018	0.073	51	3.200	80.0		

- 3. On one graph sheet, *v* versus *t* for each value of the added mass and draw the best fit line through the data points.
- 4. Label each line with the corresponding value of the added mass m_a .
- 5. Determine the acceleration (a) for each case from the slope of the corresponding line, and enter your values in Table 5.2 below:

Table 5.2

m_a (g)	a (cm/s ²)	1/a (s²/cm)
0	24	1.4 4103 0 084
25	23	1-4 20 10 3 0.043
50	20/	2.5 410-3 0.05
75	17/	3.5 × 10-3 0.06

6. Plot ma versus 1/a.

8.04

0.075

0.06 5

7. From the graph, what conclusion can you make about the way the

acceleration of the cart depends on the system's total mass?	Co.46
· Accession of the second of t	Z
<u></u>	
8. From your graph, find the mass of the cart, m_c .	
$m = \sqrt{1 + 2 + -20}$	
m ₂ = 1/mtacept -20 m _c = \$5-20 = \$59	

VI. PROCEDURE - PART 2: ACCELERATION UNDER VARIABLE NET FORCE AND CONSTANT SYSTEM MASS

In this part, you will use two photogates.

- 1. Set up the system as indicated in Figure 5.1, starting with $m_a = 30$ g and $m_h = 10$ g.
- 2. Reset the photogates by pressing the RESET button.
- 3. Press the START button to start the motion.
- 4. Read off the times t_1 , t_2 , Δt_1 , and Δt_2 following the same procedure from part 1. Record your results in Table 5.3.
- 5. Repeat steps 2 through 4 three more times, reducing m_a by 10 g and increasing m_h by the same amount.

VII. ANALYSIS OF DATA - PART 2

1. For each run, use Equation 5.7 and Table 5.1 to calculate the cart's velocity at each of the two photogate positions. Record your results in the appropriate cells in the table.

Table 5.3

 $\Delta x = ...$ cm

$m_a = 30 \text{ g}$ $m_h = 10 \text{ g}$	Time (s)		$v = \frac{\Delta x}{\Delta t}$	v ₂ - v ₁	$a = \frac{v_2 - v_1}{t_2 - t_1}$
			(cm/s)	(cm/s)	(cm/s ²)
	t1= 2.446	$\Delta t_1 = 0.117$	34		
				7	10
	t2= 3.139	Δt2=0.097	41		
$m_a = 20 \text{ g}$ $m_h = 20 \text{ g}$	Tim	ne (s)	$v = \frac{\Delta x}{\Delta t}$	v ₂ - v ₁	$a = \frac{v_2 - v_1}{t_2 - t_1}$
			(cm/s)	(cm/s)	(cm/s ²)
	t1= 1.064	$\Delta t_1 = 0.084$	48		
				18	39
	t2= 1.529	$\Delta t_2 = 0.06$	66		
$m_a = 10 \text{ g}$ $m_h = 30 \text{ g}$. Time (s)		$v = \frac{\Delta x}{\Delta t}$	<i>v</i> ₂ - <i>v</i> ₁	$a = \frac{v_2 - v_1}{t_2 - t_1}$
			(cm/s)	(cm/s)	(cm/s ²)
	t1= 0.9	$\Delta t_1 = 0.07$	57		
				23	60
	t2= 1.286	$\Delta t_2 = 0.05$	80/		
$m_a = 0 \text{ g}$ $m_h = 40 \text{ g}$	Time (s)		$v = \frac{\Delta x}{\Delta t}$	v ₂ - v ₁	$at = \frac{v_2 - v_1}{t_2 - t_1}$
			(cm/s)	(cm/s)	(cm/s^2)
	t1= 0.731	$\Delta t_1 = 0.953$	75		
				33	115
	t2= 1.017	$\Delta t_2 = 0.037$	108		

2. For each run, calculate the average acceleration (a), where $a = (v_2 - v_1)/(t_2 - t_1)$.

ask ;; belt le & recieve

3. Enter your data for the hanging weight $(m_h g)$ and the corresponding acceleration (a) in Table 5.4. (Take $g = 980 \text{ cm/s}^2$).

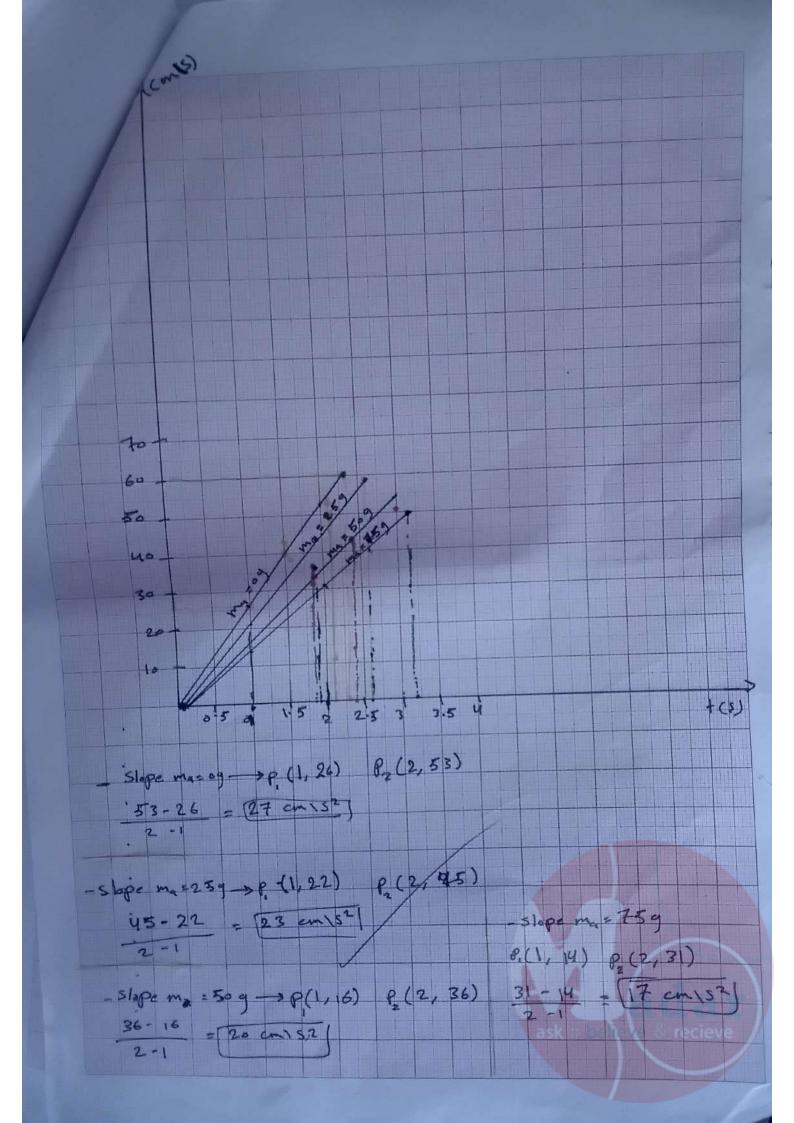
Table 5.4

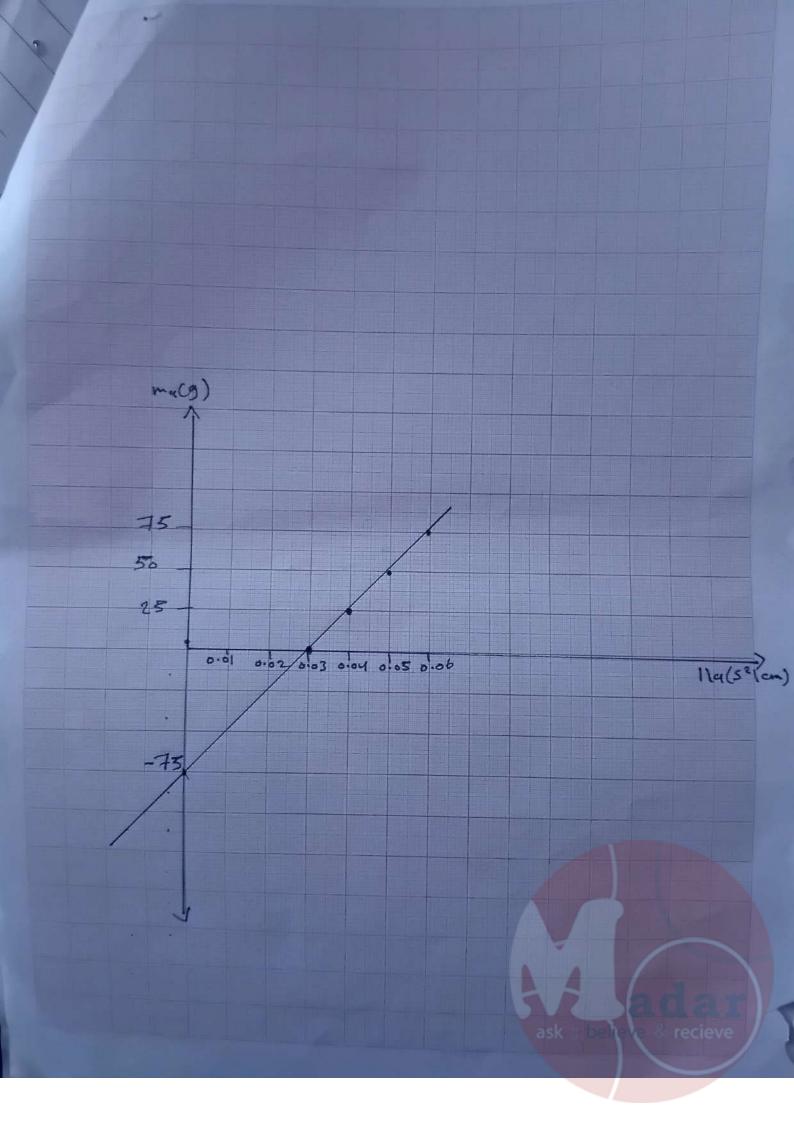
Hang	ing weight mhg	Acceleration a		
Ms	(dyne) 980	(cm/s ²)		
(10)	9800	lo		
(20)	19600	39		
(30)	29400	60 /		
(40)	39200	115		
1 dyne = 1 g cm s ⁻² = 10^{-5} N				

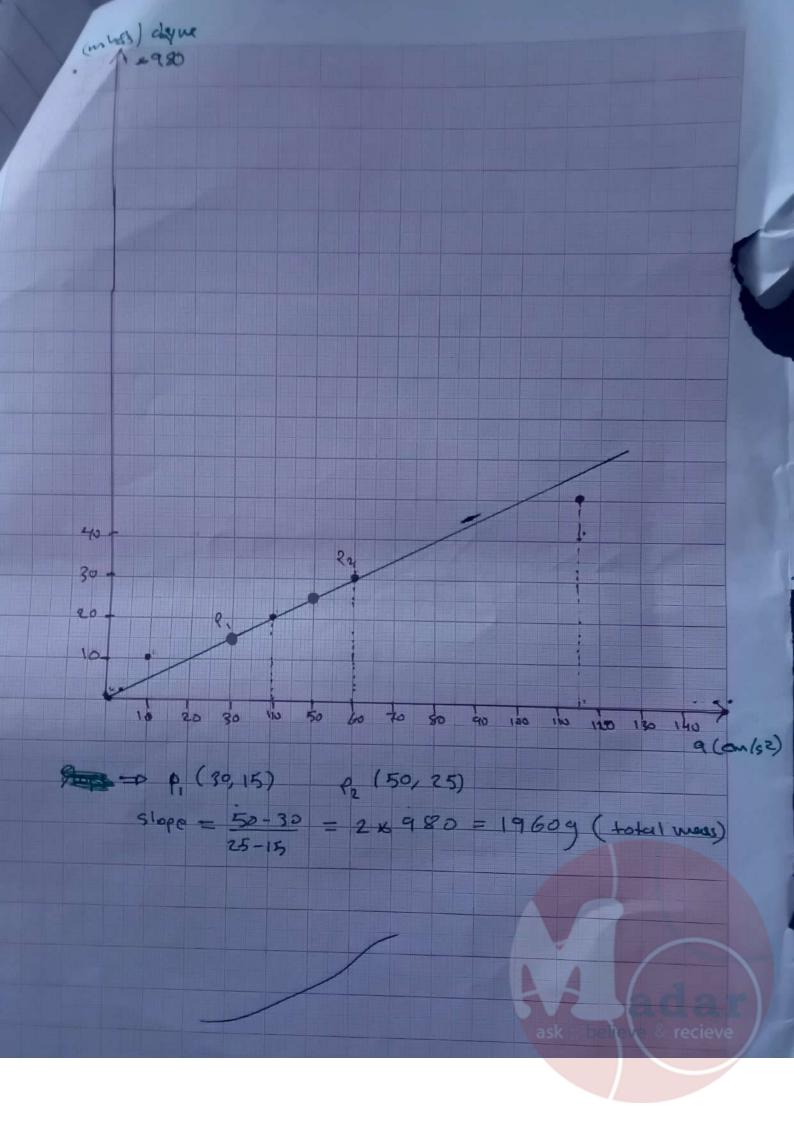
- 4. Plot a graph of the hanging weight (m_{hg}) against the acceleration (a).
- 5. Calculate the slope of your graph. What does the slope of your graph

represent? $P_1(30, 15)$ $P_2(50.05)$ Slope = $50-30 = 20 = 2 \times 980 = 1960 \cdot 9$

6. State and discuss three sources of error in this experiment.


......


Desperimental estar Desso in calculations


3) error in Levice (Systa Systematic error)

See also:

http://www.phywe-es.com/index.php/fuseaction/download/lrn_file/versuchsanleitungen/p1199705/e/p1199705e.pdf

9.5

EXPERIMENT 6

COLLISIONS IN ONE DIMENSION

(CONSERVATION OF LINEAR MOMENTUM)

LAB REPORT

Name Hanson shallof Par

Partner's Name

Registration No.

Registration No. 9

Section

Instructor's Name

I. PURPOSE:

To study conservation of linear momentum and kinetic energy in elastic and inelastic collisions in one dimension.

II. INTRODUCTION - THEORETICAL BACKGROUND

The linear momentum and kinetic energy of a object or particle of mass m moving with velocity \vec{v} are defined as follows:

$$\vec{p} = m\vec{v} \tag{6.1a}$$

$$K = \frac{1}{2}mv^2 = \frac{p^2}{2m} \tag{6.1b}$$

When two objects collide in the absence of external forces (or, equivalently, when the resultant external force is zero), then their total

V. DATA ANALYSIS - PART 1

1. Calculate the initial and final velocities of the cart, $v_1 = \Delta x/\Delta t_1$ and $v_1' = \Delta x/\Delta t_2$. Record your results in Table 6.1.

2. the rebound coefficient $r = \frac{|v_1'|}{|v_1|}$. Record your results in Table 6.1.

Table 6.1

$\Delta x = \dots M$	cm		×	DX	
Mass of cart (g)	Δt_1 (s)	Δt_2 (s)	v ₁ (cm/s)	v_1' (cm/s)	$r = \frac{ v_1' }{ v_1 }$
loo	0-058	0.066	69.0	60.6	0.878
125	0.123	0.137	32.5	24.2	0.892
150	0.199	0.244	20.1/	16.4	0.816

3. Answer the following:

Dustic Callisions	
If r<1 this means that	

قرمادم من ع حاجز ثابت fixed barrier

المتمادم من والربة تركة بعنى السهد الكن هناك في هنا بسيط بغول المتحربة وقومنط المخطاد في المتحربة وقومنط المنافية

في النجادع المرن المكافحة المخطة عنوطة الرخ وعنوط

VII. DATA ANALYSIS - PART 2

 Calculate the initial and final velocities of the two carts (initial velocity of cart 2 is zero) and record the results in Table 6.2.

Table 6.2

	Before c	ollision	After collision					
m ₂	Δt_1	01'	$\Delta t_1'$	v_1'	Δt_2^{\prime}	v'2		
(g)	(s)	(cm/s)	(s)/	(cm/s)	(s)	(cm/s)		
100	0.062	64.5	() V	5.7	0.068	58.8		
100	0.061	65.5		18.7	0.057	70.2/		
150	0.063	63.5		-8.8	0.083	48.2		
			1					

In the following,

- p_i , K_i are the initial momentum and kinetic energy of cart i (i=1,2).
- p'_i , K'_i are the final momentum and kinetic energy of cart i.
- $p_{tot} = p_1 + p_2$ and $K_{tot} = K_1 + K_2$ are the total initial momentum and kinetic energy.
- $p'_{tot} = p'_1 + p'_2$ and $K'_{tot} = K'_1 + K'_2$ are the total final momentum and kinetic energy.
- 2. Calculate the following and record the results in Table 6.3.
 - p_1, p_2, p'_1 , and p'_2
 - ptot and p'tot.
- 3. Calculate the following and record the results in Table 6.4.
 - K₁, K₂, K'₁, and K'₂
 - · Ktot and K'tot

$$\dot{v}_1 = \left(\frac{m_1 \, v_1 - m_2 \, \dot{v}_2}{m_1} \right)$$

m1 =		g	m, V	72=	O Pore	P.+Pe	
1M2	pi'	p ₂	p_1'	p_2'	Ptot	p'tot	$\frac{\left p_{tot}'-p_{tot}\right }{\times 100\%}$
(g)	(g cm/s)	(g cm/s)	(g cm/s)	(g cm/s)	(g cm/s)		
100	6 450	0/	510	5880	6950	6450	0%
100	9825	10	2805	7020	9825	9825	0.19
150	6350	0/	4880	7230	6350	6350	0°%
	1	1		/	/		

	2 mi	1 2 m2	Pi Pi	Table	6.4			
m ₂	K ₁	K ₂	K' ₁	K' ₂	K _{tot}	K' _{tot}	$r = \frac{K'_{tot}}{T}$	
(g)	(erg)	(erg)	(erg)	(erg)	(erg)	(erg)	Y - K _{tot}	
100	2080125	0	16245	172972	2080125	174490.5	6.839	
100	322653	0	26226.7	24640	27 322653	272629.7	5 0.847	
150	201612.5	D	3872	174243	201612.5	178115	0.883	
1 erg = 1 dyne. 1 cm = 10-5 N 10-2 m = 10-7 J								

4. Within experimental error, was linear momentum conserved in each of the four collisions? Hint: Use the last column in Table 6.3.

5. For each of the four collisions, was kinetic energy, within

experimental error, conserved (i.e. was the collision elastic)?

Justify your answer. Hint: Use the last column in Table 6.4.

Yes because C is Close to one

.....

IX. DATA ANALYSIS - PART 3

 Calculate the initial and final velocities, v and v', respectively, and record the results in Table 6.5.

In the following:

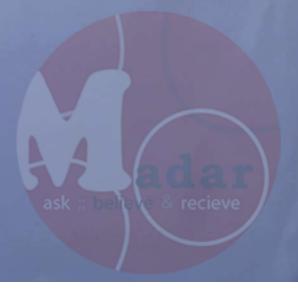
- p and K are the initial momentum and kinetic energy of cart 1. Since cart 2 is initially at rest they are equal to the total initial momentum and kinetic energy of the system.
- p'and K' are the final momentum and kinetic energy of the system composed of cart 1 and cart 2 stuck together.
 - 2. Calculate p and K and record the results in Table 6.5.
 - 3. Calculate p' and K' and record the results in Table 6.6.

Table 6.5

m1 =	m1 = 100 g Dx = 4cm v2 = 0									
m ₂	Δt_1	v	Δt_2	יט י	p	p'	$\frac{ p'_{tot} - p_{tot} }{\times 100\%}$			
(g)	(s)	(cm/s)	(s)	(cm/s)	(g cm/s)	(g cm/s)	Ptot			
100	0.048	83.3	0.117	34.2	8330	8550				
150	0 054	74.07	6.157	25.5	7407	6375				
1										

Table 6.6

m ₂	K	K'	$r = \frac{K'}{}$						
(g)	(erg)	(erg)	K						
100	346944.	102756.	25 0.526						
150	274318.2	21641.22	0.296/						


P-P X 100

4. Within experimental error, was linear momentum conserved in each

where is the

ask ;; believe & recieve

4	of the four collisions? Justify your answer.
	Hint: Use the last column in Table Ca
	Tes because P. = P
	befor alta
5.	For each of the four collisions, was kinetic energy conserved (i.e. was the collision elastic) within
	Hint: Use the last column in Table 6.6.
	No become C is not closury to one
6.	State and discuss three sources of error in this experiment. D. Ever in calculations D. Ever in Hue equipments (systematic ever)

EXPERIMENT 7

SIMPLE HARMONIC MOTION

THE SIMPLE PENDULUM

LAB REPORT

	Date			
Name Hancon Shallof	Partner's Name . July !! !! Salar			
Registration No.	Registration No			
Section	Instructor's Name			

I. PURPOSE

To study simple harmonic motion of a simple pendulum and verify the relationship between its length and period.

You will also calculate g, the acceleration of gravity.

II. INTRODUCTION - THEORETICAL BACKGROUND

Oscillatory motion is a type of motion in which a particle moves back and forth over the same path. If the oscillatory motion repeats itself in regular time intervals (periods), then it is called a harmonic motion There are several types of oscillatory harmonic motions, simple harmonic motion (SHM) being the simplest.

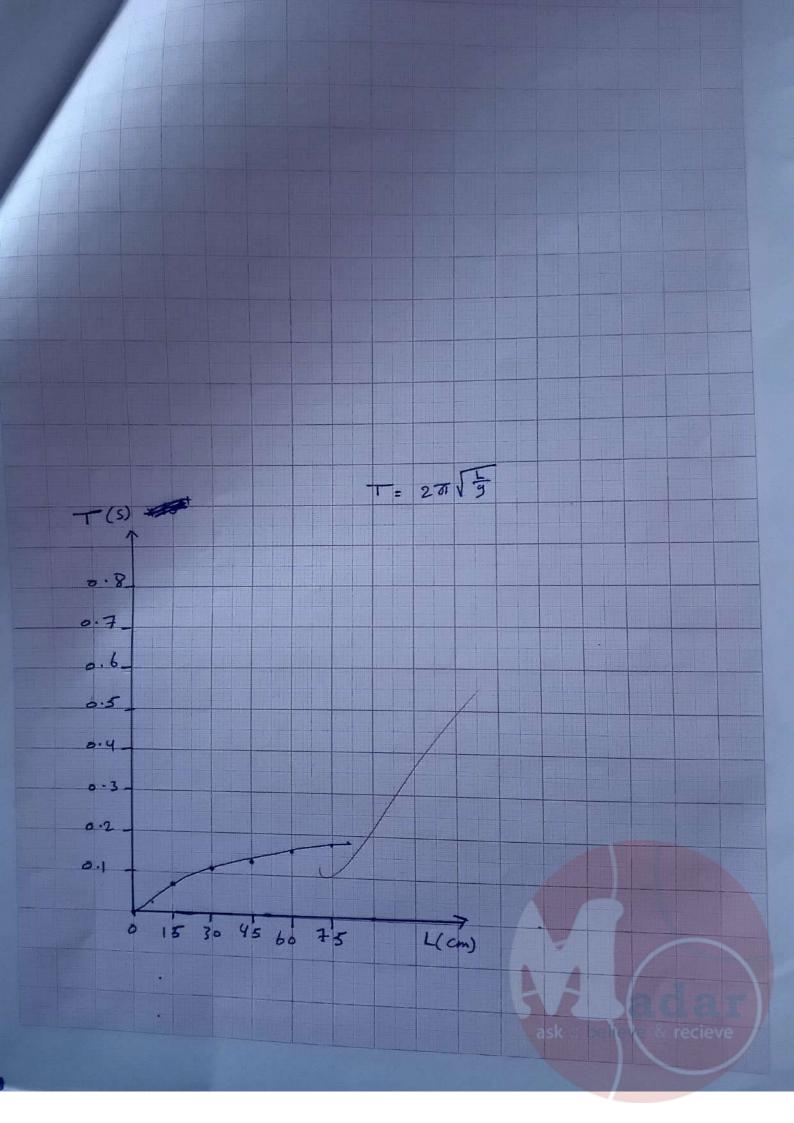
Two important characteristics of periodic motion are its amplitude and period. Amplitude refers to the maximum size of the quantity whose magnitude is oscillating with time, while period refers to the time interval

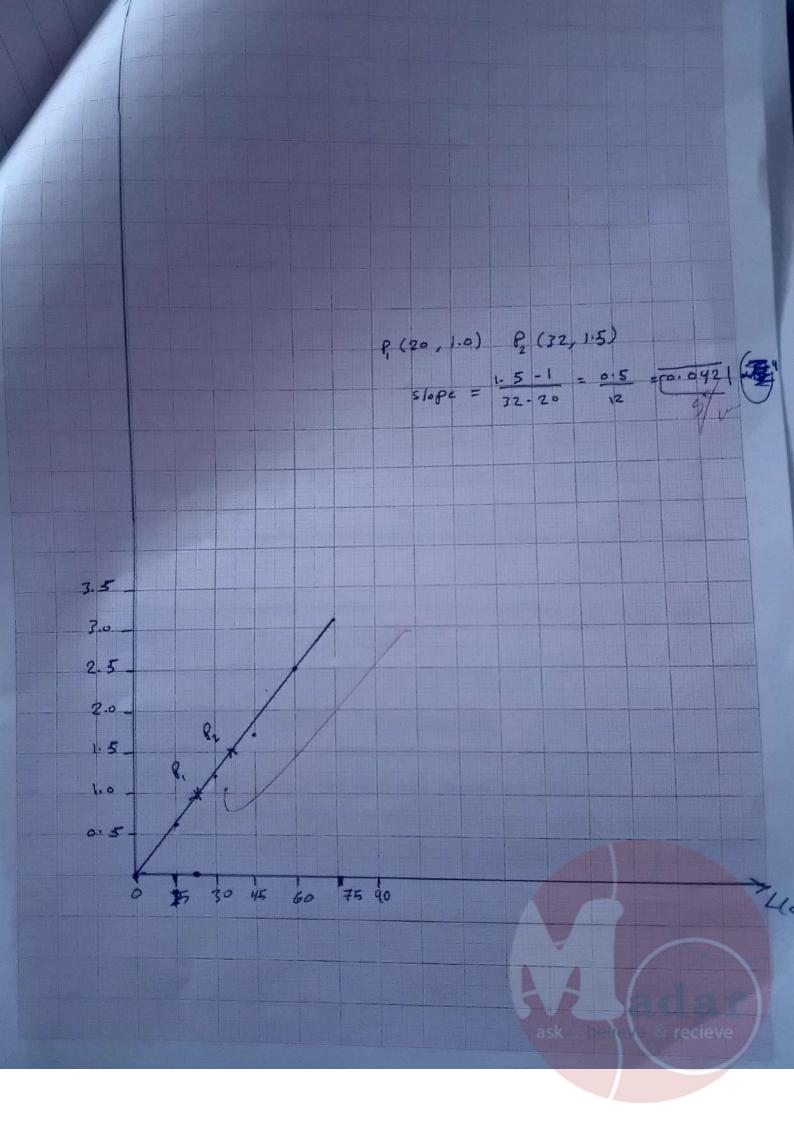
	$T^{(10)} = A^{-1}$	verage ti						
L (m).	Trial 1	Trial 2	Trial 3	Trial 4	RSP.	$\overline{T} = \frac{\overline{T}^{(10)}}{10}$	$\overline{\overline{T}^2}$ (s ²)	
cm	Lans	(FG)	T=T(10	2	(s)		
L1 = /	115	7.8	85.6	1-21	-		0.61	Fix
L ₂ =	30	11	1.1	1.19	(2-1.10)	0.000	1.21 ×	107/4
L ₃ =	35	13.2	1.32	2006	5.152	arpt32	1.74	10/4
L4 =	60	15.7	1.57	-	9-157	20157		11/-4
L ₅ =	45	V17.6	1.76		-p-17-6	2.0176	3. 10 0	10 /
L ₆ =	190/	1						J

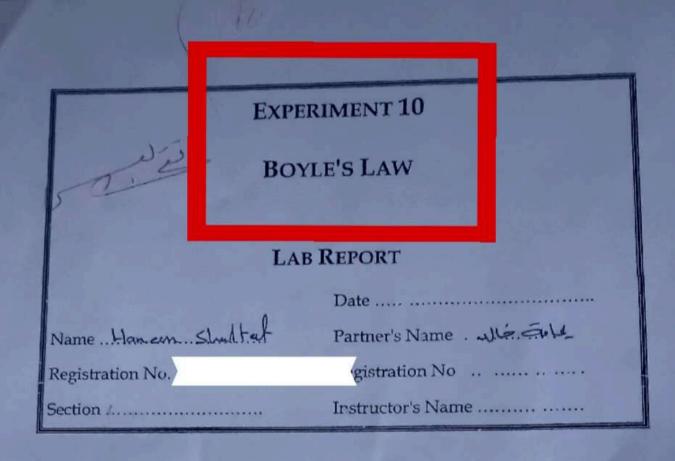
V. DATA ANALYSIS

In the following, for simplicity of notation, we will replace \overline{T} and \overline{T}^2 by Tand T2, respectively.

1. Using the data in Table 7.1, make a plot of T (vertical axis) versus L (horizontal axis).


2. What type of relationship do you observe between T and L? Is it linear? Is it consistent with Equation 7.14? - direct wat - linear -tes, it's consistent


3. Using the data presented in Table 7.1, make a plot of T2 (vertical axis) versus L (horizontal axis).


4. What type of relationship do you observe in the previous graph? Is it consistent with the theoretical predictions of Equation 7.14?

tes it's consistent

5 Draw the best-fit line for the 1
5. Draw the best-fit line for the data presented in the T^2 versus L graph.
6. What is the slope of the best fit line found in 5 obtained above?
7. What does this slope represent?
51.pe= 4 012 9
9
8. Using the value of the slope that you obtained in 6, calculate the
acceleration due to gravity (g) at the University of Jordan.
0.042 = 4 × 9.87 , g = 9.40 cm \ 52.
9
9. Calculate the percentage error in your experimentally found g.
g - g
9+ × 100 °/0 = 1940 - 980 (100°/0 = 44°/0
1 80
10. State and discuss three sources of error in this experiment.
Demor in calculations
Demor in reading the stop wath
Querror in reading the stop wath

I. PURPOSE:

To verify Boyle's law for a trapped gas at room temperature.

II. Introduction

According to Boyle's law, the pressure of a trapped gas at constant temperature is inversely proportional to its volume.

A force F acting perpendicularly to a surface with area A exerts a pressure given:

$$P = F/A \tag{10.1}$$

In MKS the unit of pressure is the Pascal or $Pa = \tilde{N}/m^2$.

It can be shown that the pressure exerted on a surface by a column of fluid of density ρ and height h is given by:

$$P = \rho g h \tag{10.2}$$

The atmospheric pressure at a given location is due to the column of air

Table 10.1

Average Room Temperature = 20.5 °C

mm

	Scale Readings		h = Y - X	L = B - X	1/L
	(mm)		(mm)	(mm)	(mm ⁻¹)
	Х	Y			
	270	800	530	80	0.018
	265	700	435	. 85	8 110.0
0	257	600	343	93	0.0108
ν	250	500	250	100	0.01
	239	400	(1,61	111	9.01 * 10-3
	227	300	73	123	8.130 × 10 ⁻³
z	204	200		141	4.04×103

V. DATA ANALYSIS

1. Plot h versus 1/L. Use the graph to find the value of the atmospheric pressure $P_a \pm \Delta P_a$ in units of mmHg.

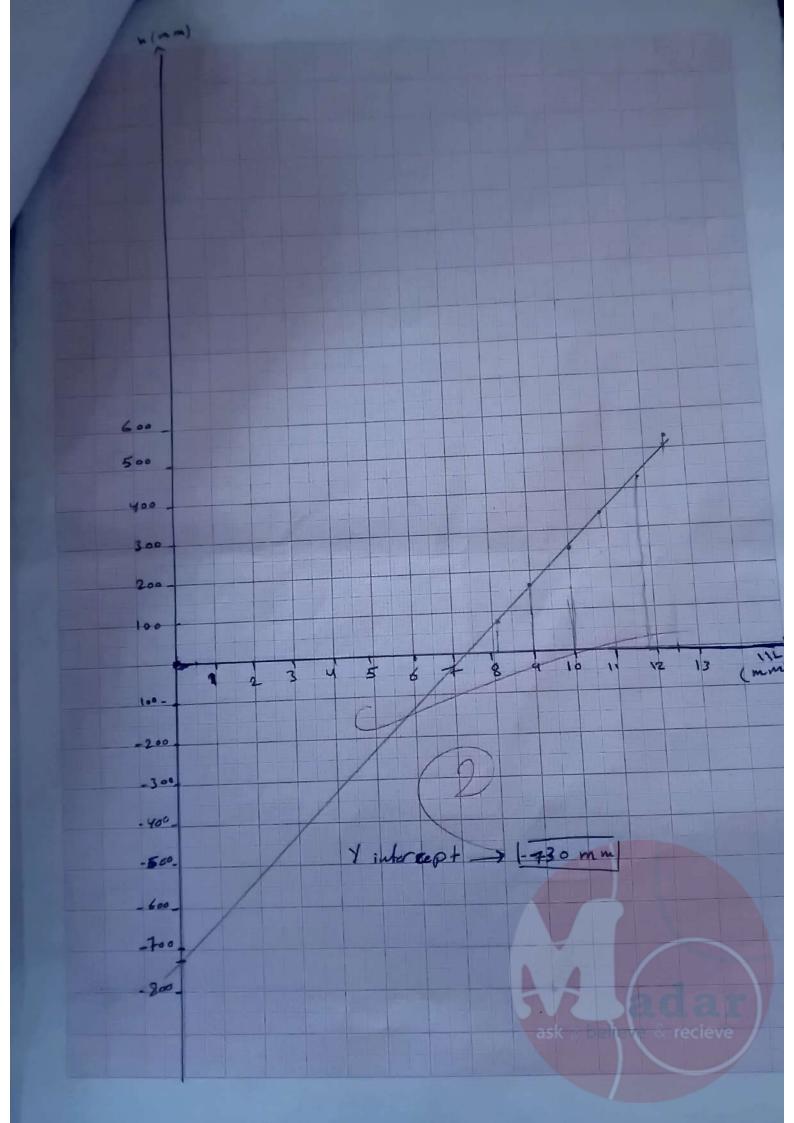
/ 4	Pa = 730 mm Hg
0,	

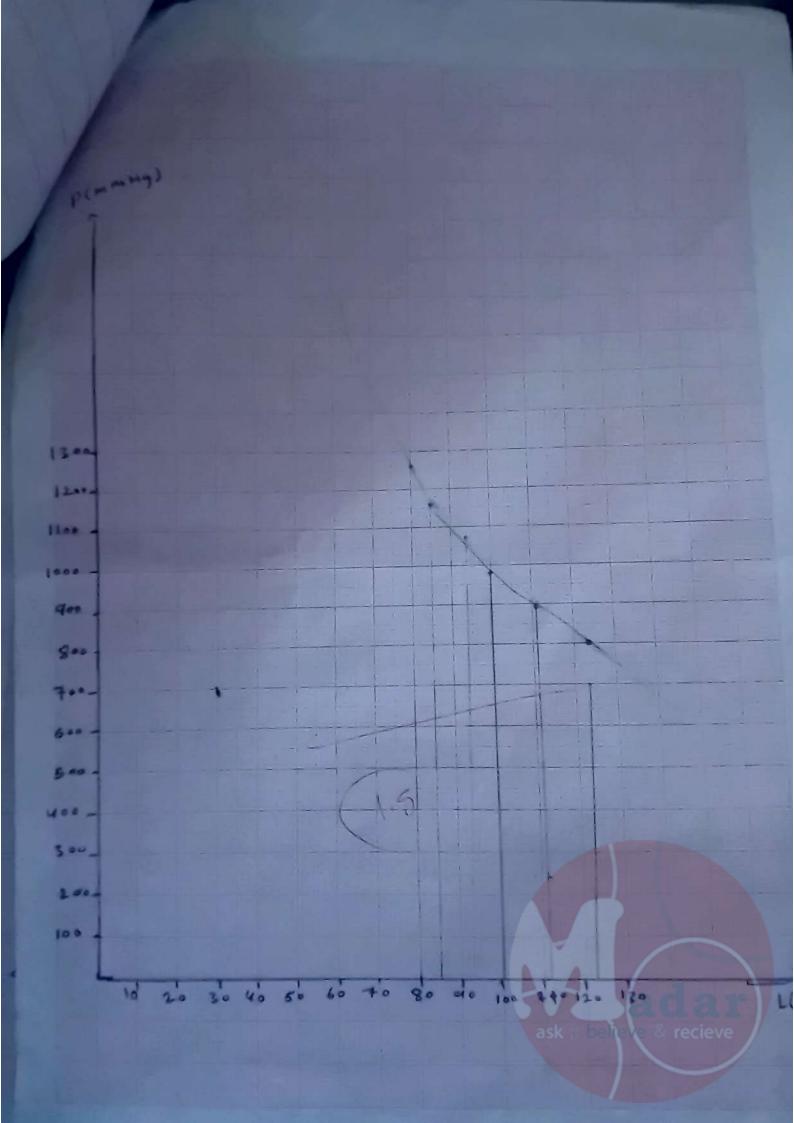
2. With the value of the atmospheric pressure known, you can now calculate the pressure P of the trapped air for each value of h, using the relation: $P = P_a + h$. Calculate the quantity PL for each (h,L) pair and enter the values in Table 10.2 below:

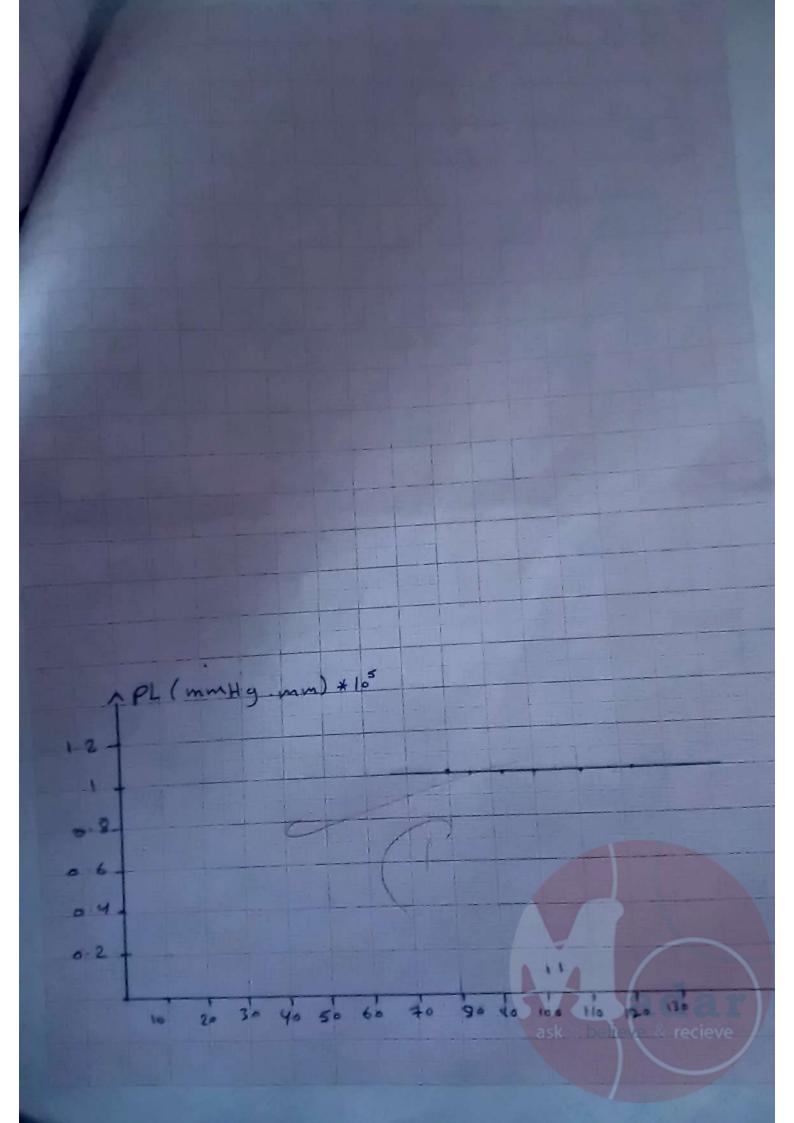
12.5

11.2

10.8


10


730 (Table 10.2


L (mm)	h (mm)	P Pa h (mmHg)	PL (mmHg . mm)
20	530	1260	1.01 #105
85	435	1165	5.410 0 × 105
93	343	1073	0.948 × 105
100	250	980	0.980 + 105
111	161	891	0.939 × 10
123	73	203	0.988 +105
-			

3. Plot L versus $P = (P_a + h)$. What do you conclude from the graph.
P. in Crease and and L. decrease
p ince cost
h
The relationship -> inverse non linear
4. Plot a third graph of L versus P L. What do you conclude?
4. Plot a third graph of L versus I L. What do
4. Plot a third graph of L versus 1 L. Martin of L. Lin crause and pl. constant
. F
The result consistent with Boyles low
The Coult consistent with Boyles low
4,200

EXPERIMENT 11 SPECIFIC HEAT CAPACITY OF METALS

LAB REPORT

Name Harren Shull of	Partner's Name . January who Who ed
Registration No	egistration No'
Section 4	Instructor's Name

I. PURPOSE

المركة ا

To determine the specific heat capacity of a metal sample using a simple calorimeter.

II. INTRODUCTION:

Heat is a form of energy. When two objects at different temperatures exchange heat in isolation from their surroundings, one observes that the two objects reach a common final temperature, a condition called thermal equilibrium. We say that heat flowed from the hotter object to the colder one.

In thermodynamics temperature is a relative measure of the hotness (or coldness) of an object or a thermodynamic system.

If a system in a given phase, at initial temperature T_i , absorbs (loses) an amount of heat Q and does not undergo a phase change, its temperature

Table 11.1

	Moscurements Units Errors					
т	Symbol	Definition	Measurements			
- 1	Symbol	Million Control of the Control of th	0.22	cal/g °C	-	
	C1	Specific Heat Capacity of Calorimeter		cal/g°C	-	
		Specific Heat Capacity of Water	1.00	cai/g C	1.0	
	Cw		46.68	g	AM1 = +0.01 9	
	M1	Mass of Calorimeter	16:08	-		
		Mass of Calorimeter + Water (M_=	141.00	g	AMa = +0.019	
	Mew	Mass of Caronaters	111.00	Ь		
-	IVIcw	M_1+M_w			AM1 =10.014 9	
-		Mass of Water (M _{cw} -M ₁)	94.32	g		
_	Mw			.c	ΔT1=+9.5°C	
	Tı	Initial Temperature of Calorimeter	25.5		ΔT2= ± 0.25°C	
			92.0	.c	D129 1 0.25 C	
	T ₂	Initial Temperature of Metal			1	
		Final Equilibrium Temperature for	30.0	.c	ΔT,= + 0.5°C	
	T_f	Calorimeter + Water + Metal	30.	/		
		Calonmeter + Water + Water	1 11	g	ΔM2 = 0.0 9	
	M ₂	Mass of Metal	(99.46	6		
	1712	***************************************				

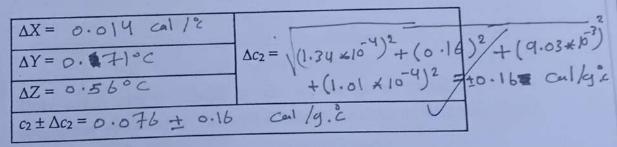
M) 2+ (Ma)

$$c_2 = \frac{xy}{M_2Z}$$

Table 11.2

X= 104.59 col/c	, , ,
Y= 4.5 °c	0= 0.076 cal /g.c
Z= 62.0°C	

- 2. Use the relations in the table below and calculate the error Δc_2 , and express your final result as $c_2 \pm \Delta c_2$.
- 3. Record your calculations in Table 11.3 below.


$$\Delta c_2 = c_2 \sqrt{\left(\frac{\Delta X}{X}\right)^2 + \left(\frac{\Delta Y}{Y}\right)^2 + \left(\frac{\Delta Z}{Z}\right)^2 + \left(\frac{\Delta M_2}{M_2}\right)^2}$$

$$\Delta X = \sqrt{(c_w \Delta M_w)^2 + (c_1 \Delta M_1)^2}$$

$$\Delta Y = \sqrt{(\Delta T_1)^2 + (\Delta T_f)^2}$$

$$\Delta Z = \sqrt{(\Delta T_2)^2 + (\Delta T_f)^2}$$

Table 11.3

4. Referring to Table 11.4, what is your metal sample? (Show your calculations in detail)

E To convert C2 to the Tule

C2 in cal X 4.18 C2 in Jule

5.0 7 6 1 4.4.18 50.318 Jule 19.°C

Table 11.4

127

ry out

Metal	Symbol	Specific heat (J/g °C)
Iron	Fe	0.449
Lead	Pb	0.129
Magnesium	Mg	1.023
Copper	Cu	0.387
Aluminum	Al	0.900
Silver	Ag	0.235
Silicon	Si	0.703
Tin	Sn	0.540

Record your answers in Table 11.5. The heat capacity will capacity is constant Table 11.5 be decrease C = c. M. capacity is constant Table 11.5 be decrease C = c. M. Change Factor = 0.5 OIL muss New 2 OIL

Change Factor = 8.5	on unuss	202
	Effect	Value
Physical Quantity	1) A	The same Valye 0. 3189
Specific Heat Capacity	constant	
Heat Capacity	decrease	8.5 x S. H. & x Mass =1=
Treat Capacity		14/8

6. Discuss the possible sources of errors in this experiment.

Di errors in calculations

(3) Turden effor errors in balance or thermometer (4) errors in reading the balance or thermometer

7. How much heat is gained or lost for the given metal under the conditions specified in Table 11.6 below. Use the information from Table 11.4. $\bigcirc = M \subset \Delta \top$

4. $Q = 120 \pm 0.049 + (100 - 26)$ Table 11.6 80 = 4

Metal	Tow	Initial temperature	20°C
Mass	1209	Final Temperature	100°C
141000	120		

160 0 = C

128

ask ;; believe & re