

Jordan University Faculty of Engineering & Technology Chemical Engineering Department Chemical Engineering Principles I

Instructor: Dr. Mohammad Al-Shannag

Background: What is Chemical Engineering?

- Chemical engineer: The engineer who creates processes based upon physical/chemical/biological changes. These processes may yield marketable products, e.g., gasoline, and penicilin, or non-commercial products, like clean air and water.
- Chemical Engineering combines the principles of mathematics, physics, chemistry and biology with engineering practices in order to improve the human environment.

- Chemical engineers as a profession, is barely 100 years old. It started at the interface of chemistry and mechanical engineering. The principal goal then was to commercialize chemical reactions developed on a chemist's bench.
- Top 10 chemical engineering achievements (list compiled in 1983 in celebration of the 75th anniversary of the AIChE):
 - 1. Synthetic rubber
- 2. Antibiotics
- 3. Polymers or "plastics"
- 4. Synthetic fibers
- 5. Cryogenic separation of air
- 6. Catalytic cracking of crude oil
- 7. Separation of nuclear isotopes
- 8. Pollution control
- 9. Fertilizers, especially ammonia
- 10.Biomedical engineering

- Contemporary chemical engineering encompasses:
 - 1. Production of novel materials
 - 2. Biotechnology
 - 3. Waste treatment
 - 4. Pollution control
 - 5. Energy
 - 6. Process control

Where do the chemical engineers work?

- 45% do ``traditional" ChE: chemical, petroleum, plastic, paper, consumer goods
- 35% do ``new" ChE: environment, consulting, microelectronics, biotechnology, materials
- 10% go to ChE graduate school
- 10% go to other graduate school (law, medicine, business)

hapter 2:	
* Dimensio	ns; units and Conversion factors:
Diversion	
Dimension	: quantity that can be calculated or measured.
	measured such as: Length, mass, time, etc.
	Calculated such as: velocity = Length time
	Volume = (Length) ³
	Density = $\frac{Mass}{(Longth)^3}$
	(Longth)
	etc
* All quant	ater 5 of interest (in this course) can be expressed in
	nties of interest (in this course) can be expressed in
* All quant terms of	
	: Mass (M)
	: Mass (M)
	: Mass (M) Length (L) time (t)
	Mass (M) Length (L) time (t) Temperature (T)
	Mass (M) Length (L) time (t) Temperature (T) Mole 5 (mole)
	Mass (M) Length (L) time (t) Temperature (T)
	Mass (M) Length (L) time (t) Temperature (T) Moles (mole)
terms of	Mass (M) Length (L) time (t) Temperature (T) Moles (mole) Electric current (A) Light intensity (Cd)—candela
terms of	Mass (M) Length (L) time (t) Temperature (T) Moles (mole) Electric current (A)
terms of	Mass (M) Length (L) time (t) Temperature (T) Moles (mole) Electric current (A) Light intensity (Cd)—candela
terms of	Mass (M) Length (L) time (t) Temperature (T) Moles (mole) Electric current (A) Light intensity (cd)—candela

```
** Different systems of units:
```

1. International system of units: (SI units)

A Base (fundamental) units: Longth [=] m 7 Mass [=] kg Mks system time [=] 5

Temporature[=] C or K

absolute Kelvin and goode for amount of species

a Derived (secondary) units

Examples: Volume [=] m3

velocity [=] m/s

Force [=] kg.m = N

Energy or work [=] N.m = &

Power[=] I = watt

pressure [=] N = pa V:s casely [=] $kg = pa. 5 = \frac{N}{M^2} \cdot 5$ m. s

2. CGs system of units

A Base units: cm; g, 5,°C or K, gmole

A Derived units:

Examples: Force [=] 9.cm = dyne

pressure [=] dyne

cm2

work or Energy [=] dyne. cm = eng

viscosity [=] = Poise

Dr. Mohammad Al-Shar British system		Amer: can	Engineering System (AES)
	ravitational (B		7
			5,°F; °R; Ibmmole
	Telles?	tahren heit	absolute temp.
			
16m: pound - w	228		Degrees
			Rankine
a Derived un		195 513	1 slug = 32.2 lbm
Examples:	Pressure [=]		
	force[=]	Slug. ++	= 10¢
	Energy or wi	ork [=]	pt. ++
	Power [=	pt.	+2
		5	
prefixes : t	hey are atteched	to some 1	mits to indicate scale
	magnitude		
	peta (P)	1015	deka 10 ¹
	tera (T)	1012	dec: (d)10 ⁻¹
	giga (G)		Centi (c) 10-2
	mega (M		milli (m) 10 ⁻³
	kilo (k		micro (w) 10-6
			nano (n) 109
			Pico 12-12
			femto 1015
			-18
6 . 0		0	
Conversion ta			ty to its equivalent in
	1.00-1	- 14	= 1)
Ex: 1 m =	different = 100 cm	un. 1	

```
Ex '
         1 m = 100 cm
                                   100 Cm
           1 \text{ ft} = 12 \text{ in} \Rightarrow \frac{1 \text{ ft}}{12 \text{ in}} = \frac{12 \text{ in}}{1 \text{ ft}} = 1
* Rule for conversion: to convert a quantity from one set of units to
                        another; start with this quantity and multiply
                       by the suitable conversion factor to replace
                        old unit with new one.
   Ex: Convert a distance of 150 ft to its equivalent in cm:
      Pick up from Conversion factor table the suitable Conversion factor:
                    1ft = 30.48 cm
      150 ft
               30.48 Cm
                                             = 4572 Cm
                1 f+
   Ex: Convert g = 9.81 m to its equivalent in AES of units
                                                  I t+
                                      = 32.2 f+
   Ex: Convert 0.02562 9.in
                                  to its equivalent in ton mile
       Pick up from conversion table: 5x10 ton = 453.593 g
                                        1ft = 12 in
                                        3.2808 ft = 0.0006214 mile
    and we know: 1 wk = 7 day; 1day = 24 hr; 1 hr = 80 m.n
  0.025629.in 5x10 ton 1ft 0.0006214 mile (60 min)2 (24 mr)2 (72/mg)2 = 4.53x16
```

min 453.5939 12 m 3.2808 Dt (1hm) (1day) (1wk) ton. mile

Ex: consider the eq. D(+) = 3+ +4

D is distance in ft and t is time in 5

- (9) What are the units of 3 and 4
- (b) Rewrite the eq. to have D in m and t in min
- (a) 3 ft; 4 ft

1 min

$$D(f+) = D(m)$$
 1 f+ = $D(m)$
0.3048 m 6.3048

substitute now in the original eq. :

$$\frac{D(m)}{0.3048} = (3)(60t(min)) + 4$$

Exercise ! what is the mint of 1.22 ?

Vorify the validty of the eq. by taking some numerical example.

```
** Data data presentation; and data analysis:
  * Significant figures: The number of digits from the first non-zero
                     digit on the left to either:
                     (a) the last digit (zero or non-zero) on the
                        right if there is a decimal point.
                     (b) the last non-zero oligit if there is no
                        decimal point.
                    : # of s.f = 4
           1137
   Ex:
                    : 2 sf
           1100
           0.041
           100.003 : 6 s.f
                        5 s.f
   * Scientific hotation !
       - for very large or small numbers: They expressed
         as a product of numbers between 0.1 and 10 and
         a power of 10
        Ex: 320,000 = 3.2 x105
   Remark: When you use scroutific notation you must maintain the
            Some # of s.f.
            0.0003100 = 3.100 X104
                            not 3.1 x10-4
```

	that the distance d is a function of time t d = 16.2 - 16.2 e
where (clis in um and tis in s
Convent	the eq. to have d in inches (in) and t in min
d(ulm) =	d(in) 2.54 cm 1 m 106 ulm = 25400 d(in)
	t(min) 605 = 60 $t(min)1 min (-0.021)(60t(min))in) = 16.2 - 16.2 e$
25400 d(i	(10) = 16.2 - 16.2 e $(1) = 6.38 \times 10^{-4} - 6.38 \times 10^{-4} e$

* Addition or substraction :

Rule: note the decimal position of the last (i.e. rightmost)

Significant digit; the Position furthest to the left decide

the S.f. in the answer.

Ex: 1.0000 + 0.036 + 1.22 = 1.256 = 1.26

Ex: $2.75 \times 10^6 + 3.400 \times 10^4 =$ $2.75 \times 10^6 + 0.03400 \times 10^6 = 2.784 \times 10^6$ $1 = 2.78 \times 10^6$

Ex: $565 + 64 = 5.65 \times 10^{2} + 0.64 \times 10^{2} = 6.29 \times 10^{2}$ $\frac{1}{2}$

Ex: $1530 - 2.56 = 1.53 \times 10^{3} - 0.00256 \times 10^{3}$ = 1.52744×10^{3} = $1.53 \times 10^{3} = 1530$ Exception to the rule of S.f.: Counted quantities and integers Contain a number of S.f.

Ex: 1000 students: 00 s.f.

Why this exception ? Because the # of s.f. indicates the Precision in the numerical value of the

quantity

Ex: 6.2 => Range = 6.15 - 6.25

6.20 - Range = 6.195 - 6.205

* Arithmetic operations with significant figures:

* Multiplication or division:

Rule: S.f. in the conswer - smallest # of s.f. in quantities

being multiplied or divided

4 s.f. Roundaryott

Ex: 573.5 = 2.2578 = 2.26 (3 s.f.)

13s.f

(The ensuer must have 3 s.f.)
Rounding-off

Ex: (33.5) (2.5) _- 83.75 = 84

3 st. 25.f.

Remark: If the digit being rounded-off is 5 ; the convention is to make the last digit of the rounded off muber is even.

Ex: 1.235 = 1.24

** Uncertainty and propagation of uncertainty:

Ex: Measured temperature = 321°C with uncertainty ±0.5

How to estimate the uncertainty of acalculated quantity in terms of measured quantities?

measured quantities: X,, X2,..., Xn having uncontainty u,, uz,..., un i respectively.

From mathematics; a first order Taylor series expansion yields:

y (x, +u,, x2+u2,...., xn+un) = y (x,x2,...,xn) +

34 u1 + 34 u2 + --- + 34 un

If the individual uncontainties are statistically independent, the uncontainty of y is

 $y(x_1+u_1,u_2+x_2,...,x_n+u_n)-y(x_1,x_2,...x_n)=\frac{\partial y}{\partial x_1}u_1+\frac{\partial y}{\partial x_2}u_2+$

and a root-mean-squared value of the uncertainty of y; by can be calculated as:

 $u_y = \sqrt{\left(\frac{\partial y}{\partial x_1} u_1\right)^2 + \left(\frac{\partial y}{\partial x_2} u_2\right)^2 + \cdots + \left(\frac{\partial y}{\partial x_n} u_n\right)^2}$

```
Ex: Determine the RMS uncertainty of a cylinder's density, 8,
       using the following measured values:
       Mass; M = 1.669 ± 0.01 kg
       D i Diameter = 0.050 ± 0.001 m
       Length; L = 0.100 ± 0.001 m
                             V = TD^2 L
            \frac{4M}{11D^{2}L} = \frac{(4)(1.669)}{11(0.05)^{2}(0.1)} = \frac{8500.1}{m^{3}} = \frac{kg}{m^{3}}
     S= 4M
      um = 0.01 kg up = 0.001 m
    u_{g} = \sqrt{\left(\frac{\partial s}{\partial M} u_{m}\right)^{2} + \left(\frac{\partial s}{\partial L} u_{L}\right)^{2} + \left(\frac{\partial s}{\partial D} u_{D}\right)^{2}}
            = \frac{4}{\pi D^{2}L}, \frac{\partial S}{\partial L} = -4M(\pi D^{2})^{2}
    28
    ME
                                      = -4M = -08
TD2L2 @L
    79 = -4M (2TTDL) = -8M = (-2) 4M
    00
              (\Pi D^2 L)^2
                                       IL D3 T
                                                          D TD2L
u_g = \left(\frac{-9}{L}u_H\right)^2 + \left(\frac{9}{M}u_H\right)^2 + \left(\frac{-29}{D}u_D\right)^2
      (8500.1 (0.001))^{2} + (8500.1 (0.01))^{2} + (-2 * 8500.1 (0.001))^{2}
      354 kg => 8=(8500.1 ± 354) kg
```

**	process	data	representation	and	analysis
					0

- * The operation of chemical plant is based on the measurements of process variables such as: Temperature; T, pressure; P, flowrates, Concentration... etc.
- * Estimation of data using Linear interpolation or extrapolation:

Interpolation: estimation of y at x	×	у	
value located within the	13	0.5	
range of X	17	0.6	
d ·	20	?	Ш
	24	0.75	
or estimation of x at y			
Value located within the	×	y	
range of y	13	0.5	
	?	0.4	
	. 15	0.9	

Extrapolation: estimation of y at x value located outside the range x or estimation of x at y value located outside of the range y.

×	y	×	y	
300	7	3.7	0.3	
400	13	4.0	0.1	
600	?	3	0.05	

How to porform interpolation or extrapolation?

Linear interpolation/extrapolation relationship:

$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1} \quad \text{or} \quad \frac{x-x_1}{y-y_1} = \frac{x_2-x_1}{y_2-y_1}$$

* for linear interpolation we need two points:

(x1, y1) and (x2, y2)

thom Beometrical point view:

Slope between (X,1,y,) and (X2,y2)

is the same as between (X,y) and

(X,1,y,) or (X2,y2).

Ex: Having the following calibration data of rotanneter:

(a) at
$$R = 16$$
 $F = ?$
 $F = 16$
 $F = 16$

(b) at
$$R=38$$
 $F=?$ R F
 $F_2-F_1-F_1-F_1-F_1$ $R_1=30$ $52.1=F_1$
 R_2-R_1 $R-R_1$ $R=38$ $?=F$
 $84.6-52.1-F_2$
 $84.6-52.1-F_3$
 $84.6-52.1$
 $84.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$
 $94.6-52.1$

(c) at
$$R = 70$$
 $F = ?$
 $R = 30$
 $F = 30$
 $F = 70$
 $F = 70$

(d)
$$qt = 60 Llmin R = ?$$
 $R_2 - R_1 = R - R_1$
 $R_2 - R_1 = R - R_1$
 $R_1 = 30$
 $R_2 = 50$
 $R_2 = 50$
 $R_3 = 60 = F$
 $R_4 = 7$
 $R_4 = 7$
 $R_5 = 7$
 $R_6 = 7$

Perform Curve fitting: Finding the best function y(x)
that fit the data with small errors.

* Sometimes; it is possible to measure process variables directly, but more often we must relate one variable to another that is easier to measure - This is called (Calibration experiment) from which we can develop one eq. relating one variable with another.

** Curve fitting:

suppose we have data for y (dependent variable) versus x (independent variable) and we wish to derive a mathematical expression for y(x).

- The general strategy:

scale on both x and y-axes)

A If straight-line trend appears then:

$$y = ax + b$$

$$a = slope = \underbrace{y_2 - y_1}_{X_2 - X_1}$$

b= Intercept = y, -ax,

where (X_1, y_1) and (X_2, y_2) are two point that must Coincide on the line.

A Else:

- Guess a function for y(x) that fit the data correctly (see function library)
- Linearize this function: figure out what yield a straight line plot if the guess is correct
- Plot it and see if it works
- If it works find the constants of the function

		lution. use the following
experimental de	sta to derive an i	expression for CA(K)
	Siemen	
K: Electrical cond	uctivity; (us/cm)) Caisolute Concentrationing
10.	0	3.000
28.	5	12:00
92.0	0	44.00
147		72.00
316		156.0
plot CA VS	K - Calibrat	ina Plat
	TP O'II O'II	101
350		
300		
250		
200		
200 -		
150		
100		
50		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	

pick up two points an coincide on the line:

(K, CA,) = (50, 23)

(K2, CA2) = (300, 148)

a = slope = CA2-CA1 = 148-23 = 0.5.

CA = 0.5K+b

To find b: CA, = 0.5 k, +6

23 = (0.5)(50) +b = b=-2

00 CA = 0.5K-2

Two aqueous solutions are drawn from two process vessels and analyzed. Their electrical conductivity are found to be $K = 200 \, \text{ms/cm}$ and $K = 550 \, \text{ms/cm}$. Estimate salt concentrations in both vessels:

 $C_{A(200)} = (0.5)(200) - 2 = 98 \text{ mg/L}$ $C_{A(550)} = (0.5)(550) - 2 = 273 \text{ mg/L}$

Since the relationship is linear, you can get the same results using Linear interpolation for K=200 and linear extrapolation for K=550.

Ex: Linearize the following equations to get a straight line plot and how would you determine the constants a and b:

let
$$t = \sqrt{x}$$
 \Rightarrow $y = at + b$

$$a = \frac{y_2 - y_1}{t_2 - t_1}$$
; $b = y_1 - at_1$

$$= \frac{y_2 - y_1}{\sqrt{x_2} - \sqrt{x_1}} \quad ; \quad b = y_1 - \alpha \sqrt{x_1}$$

(b)
$$y^2 = \frac{a}{x} + b$$

let
$$z=y^2$$
 $t=\frac{1}{x} \Rightarrow z=at+b$

$$a = \frac{2z-21}{tz-t1}$$
; $b=z_1-qt_1$

$$= \frac{y_2^2 - y_1^2}{\frac{1}{X_2} - \frac{1}{X_1}}, b = y_1^2 - a \frac{1}{X_1}$$

(c)
$$y = ax$$
 $b+x$

take the reciprocal of both sides:

$$\frac{1}{y} = \frac{b+x}{ax} = \frac{b}{a} \frac{1}{x} + \frac{1}{a}$$

let
$$z = \frac{1}{y}$$
 $t = \frac{1}{x} \Rightarrow z = \frac{b}{a}t + \frac{1}{a}$

$$\frac{b}{a} = \frac{2z-21}{tz-t_1} = \frac{y_2-y_1}{y_2-y_1} ; \quad \frac{1}{a} = \frac{1}{z_1-b} = \frac{b}{z_1}$$

Dr. Mohammad Al-Shannag	
	24
(d) $siny = ax + by$	
Divide equation by X	
sing a + b y	
$\frac{\sin y}{x} = a + b \frac{y}{x}$	
let siny = z t	$z = \frac{y}{x}$
2 = 9+ bt	
	inyz — siny,
tz-tı T	X2 X1
	12 _ 41
	X2 Xi
a = 21 - bt, = 5	ing, by,
	x, x,

		25
Ex. Given	the fill in (V u) detai	
La. Given	the following (X,y) data:	
×	y	
0	1	
	2	
2	9	2.
5 / / /	28	2
tind the	best expression to relate X with y	•
y(x) =	?	
- Plot 4	versus x on a normal rectangular	Paper
to see	if straight line trend appears or no	t-
	30	
	25	
	20	
>	15	
	10	
	0 1 2 3 4 x	
் T	ne trand is not linear	

			26
- Guess	another f	unction:	
Let _ lineari	us try	y = ax3 + b	
	let	$x^3 = t \implies y = at$	+b
×	у	t=x3	
0	1	0	
1	2	1	
2	9	8	
3	28	27	
>	25	ersns t = X3	
	5		

- Determine the constant a and b:

Choose two points that coincide on the y vs + plat:

$$a = \frac{y_2 - y_1}{t_2 - t_1} = \frac{26 - 6}{25 - 5} = \frac{20}{20} = \frac{1}{20}$$

$$y = t + 1 = x^3 + 1$$

: Check the validy of expression by trying some

** Focusing on exponential and power law functions:

It is found that Chemical process variables are often related with expressions of the form:

* Exponential functions;

How to linerize: $y = ae^{6x}$ e = 2.71828take In of both sides: lny = lna + bx

let z = lny

=> Z = lna + b ×

Intercept slope

plot z = lny vs x to find

a and b

X B Z=Iny

Note that z=lny must be plot against x on normal rectangular paper.

b x, = log a → a = 10

Intercept = logy, -

(Intercept Value)

Thus, and to avoid generating logy data Column, now, you can plot y (without taking log) on log scale and X on linear scale to fit exponential function

Semilog paper

Ex:	A toxic	waste	product	from o	che	mical proc	ess, A	is
						bucterial		
	Causes	it to	de compo	se:			9	

Effluen4 from Holding lank Discharge to sewer Plat with High Low CA

Backeria

samples are frequently drawn from the reactor and analyzed for CA leading to the following experimental data:

t(min)	CA; mol A/L	
0	10.0	
1	6.20	
3	2.26	
4	1.30	
5	0.80	
6	0.50	
	1 0 (1)	

we want to determine an expression for CA(t) so we can determine the holding time required for CA to fall below its safe value of 0.001 mollL.

- plot CA versus t to explore the trend:

As can be shown in the above figure, the plata are not Correlated in a linear manner. However, the curve looks like an exponential decay; so let us try:

 $C_A = a e^{bt}$ (the value of b must be negative since C_A decreases with t)

- Linearize the selected function:

In CA = Ina + bt

InlologCA = In lo loga + bt

and log CA = loga + b t

- use a either rectangular uniform paper or semi-log Paper to see if the selected function works: * Rectangular Paper Plot:

Plat log CA on a linear scale versus t on a linear scale:

we need to generate log CA Column

t,min_	CA, mol/L	log CA
0	10.0	1
1	6.20	0.7924
3	2.20	0.3424
4	1.30	0.1134
5	0.80	-0.0969
6	0.50	-0.3010

$$(t_1, \log CA_1) = (0,1)$$

 $(t_2, \log CA_2) = (4.6,0)$

$$=1-\frac{-0.501}{\ln \log }$$
 (0) =1

$$\Rightarrow a = 10^1 = 10$$

* or we can use semi-log paper without the need of Calculating log CA data Column:

on a semi-log paper plot CA on log-scale versus t on linear scale:

indicates that the exponential function works well.

To find the constants a and b pick up two Points that coincide on the line:

$$(\pm_1, C_{A_1}) = (2.4, 3)$$

 $(\pm_2, C_{A_2}) = (5.6, 0.6)$

$$= \log(0.613) = b$$

$$5.6 - 2.4 \quad \ln \log 1$$

Intercept = $\log a = \log C_A$, - $\frac{b}{\ln 10}$ t, = $\log 3 - \frac{-0.503}{\ln 10} = 1.0$

Now let us answer the second part of this example: How long will it take for CA to drop to 0.001 mol/L

CA = 10 e -0.501 t

0.001 = 10 e .501t

In(0.001) = In10 - 0.501 t

 $\pm = \ln(10/0.001)$

= 18.3 min

Try to use linear extrapolation to find t at CA = 0.001 without this nonlinear curve fitting:

t = CA $t_{2}-t_{1} = t_{1}$ $t_{2}=5$ $t_{3}=0.8 = CA_{2}$ $t_{4}=6$ $t_{5}=0.5 = CA_{1}$

t = ? 0.001 = CA

5-6 = t-6 0.8-0.5 0.001-0.5

=> t = 7.66 min

as you see Large difference between two methods.

so if you use linear extrapolation the CA will not reach safe value.

Conclusion: Extrapolation/Interpolation sometimes is risky.

* Another advantage of Log scale:

* When variations in x or y values in some field are much greater than another field within the data ranges, log scale represents these variations in a manner much better than normal scale.

Ex: represent on a graph the variation of & with x for the following data:

x y
0 0.001
1 0.02
3 0.08
7 10.0
10 400
13 900

Graph on rectangular Paper:

Since Variation at the beginning of y range is much smaller than that at the end of y range it is better to use log scale for y and keep normal scale for X since variations in X values are not so large:

Where \mathbf{n} and \mathbf{j} are integers; their values depends on the range of the data

Ex: It is found from some measurements that Nusselt number varies with Reynolds number according to the following

Reynolds number; Re	Nusselt number, Nu
200	2.83
400	4.00
 800	5.66
looo	6.30
2000	8.90
0 4 40 1	

Derive an expression for Nu(Re)

> plat Nu versus Re to explore suitable function.

It is Not linear trend; it looks like power law function

let us try power law function:

Nu = a Reb

Linearize => log Nu = log a + b log Re

To see if power law relation works well; plat-

log Nu Vs. log Re on rectangular perper or

Nu Vs Re on log-log paper:

* Rectangular paper:

it gives linear plat => Nu = a Ret works well

pick up two points that coincide on the line :

(log Re, log Nu,) = (2.4, 0.5)

(log Rez, log Nuz) = (3.1,0.85)

Slape = b = log Nu2 - log Nu1 _ 0.85 - 0.5 = 0.5 log Rez - log Re, 3.1 - 2.4

Intercept = loga = log Nu, - blog Re, = 0.5 - (0.5) (2.4) = -0.7

It gives linear plot => power law relation works well

Pick up two points that coincide on the line

Intercept = loga = log Nui - blog Rei = logz - 6.5) log loo

→ Nu = 0.2 Re 0.5

* Remark: when you use log soule do NOT tak the log of the data correspons to that scale: Remember that plotting log (value) on normal scale is equivalent to platting value on log scale.

Ex: A plot of F versus t yields a line that passes through the two points: (+1, +1) = (15,0.298) and (+2, +2) = (30,0.0527) on:

(a) semilog paper (b) log-log paper.

For each case calculate the eq. that relates F and t:

(9) semilog paper => log f or Inf vs t give the linear plot => F= aebt

Inf = Ina+ bt

 $b = slope = \frac{\ln f_2 - \ln f_1}{t_2 - t_1} = \frac{\ln (f_2/f_1) - \ln (0.0527/0.298)}{t_2 - t_1}$

b= -0.1155

Intercept = lna = lnf, _bt = ln 0.298 - (-0.1155) (15)

=0.52184

= Q = e = 1.685

So The equation is: F= 1.685 e -0.1155t

$$b = \log F_2 - \log F_1 = \log (F_2|F_1)$$

$$\log f_2 - \log f_1 = \log (f_2|f_1)$$

$$= 2.41444$$
 $\Rightarrow a = 10 = 259.7$