

Chemical Engineering Principles 2 (0905212)

Multiphase Systems

Dr.-Ing. Zayed Al-Hamamre

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Content

- ✓ Introduction
 - Separation processes
- ✓ Single component phase equilibrium
 - o Phase diagram
 - o Vapor Pressures
- ✓ Gibbs phase rule
- ✓ Gas liquid system

Introduction

- ➤ Virtually all commercial chemical processes involve operations in which material is transferred from one phase (gas, liquid, or solid) into another
- Multiphase operations include all phase-change operations on a single species.
- ➤ Examples are freezing, melting, evaporation, and condensation, and most separation and purification processes, which are designed to separate components of mixtures from one another.
- Most separations are accomplished by feeding a mixture of species A and B into a two-phase system under conditions such that most of the A remains in its original phase and most of the B transfers into a second phase.
- > The two phases then either
 - o Separate themselves under the influence of gravity-as when gases and liquids or two immiscible liquids separate-or
 - o Are separated with the aid of a device such as a filter or a skimmer.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Separation processes

Brewing a cup of coffee or the process in a coffee percolator

- ➤ Hot liquid water and solid ground coffee beans are contacted.
- ➤ Soluble constituents of the beans are transferred from the solid phase to a liquid solution (coffee), and then
- ➤ The residual solids (grounds) are filtered from the solution.

➤ The operation of dissolving a component of a solid phase in a liquid solvent is referred to as **leaching**.

Separation processes

Removal of sulfur dioxide from a gas stream

- ➤ For the removal of SO₂ from exhaust gas in combustion processes,
 - The combustion product gas is contacted with a liquid solution in an absorption or scrubbing process.
 - o The SO₂ dissolves in the solvent and
 - o The clean gas that remains is released to the atmosphere.

Recovery of methanol from an aqueous solution

- The separation process distillation exploits the difference in vapor pressure.
- Methanol has a higher *vapor pressure than water. meaning that it has a greater* tendency to vaporize when a mixture of the two species is heated.
- > By partially vaporizing a liquid mixture, yielding a vapor relatively rich in methanol and a residual liquid relatively rich in water.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Separation processes

Separation of paraffinic and aromatic hydrocarbons or separation of biodiesel form unconverted oil

This process is known as liquid extraction

- The paraffinic compounds are almost completely immiscible with liquid ethylene glycol, while
- Aromatic compounds and ethylene glycol readily form homogeneous liquid mixtures
- Paraffinics and aromatics may therefore be separated from each other by blending a mixture of the two
- When allowed to settle, the aromatic compounds distribute between a paraffin-rich phase and a glycol phase.

Separation processes

Separation of an isomeric mixture.

- In the synthesis of polyesters Para-xylene must be separated from the two isomers
- > Two alternative commercial operations have been developed to perform the separation.
 - Adsorption: The isomers is contacted with a molecular sieve that has pores large enough to accommodate para-xylene but not the meta or ortho isomers

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Separation processes

> Crystallization:

- o The Process is performed utilizing the difference in freezing points of the three isomers (para-xylene freezes at 13.3°C, ortho at -25.2°C, and meta at -47.9°C)
- o The mixture is cooled to a temperature at which para crystallizes and can then be separated physically from the remaining ortho and meta liquid.
- ➤ When a species transfers from one phase to another, the transfer rate generally decreases with time until the second phase is **saturated with the species**.
- ➤ When the concentrations of all species in each phase no longer change with time, the phases are said to be in **phase equilibrium**.
- The effectiveness of any of the separation processes described above depends both on
 - o How species are distributed between the phases at equilibrium
 - o The rate at which the system approaches equilibrium from its initial state.

Single component phase equilibrium

The critical temperature and the critical pressure

- A quantity of water is kept in a closed piston-fitted cylinder
- ➤ The cylinder temperature is first set to a specified value with the cylinder pressure low enough for all the water to be vapor;
- ➤ Then the water is compressed at constant temperature by lowering the piston until a drop of liquid water appears
- \triangleright The pressure at which condensation begins (P_{cond}).
- ➤ The experiment is then repeated at several progressively higher temperatures.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Critical temperature and pressure

- ➤ At 25°C, water condenses at a very low pressure, and the density of the liquid is more than four orders of magnitude greater than that of the vapor.
- ➤ At higher temperatures, the condensation pressure increases and the densities of the vapor and liquid at condensation approach each other.
- ➤ At 374.15°C, the densities of the two phases are virtually equal, and above that temperature no phase separation is observed, no matter how high the pressure is raised

Run	T(°C)		$P_{\rm cond}({\rm atm})$	$\rho_{\rm v}({\rm kg/m^3})$	$\rho_{\rm l}({\rm kg/m^3})$			
1	25.0		0.0329	0.0234	997.0			
2	100.0		1.00	0.5977	957.9			
3	201.4		15.8	8.084	862.8			
4	349.8		163	113.3	575.0			
5	373.7		217.1	268.1	374.5			
6	374.15	, ,	218.3	315.5	315.5			
7	>374.15		No condensation occurs!					

Critical temperature and pressure

- \succ The critical temperature of a species (T_c) is the highest temperature at which the species can coexist in two phases (liquid and vapor),
- \triangleright The critical pressure (P_c) is the corresponding pressure at T_C
- \triangleright A substance at T_c and P_c is said to be at its critical state
- \triangleright A substance at T > T_c and P > P_c is said to be at its supercritical fluid

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Phase Diagrams

- A <u>phase diagram of a pure substance</u> is a plot of one system variable against another that shows the conditions at which the substance exists as a solid. a liquid, and a gas.
- The most common of these diagrams plots pressure on the vertical axis versus temperature on the horizontal axis.
- The boundaries between the single-phase regions represent the pressures and temperatures at which two phases may coexist in equilibrium
- ➤ A gas that exists below its critical temperature is usually called a vapor because it can condense

Phase Diagrams

 $P_{abs} = (F + W)/A$

- ➤ A to C: pressure increase at constant temperature (compression, i.e. volume decrease, condensation).
- C to E: Heating at constant pressure (expansion with temperature rise)

13

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Phase Diagrams

At point A:

- o Water exists at 20°C, and the force is set at a value such that the system pressure is 3 mm Hg.
- o At these conditions, water can only exist as a vapor .
- o Any liquid that may initially have been in the chamber evaporates, until finally the chamber contains only water vapor at 20°C and 3 mm Hg.
- ➤ Suppose the force on the piston is slowly increased with the system temperature held constant at 20°C until the pressure in the cylinder reaches 760 pmm Hg, and thereafter
- ➤ Heat is added to the system with the pressure remaining constant until the temperature reaches 130°C.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Phase Diagrams

Phase Diagrams

- If T and P correspond to a point on the vapor-liquid equilibrium curve for a substance, P is the vapor pressure of the substance at temperature T, and T is the boiling point (more precisely, the boiling point temperature) of the substance at pressure P.
- ➤ At a given temperature there is only one pressure at which the liquid and vapor phases of a pure substance may exist in equilibrium
- 2. The boiling point of a substance at P = 1 atm is the **normal boiling point** of that substance.
- If (T, P) falls on the solid-liquid equilibrium curve, then T is the melting point or freezing
 point at pressure P.
- **4.** If (T, P) falls on the solid-vapor equilibrium curve, then P is the vapor pressure of the solid at temperature T, and T is the sublimation point at pressure P.
- The point (T, P) at which solid, liquid, and vapor phases can all coexist is called the triple
 point of the substance.
- 6. The vapor-liquid equilibrium curve terminates at the critical temperature and critical pressure (T_c and P_c). Above and to the right of the critical point, two separate phases never coexist.

Phase Diagrams

- ➤ The freezing point of water decreases with increasing pressure.
- Most substances, including carbon dioxide, exhibit the opposite behavior
- ➤ Normal boiling and melting points for many substances are given in Table B.1 of Appendix B and for many more substances on pp. 2-7 through 2-47 of Perry's Chemical Engineers' Handbook, 1 and vapor pressures are tabulated on pp. 2-48 through 2-75 of the Handbook

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Phase Diagrams

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

- ✓ The volatility of a species is the degree to which the species tends to transfer from the liquid (or solid) state to the vapor state.
- ✓ At a given temperature and pressure, a highly volatile substance is much more likely to be found as a vapor than is a substance with low volatility,
- ✓ which is more likely to be found in a condensed phase (liquid or solid).
- > Separation processes such as distillation are used to separate more volatile species from less volatile species by partially vaporizing liquid mixtures.
- ➤ The vapor product is relatively rich in the more volatile feed components and the residual liquid is rich in the components with lower volatility.
- ➤ The vapor pressure of a species is a measure of its volatility: the higher the vapor pressure at a given temperature, the greater the volatility of the species at that temperature.
- Engineers who design and analyze separation processes therefore need to know the vapor pressures of process species as functions of temperature.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Estimation of Vapor Pressures

- The following methods can be used to determine a physical property of a process material:
 - i. Look It Up
 - o Perry's Chemical Engineers' Handbook, nth Edition, R. H. Perry and D. W. Green, Eds.McGraw-Hill, New York, 1997.
 - CRC Handbook of Chemistry and Physics, 79th Edition, D. Lide, Ed., Chemical Rubber Company, Boca Raton, FL, 1998

ii. Estimate It

- Interpolation or extrapolation
- o Using Correlations, available in
 - ➤ Bruce E. Poling, John M. Prausnitz, John P. O'Connell, The Properties of Gases and Liquids, 5th Edition, McGraw-Hill, New York, 2004

ii. Measure It

A relationship between p^* , the vapor pressure of a pure substance, and T, the absolute temperature, is the Clapeyron equation

$$\frac{dp^*}{dT} = \frac{\Delta \hat{H}_{v}}{T(\hat{V}_{g} - \hat{V}_{l})}$$

where T is absolute temperature; \hat{V}_g and \hat{V}_l are the specific molar volumes (volume/mole) of gas (vapor) and liquid, respectively; and $\Delta \hat{H}_v$ is the **latent heat of vaporization**, or the energy required to vaporize one mole of the liquid

- Vulless the pressure is extremely high, the specific volume of the liquid is negligible relative to that of the vapor (i.e., $\hat{V}_g \hat{V}_l \approx \hat{V}_g$).
- > Apply the ideal gas equation of state to the vapor and re-arranging the equation

$$\frac{d(\ln p^*)}{d(1/T)} = -\frac{\Delta \hat{H}_{v}}{R}$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Estimation of Vapor Pressures

$$\frac{\Delta(\ln P^*)}{\Delta(1/T)} = -\frac{\Delta \widehat{H}_v}{R}$$

- \triangleright Plot $\Delta(lnP^*)$ versus $\Delta(1/T)$ \Longrightarrow the slope at a given temperature equals $-\Delta \hat{H}_v/R$.
- ➤ If the heat of vaporization of a substance is independent of temperature

$$\ln p^* = -\frac{\Delta \hat{H}_{v}}{RT} + B$$
 Clausius-Clapeyron equation

where B is a constant that varies from one substance to another.

If you know $\Delta \hat{H}_v$ and p^* at a single temperature T_0 , you can solve the Clausius-Clapeyron equation for B and thereafter use this equation to estimate p^* at any temperature close to T_0 .

If you have p^* versus T data, you can plot $\ln p^*$ versus 1/T and determine $\Delta \hat{H}_v/R$ and B graphically

Example:

Vapor Pressure Estimation Using the Clausius-Clapeyron Equation

The vapor pressure of benzene is measured at two temperatures, with the following results:

$$T_1 = 7.6^{\circ} \text{C}$$

$$T_1 = 7.6$$
°C, $p_1^* = 40 \text{ mm Hg}$
 $T_2 = 15.4$ °C, $p_2^* = 60 \text{ mm Hg}$

$$T_2 = 15.4$$
°C

$$p_2^* = 60 \text{ mm H}_2$$

Calculate the latent heat of vaporization and the parameter B in the Clausius-Clapeyron equation and then estimate p* at 42.2°C using this equation.

> Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Estimation of Vapor Pressures

Cox chart vapor pressure plots

Estimation of Vapor Pressures

➤ A relatively simple empirical equation that correlates vapor pressure-temperature data extremely well is the **Antoine equation**.

$$\log_{10} p^* = A - \frac{B}{T+C}$$

Values of A, B, and C for several compounds are listed in Table B.4. Observe the units of p^* and T (mm Hg and $^{\circ}$ C for the constants in Table B.4) and the logarithm base (10 in the case of Equation 6.1-4 and Table B.4).

Table B.4 Antoine Equation Constants^a

$$\log_{10} p^* = A - \frac{B}{T + C} \qquad p^* \text{ in mm Hg,} \quad T \text{ in } ^{\circ}\text{C}$$

Example: The vapor pressure of acetaldehyde at 25°C is determined as follows:

$$\log_{10} p_{C_2H_4O}^{\bullet}(25^{\circ}C) = 8.00552 - \frac{1600.017}{25 + 291.809} = 2.9551$$

$$\implies p_{C_2H_4O}^{\bullet}(25^{\circ}C) = 10^{2.9551} = 902 \text{ mm Hg}$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Table B.4 Antoine Equation Constants^a

Compound	Formula	Range (°C)	A	В	_ C
Acetaldehyde	C_2H_4O	-0.2 to 34.4	8.00552	1600.017	291.809
Acetic acid	$C_2H_4O_2$	29.8 to 126.5	7.38782	1533.313	222.309
Acetic acid*	$C_2H_4O_2$	0 to 36	7.18807	1416.7	225
Acetic anhydride	$C_4H_6O_3$	62.8 to 139.4	7.14948	1444.718	199.817
Acetone	C_3H_6O	-12.9 to 55.3	7.11714	1210.595	229.664
Acrylic acid	$C_3H_4O_2$	20.0 to 70.0	5.65204	648.629	154.683
Ammonia*	NH_3	-83 to 60	7.55466	1002.711	247.885
Aniline	C_6H_7N	102.6 to 185.2	7.32010	1731.515	206.049
Benzene	C_6H_6	14.5 to 80.9	6.89272	1203.531	219.888
n-Butane	$n-C_4H_{10}$	-78.0 to -0.3	6.82485	943.453	239.711
i-Butane	$i - C_4H_{10}$	-85.1 to -11.6	6.78866	899.617	241.942

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Gibbs phase rule

Gibbs phase rule

- When two phases are brought into contact with each other,
 - o A redistribution of the components of each phase normally takes place-species evaporate, condense, dissolve, or precipitate.
 - o A state of equilibrium is reached when the temperatures and pressures of both phases are the same and the composition of each phase no longer changes with time.
- > The variables that describe the condition of a process system fall into two categories:
 - o Extensive variables, which depend on the size of the system, and
 - o Intensive variables, which do not.
- ✓ Mass and volume are examples of extensive variables; intensive variables include temperature, pressure, density and specific volume, and mass and mole fractions of individual system components in each phase.

Gibbs phase rule

- ➤ The **degrees of freedom** of the system is the number of intensive variables that can be specified independently for a system at equilibrium.
- ➤ let

 Π = number of phases in a system at equilibrium

c = number of chemical species

DF = degrees of freedom

The relationship among DF, Π , and c is given by the **Gibbs phase rule**.

If no reactions occur, the phase rule is

$$DF = 2 + c - \Pi$$

➤ If **r** independent reactions occur among the system components and the reactions proceed to equilibrium, then

$$DF = 2 + c - \Pi - r$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Gibbs phase rule

Example:

Determine the degrees of freedom for each ofthe following systems at equilibrium. Specify a feasible set of independent variables for each system.

1. Pure liquid water

Gibbs phase rule

2. A mixture of liquid, solid, and vapor water

3. A vapor-liquid mixture of acetone and methyl ethyl ketone

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Gibbs phase rule

