The University of Jordan Faculty of Engineering & Technology Chemical Engineering Department

(0905211) Chemical Engineering Principles

Second Semester - 2015/2016

First Midterm Exam

Name: Abdullah Al-Nashawati

ID#0 47452

Dear students:

Answer all questions to the best of your ability and knowledge.

Start with the easiest question to you. Use only the available space.

Don't waste your time on the questions that you are not confident about.

You know that cheating is not accepted and you would not need it anyway!

Good Luck!

Question #	Gained points	Full points
1	30 🙄	30
2	20	20
Total	50 11	50

Question 1: [30 points]

(a) [20 pts] A gas stream contains 22.0 mol % hexane, C_6H_{14} (SG = 0.659 $\frac{20^\circ}{4^\circ}$, MW = 86.17) and the balance nitrogen (MW = 28.02). The stream flows to a condenser, where some hexane is liquefied. The hexane mass fraction in the gas stream leaving the condenser is 0.140 g hexane/g. Liquid hexane condensate is recovered at a rate of 1.50 L/min.

Complete labeling the flowchart and do degree-of-freedom analysis.

2- What is the flow rate of the gas stream leaving the condenser in mol/min?

3- What percentage of the hexane entering the condenser is recovered as a liquid (mol liquid hexane/mol hexane in feed)?

\$6 = 654 kg/m basis loog 14g hexane $\rightarrow 0.162 \text{ mol} \rightarrow 0.05$ $m = \frac{659 \text{ Kg} | 1.50 \text{ kg}}{m^3} | 1.50 \text{ kg}}{1.50 \text{ kg}}$ 86g N2 $\rightarrow 3.06 \text{ mol} \rightarrow 0.05$ = 988.5 g869 N2 -> 3.06 mol -> 0.95 3.222

(3) 11.5 + 100% = 81.3%

(2) Overall ni=H.5 +no

Colly 6 0.220 ni = 11.5 + 0.05 ng 0.220 (11.5+n2) = 11.5 +0.05 n2 2.53+0.22 ha = (1.5+0.05 ha 0.17 n2 = 8, a7 | n2 = 52.76 mol/min

(0905211) Chemical Engineering Principles - First Midterm Exam - Second Semester 2015 Linda Al-Hmoud - Page 12

191 = 64.26 ml/htm

10 pts] The differential manometer shown below is used to measure the pressure drop between points 1 and 2 (i.e. $P_1 \cdot P_2$) in a process line containing methanol (SG = 0.792 $\frac{20^\circ}{4^\circ}$).

The monometer fluid, C, has a specific gravity of $1.37 \frac{20^{\circ}}{4^{\circ}}$.

If $h_1 = 40.0$ cm and $h_2 = 24.0$ cm, calculate the pressure drop $(P_1 - P_2)$ in mm Hg.

$\frac{40.0}{1}$ cm and $\frac{h_2}{h_2} = 24.0$ cm, calculate the pressure drop $(P_1 - P_2)$ in mm Hg.
$\frac{1360.37 \text{M}}{\text{M}^2} = \frac{1360.37 \text{M}}{\text{N}^2} = \frac{1360.37 \text{M}}{\text{M}^2} = \frac{1360.37 \text{M}}{\text{M}^2} = \frac{1360.37 \text{M}}{\text{M}^2} = $
P. + 29 (hi+hi) = P. + 29 (hi) + 29 hi P. + 29hi + 29hi = P. + 29hi + 29hi P. + 29hi + 29hi = P. + 29hi + 29hi
$P_{1}-P_{2}=p_{1}gh_{1}-p_{2}gh_{1}+p_{3}gh_{2}-p_{3}gh_{1}$ $P_{1}-P_{2}=p_{3}g(h_{1}-h_{1})+gh_{2}(p_{2}-p_{3})$
$P_{1} - P_{2} = gh_{2} (P_{1} - P_{1})$ $= \frac{gh_{2} (P_{1} - P_{1})}{5^{2}} \frac{P_{2} - P_{1}}{5^{2}} = \frac{1.37 - 0.792}{5.578 \text{ g/cm}^{3}}$ $= \frac{9h_{2} (P_{1} - P_{1})}{5^{2}} \frac{24 \text{ cm}}{5^{2}} \frac{0.578 \text{ g}}{5^{2}}$
= 13603.7 g/cm.s2
= 13603.7 g 1 kg 100 em 1N g m = 1360.37 *** 1000 g 1 m 1 kg m

(0905211) Chemical Engineering Principles - First Midterm Exam - Second Semester 2015/2016 - Dr. Linda Al-Hmoud - P a g e | 3

Question 2: [20 points]

Shown below is a flowchart of a liquid extraction process in which acetic acid (A) is extracted from a mixture of acetic acid and water (W) into 1-hexanol (C), a liquid immiscible in water. To save the solvent C, 100 g/min of the extract (C-rich) stream is recycled and mixed with the fresh 1-hexanol (C).

- (a) Complete labeling the flowchart.
- (b) By doing an overall DOF analysis, show that you can find the unknown flowrates \dot{m}_C , \dot{m}_R , and \dot{m}_E .
- (c) Find the mass flowrates: \dot{m}_C , \dot{m}_R , and \dot{m}_E .
- (d) Find the mass fraction of A in the solvent mixture fed to the extractor (x).

Overall in +390 = in +355.5

C balance
$$(1-x) \ddot{m}_1 = 0.904 \dot{m}_1 \rightarrow \dot{m}_1 - x \dot{m}_1 = 0.004 \dot{m}_2$$

 $\dot{m}_1 - 0.6 = 0.004 \dot{m}_2$

(0905211) Chemical Engineering Principles - First Midterm Exam - Second Semester 2015/2016 - Dr. Linda Al-Hmoud - P a g e | 4

0.004 m2+0.6+300 = m2 +355.5

Overall

Overall

$$x = \frac{0.6}{424.9}$$

Usefulinformation:

$$\rho_{H_2O(l)}(4^{\circ}\text{C}) = 1.000 \frac{g}{cm^3} = 1000 \cdot \frac{kg}{m^3} = 62.43 \frac{lb_m}{ft^3}$$
$$g = 9.8066 \text{ m/s}^2 = 980.66 \text{ cm/s}^2 = 32.174 \text{ ft/s}^2$$

$$\frac{1.8^{\circ}F}{1^{\circ}C}, \frac{1.8^{\circ}R}{1 \text{ K}}, \frac{1^{\circ}F}{1^{\circ}R}, \frac{1^{\circ}C}{1 \text{ K}}$$

$$T(K) = T(^{\circ}C) + 273.15$$

$$T(^{\circ}R) = T(^{\circ}F) + 459.67$$

$$T(^{\circ}R) = 1.8T(K)$$

$$T(^{\circ}F) = 1.8T(^{\circ}C) + 32$$

$$\overline{M} = \sum_{\substack{all \\ components}} y_i M_i$$

$$\frac{1}{\overline{M}} = \sum_{\substack{all \\ components}} \frac{x_i}{M_i}$$

Quantity	Equivalent Values
Mass	1 kg = 1000 g = 0.001 metric ton = 2.20462 lb _m = 35.27392 oz 1 lb _m = 16 oz = 5×10^{-4} ton = 453.593 g = 0.453593 kg
Length	1 m = 100 cm = 1000 mm = 10^6 microns (μ m) = 10^{10} angstroms (Å) = 39.37 in. = 3.2808 ft = 1.0936 yd = 0.0006214 mile 1 ft = 12 in. = $1/3$ yd = 0.3048 m = 30.48 cm
Volume	$1 \text{ m}^3 = 1000 \text{ L} = 10^6 \text{ cm}^3 = 10^6 \text{ mL}$ = 35.3145 ft ³ = 220.83 imperial gallons = 264.17 gal = 1056.68 qt $1 \text{ ft}^3 = 1728 \text{ in.}^3 = 7.4805 \text{ gal} = 0.028317 \text{ m}^3 = 28.317 \text{ L}$ = 28,317 cm ³
Force	$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2 = 10^5 \text{ dynes} = 10^5 \text{ g} \cdot \text{cm/s}^2 = 0.22481 \text{ lb}_f$ $1 \text{ lb}_f = 32.174 \text{ lb}_{m/} \text{ft/s}^2 = 4.4482 \text{ N} = 4.4482 \times 10^5 \text{ dynes}$
Pressure	1 atm = $1.01325 \times 10^5 \text{ N/m}^2$ (Pa) = 101.325 kPa = 1.01325 bar = $1.01325 \times 10^6 \text{ dynes/cm}^2$ = $760 \text{ mm Hg at 0°C (torr)} = 10.333 \text{ m H}_2\text{O at 4°C}$ = $14.696 \text{ lb}_f/\text{in.}^2$ (psi) = $33.9 \text{ ft H}_2\text{O at 4°C}$ = $29.921 \text{ in. Hg at 0°C}$
Energy	$1 \text{ J} = 1 \text{ N} \cdot \text{m} = 10^7 \text{ ergs} = 10^7 \text{ dyne} \cdot \text{cm}$ = 2.778 × 10 ⁻⁷ kW·h = 0.23901 cal = 0.7376 ft-lb _f = 9.486 × 10 ⁻⁴ Btu
Power	$1 \text{ W} = 1 \text{ J/s} = 0.23901 \text{ cal/s} = 0.7376 \text{ ft·lb}_{\text{f}}/\text{s} = 9.486 \times 10^{-4} \text{ Btu/s}$ = $1.341 \times 10^{-3} \text{ hp}$
	A CONTRACTOR OF THE PROPERTY O

(0905211) Chemical Engineering Principles - First Midterm Exam - Second Semester 2015/2016 - Dr. Linda Al-Hmoud - P a g e | 6