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Chapter 2. Principles of Momentum Transfer
and Overall Balances

INTRODUCTION
The flow and behavior of fluids is important in many of the separation processes in process engi-
neering. A fluid may be defined as a substance that does not permanently resist distortion and,
hence, will change its shape. In this text gases, liquids, and vapors are considered to have the
characteristics of fluids and to obey many of the same laws.
In the process industries, many of the materials are in fluid form and must be stored, handled,
pumped, and processed, so it is necessary that we become familiar with the principles that govern
the flow of fluids as well as with the equipment used. Typical fluids encountered include water, air,
CO2, oil, slurries, and thick syrups.
If a fluid is inappreciably affected by changes in pressure, it is said to be incompressible. Most liquids
are incompressible. Gases are considered to be compressible fluids. However, if gases are sub-
jected to small percentage changes in pressure and temperature, their density changes will be small
and they can be considered to be incompressible.
Like all physical matter, a fluid is composed of an extremely large number of molecules per unit
volume. A theory such as the kinetic theory of gases or statistical mechanics treats the motions of
molecules in terms of statistical groups and not in terms of individual molecules. In engineering we
are mainly concerned with the bulk or macroscopic behavior of a fluid rather than the individual
molecular or microscopic behavior.
In momentum transfer we treat the fluid as a continuous distribution of matter, or a “continuum.”
This treatment as a continuum is valid when the smallest volume of fluid contains a number of
molecules large enough that a statistical average is meaningful and the macroscopic properties of
the fluid, such as density, pressure, and so on, vary smoothly or continuously from point to point.
The study of momentum transfer, or fluid mechanics as it is often called, can be divided into two
branches: fluid statics, or fluids at rest, and fluid dynamics, or fluids in motion. In Section 2.2 we
treat fluid statics; in the remaining sections of Chapter 2 and in Chapter 3, fluid dynamics. Since in
fluid dynamics momentum is being transferred, the term “momentum transfer” or “transport” is usu-
ally used. In Section 2.3 momentum transfer is related to heat and mass transfer.

FLUID STATICS

Force, Units, and Dimensions

In a static fluid an important property is the pressure in the fluid. Pressure is familiar as a surface
force exerted by a fluid against the walls of its container. Also, pressure exists at any point in a
volume of a fluid.
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In order to understand pressure, which is defined as force exerted per unit area, we must first discuss
a basic law of Newton's. This equation for calculation of the force exerted by a mass under the
influence of gravity is

Equation 2.2-1. 

where in SI units F is the force exerted in newtons N (kg · m/s2), m the mass in kg, and g the standard
acceleration of gravity, 9.80665 m/s2.
In English units, F is in lbf, m in lbm, g is 32.1740 ft/s2, and gc (a gravitational conversion factor) is
32.174 lbm · ft/lbf · s2. The use of the conversion factor gc means that g/gc has a value of 1.0 lbf/
lbm and that 1 lbm conveniently gives a force equal to 1 lbf. Often when units of pressure are given,
the word “force” is omitted, as in lb/in.2 (psi) instead of lbf/in.2. When the mass m is given in g mass,
F is g force, g = 980.665 cm/s2, and gc = 980.665 g mass · cm/g force · s2. However, the units g
force are seldom used.
Another system of units sometimes used in Eq. (2.2-1) is that where the gc is omitted and the force
(F = mg) is given as lbm · ft/s2, called poundals. Then 1 lbm acted on by gravity will give a force of
32.174 poundals (lbm · ft/s2). Or if 1 g mass is used, the force (F = mg) is expressed in terms of
dynes (g · cm/s2). This is the centimeter–gram–second (cgs) systems of units.
Conversion factors for different units of force and of force per unit area (pressure) are given in
Appendix A.1. Note that always in the SI system, and usually in the cgs system, the term gc is not
used.

EXAMPLE 2.2-1. Units and Dimensions of Force
Calculate the force exerted by 3 lb mass in terms of the following:

a. Lb force (English units).
b. Dynes (cgs units).
c. Newtons (SI units).

Solution: For part (a), using Eq. (2.2-1),

For part (b),

As an alternative method for part (b), from Appendix A.1,
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To calculate newtons in part (c),

As an alternative method, using values from Appendix A.1,

Pressure in a Fluid

Since Eq. (2.2-1) gives the force exerted by a mass under the influence of gravity, the force exerted
by a mass of fluid on a supporting area, or force/unit area (pressure), also follows from this equation.
In Fig. 2.2-1 a stationary column of fluid of height h2 m and constant cross-sectional area A m2,
where A = A0 = A1 = A2, is shown. The pressure above the fluid is P0 N/m2; that is, this could be the
pressure of the atmosphere above the fluid. The fluid at any point, say h1, must support all the fluid
above it. It can be shown that the forces at any given point in a nonmoving or static fluid must be
the same in all directions. Also, for a fluid at rest, the force/unit area, or pressure, is the same at all
points with the same elevation. For example, at h1 m from the top, the pressure is the same at all
points shown on the cross-sectional area A1.

Figure 2.2-1. Pressure in a static fluid.

The use of Eq. (2.2-1) will be shown in calculating the pressure at different vertical points in Fig.
2.2-1. The total mass of fluid for h2 m height and density ρ kg/m3 is
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Equation 2.2-2. 

Substituting into Eq. (2.2-2), the total force F of the fluid on area A1 due to the fluid only is

Equation 2.2-3. 

The pressure P is defined as force/unit area:

Equation 2.2-4. 

This is the pressure on A2 due to the mass of the fluid above it. However, to get the total pressure
P2 on A2, the pressure P0 on the top of the fluid must be added:

Equation 2.2-5. 

Equation (2.2-5) is the fundamental equation for calculating the pressure in a fluid at any depth. To
calculate P1,

Equation 2.2-6. 

The pressure difference between points 2 and 1 is

Equation 2.2-7. 

Since it is the vertical height of a fluid that determines the pressure in a fluid, the shape of the vessel
does not affect the pressure. For example, in Fig. 2.2-2, the pressure P1 at the bottom of all three
vessels is the same and is equal to h1ρg + P0.
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Figure 2.2-2. Pressure in vessels of various shapes.

EXAMPLE 2.2-2. Pressure in Storage Tank
A large storage tank contains oil having a density of 917 kg/m3 (0.917 g/cm3). The tank is 3.66 m (12.0 ft) tall
and is vented (open) to the atmosphere of 1 atm abs at the top. The tank is filled with oil to a depth of 3.05 m
(10 ft) and also contains 0.61 m (2.0 ft) of water in the bottom of the tank. Calculate the pressure in Pa and
psia 3.05 m from the top of the tank and at the bottom. Also calculate the gage pressure at the tank bottom.

Solution: First a sketch is made of the tank, as shown in Fig. 2.2-3. The pressure P0 = 1 atm abs = 14.696
psia (from Appendix A.1). Also,

Figure 2.2-3. Storage tank in Example 2.2-2.

From Eq. (2.2-6), using English and then SI units,

To calculate P2 at the bottom of the tank, ρwater = 1.00 g/cm3 and
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The gage pressure at the bottom is equal to the absolute pressure P2 minus 1 atm pressure:

Head of a Fluid

Pressures are given in many different sets of units, such as psia, dyn/cm2, and newtons/m2, as given
in Appendix A.1. However, a common method of expressing pressures is in terms of head in m or
feet of a particular fluid. This height or head in m or feet of the given fluid will exert the same pressure
as the pressures it represents. Using Eq. (2.2-4), which relates pressure P and height h of a fluid,
and solving for h, which is the head in m,

Equation 2.2-8. 

EXAMPLE 2.2-3. Conversion of Pressure to Head of a Fluid
Given the pressure of 1 standard atm as 101.325 kN/m2 (Appendix A.1), do as follows:

a. Convert this pressure to head in m water at 4°C.
b. Convert this pressure to head in m Hg at 0°C.

Solution: For part (a), the density of water at 4°C in Appendix A.2 is 1.000 g/cm3. From A.1, a density of 1.000
g/cm3 equals 1000 kg/m3. Substituting these values into Eq. (2.2-8),

For part (b), the density of Hg in Appendix A.1 is 13.5955 g/cm3. For equal pressures P from different fluids,
Eq. (2.2-8) can be rewritten as

Equation 2.2-9. 

Solving for hHg in Eq. (2.2-9) and substituting known values,
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Devices to Measure Pressure and Pressure Differences

In chemical and other industrial processing plants, it is often important to measure and control the
pressure in a vessel or process and/or the liquid level in a vessel. Also, since many fluids are flowing
in a pipe or conduit, it is necessary to measure the rate at which the fluid is flowing. Many of these
flow meters depend upon devices for measuring a pressure or pressure difference. Some common
devices are considered in the following paragraphs.

Simple U-tube manometer

The U-tube manometer is shown in Fig. 2.2-4a. The pressure pa N/m2 is exerted on one arm of the
U tube and pb on the other arm. Both pressures pa and pb could be pressure taps from a fluid meter,
or pa could be a pressure tap and pb the atmospheric pressure. The top of the manometer is filled
with liquid B, having a density of ρB kg/m3, and the bottom with a more dense fluid A, having a
density of ρA kg/m3. Liquid A is immiscible with B. To derive the relationship between pa and pb,
pa is the pressure at point 1 and pb at point 5. The pressure at point 2 is

Equation 2.2-10. 

Figure 2.2-4. Manometers to measure pressure differences: (a) U tube; (b) two-fluid U tube.

where R is the reading of the manometer in m. The pressure at point 3 must be equal to that at 2
by the principles of hydrostatics:

Equation 2.2-11. 

The pressure at point 3 also equals the following:

Equation 2.2-12. 
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Equating Eq. (2.2-10) to (2.2-12) and solving,

Equation 2.2-13. 

Equation 2.2-14. 

The reader should note that the distance Z does not enter into the final result nor do the tube di-
mensions, provided that pa and pb are measured in the same horizontal plane.

EXAMPLE 2.2-4. Pressure Difference in a Manometer
A manometer, as shown in Fig. 2.2-4a, is being used to measure the head or pressure drop across a flow
meter. The heavier fluid is mercury, with a density of 13.6 g/cm3, and the top fluid is water, with a density of
1.00 g/cm3. The reading on the manometer is R = 32.7 cm. Calculate the pressure difference in N/m2 using SI
units.

Solution: Converting R to m,

Also converting ρA and ρB to kg/m3 and substituting into Eq. (2.2-14),

Two-fluid U tube

In Fig. 2.2-4b a two-fluid U tube is shown, which is a sensitive device for measuring small heads or
pressure differences. Let A m2 be the cross-sectional area of each of the large reservoirs and a
m2 be the cross-sectional area of each of the tubes forming the U. Proceeding and making a pres-
sure balance as for the U tube,

Equation 2.2-15. 

where R0 is the reading when pa = pb, R is the actual reading, ρA is the density of the heavier fluid,
and ρB is the density of the lighter fluid. Usually, a/A is made sufficiently small as to be negligible,
and also R0 is often adjusted to zero; then

Equation 2.2-16. 
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If ρA and ρB are close to each other, the reading R is magnified.

EXAMPLE 2.2-5. Pressure Measurement in a Vessel
The U-tube manometer in Fig. 2.2-5a is used to measure the pressure pA in a vessel containing a liquid with
a density ρA. Derive the equation relating the pressure pA and the reading on the manometer as shown.

Figure 2.2-5. Measurements of pressure in vessels: (a) measurement of pressure in a vessel, (b) measurement of
differential pressure.

Solution: 
At point 2 the pressure is

Equation 2.2-17. 

At point 1 the pressure is

Equation 2.2-18. 

Equating p1 = p2 by the principles of hydrostatics and rearranging,

Equation 2.2-19. 

Another example of a U-tube manometer is shown in Fig. 2.2-5b. In this case the device is used to
measure the pressure difference between two vessels.

Bourdon pressure gage

Although manometers are used to measure pressures, the most common pressure-measuring de-
vice is the mechanical Bourdon-tube pressure gage. A coiled hollow tube in the gage tends to
straighten out when subjected to internal pressure, and the degree of straightening depends on the
pressure difference between the inside and outside pressures. The tube is connected to a pointer
on a calibrated dial.
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Gravity separator for two immiscible liquids

In Fig. 2.2-6 a continuous gravity separator (decanter) is shown for the separation of two immiscible
liquids A (heavy liquid) and B (light liquid). The feed mixture of the two liquids enters at one end of
the separator vessel, and the liquids flow slowly to the other end and separate into two distinct layers.
Each liquid flows through a separate overflow line as shown. Assuming the frictional resistance to
the flow of the liquids is essentially negligible, the principles of fluid statics can be used to analyze
the performance.

Figure 2.2-6. Continuous atmospheric gravity separator for immiscible liquids.

In Fig. 2.2-6, the depth of the layer of heavy liquid A is hA1 m and that of B is hB. The total depth
hT = hA1 + hB and is fixed by position of the overflow line for B. The heavy liquid A discharges through
an overflow leg hA2 m above the vessel bottom. The vessel and the overflow lines are vented to the
atmosphere. A hydrostatic balance gives

Equation 2.2-20. 

Substituting hB = hT − hA1 into Eq. (2.2-20) and solving for hA1,

Equation 2.2-21. 

This shows that the position of the interface or height hA1 depends on the ratio of the densities of
the two liquids and on the elevations hA2 and hT of the two overflow lines. Usually, the height hA2 is
movable so that the interface level can be adjusted.

GENERAL MOLECULAR TRANSPORT EQUATION FOR
MOMENTUM, HEAT, AND MASS TRANSFER

General Molecular Transport Equation and General Property Balance

Introduction to transport processes

In molecular transport processes in general we are concerned with the transfer or movement of a
given property or entity by molecular movement through a system or medium which can be a fluid
(gas or liquid) or a solid. This property that is being transferred can be mass, thermal energy (heat),
or momentum. Each molecule of a system has a given quantity of the property mass, thermal energy,
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or momentum associated with it. When a difference in concentration of the property exists for any
of these properties from one region to an adjacent region, a net transport of this property occurs. In
dilute fluids such as gases, where the molecules are relatively far apart, the rate of transport of the
property should be relatively fast, since few molecules are present to block the transport or interact.
In dense fluids such as liquids, the molecules are close together, and transport or diffusion proceeds
more slowly. The molecules in solids are even more closely packed than in liquids and molecular
migration is even more restricted.

General molecular transport equation

All three of the molecular transport processes of momentum, heat or thermal energy, and mass are
characterized in the elementary sense by the same general type of transport equation. First we start
by noting the following:

Equation 2.3-1. 

This states what is quite obvious—that we need a driving force to overcome a resistance in order
to transport a property. This is similar to Ohm's law in electricity, where the rate of flow of electricity
is proportional to the voltage drop (driving force) and inversely proportional to the resistance.
We can formalize Eq. (2.3-1) by writing an equation as follows for molecular transport or diffusion
of a property:

Equation 2.3-2. 

where  is defined as the flux of the property as amount of property being transferred per unit time
per unit cross-sectional area perpendicular to the z direction of flow in amount of property/s · m2,
δ is a proportionality constant called diffusivity in m2/s, Г is concentration of the property in amount
of property/m3, and z is the distance in the direction of flow in m.

If the process is at steady state, then the flux  is constant. Rearranging Eq. (2.3-2) and integrating,

Equation 2.3-3. 

Equation 2.3-4. 

A plot of the concentration Г versus z is shown in Fig. 2.3-1a and is a straight line. Since the flux is
in the direction 1 to 2 of decreasing concentration, the slope dГ/dz is negative, and the negative
sign in Eq. (2.3-2) gives a positive flux in the direction 1 to 2. In Section 2.3B the specialized equa-
tions for momentum, heat, and mass transfer will be shown to be the same as Eq. (2.3-4) for the
general property transfer.
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Figure 2.3-1. Molecular transport of a property: (a) plot of concentration versus distance for steady state, (b) unsteady-state
general property balance.

EXAMPLE 2.3-1. Molecular Transport of a Property at Steady State
A property is being transported by diffusion through a fluid at steady state. At a given point 1 the concentration
is 1.37 × 10−2 amount of property/m3 and 0.72 × 10−2 at point 2 at a distance z2 = 0.40 m. The diffusivity δ =
0.013 m2/s and the cross-sectional area is constant.

a. Calculate the flux.
b. Derive the equation for Г as a function of distance.
c. Calculate Г at the midpoint of the path.

Solution: For part (a), substituting into Eq. (2.3-4),

For part (b), integrating Eq. (2.3-2) between Г1 and Г and z1 and z and rearranging,

Equation 2.3-5. 

Equation 2.3-6. 

For part (c), using the midpoint z = 0.20 m and substituting into Eq. (2.3-6),

General property balance for unsteady state

Principles of Momentum Transfer and Overall Balances 46

Chapter 2. Principles of Momentum Transfer and Overall Balances. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



In calculating the rates of transport in a system using the molecular transport equation (2.3-2), it is
necessary to account for the amount of this property being transported in the entire system. This is
done by writing a general property balance or conservation equation for the property (momentum,
thermal energy, or mass) at unsteady state. We start by writing an equation for the z direction only,
which accounts for all the property entering by molecular transport, leaving, being generated, and
accumulating in a system shown in Fig. 2.3-1b, which is an element of volume Δz(1) m3 fixed in
space.

Equation 2.3-7. 

The rate of input is  · 1 amount of property/s and the rate of output is  · 1, where
the cross-sectional area is 1.0 m2. The rate of generation of the property is R(Δz · 1), where R is
rate of generation of property/s · m3. The accumulation term is

Equation 2.3-8. 

Substituting the various terms into Eq. (2.3-7),

Equation 2.3-9. 

Dividing by Δz and letting Δz go to zero,

Equation 2.3-10. 

Substituting Eq. (2.3-2) for  into (2.3-10) and assuming that δ is constant,

Equation 2.3-11. 

For the case where no generation is present,

Equation 2.3-12. 

This final equation relates the concentration of the property Г to position z and time t.
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Equations (2.3-11) and (2.3-12) are general equations for the conservation of momentum, thermal
energy, or mass and will be used in many sections of this text. The equations consider here only
molecular transport occurring and not other transport mechanisms such as convection and so on,
which will be considered when the specific conservation equations are derived in later sections of
this text for momentum, energy, and mass.

Introduction to Molecular Transport

The kinetic theory of gases gives us a good physical interpretation of the motion of individual mol-
ecules in fluids. Because of their kinetic energy the molecules are in rapid random movement, often
colliding with each other. Molecular transport or molecular diffusion of a property such as momen-
tum, heat, or mass occurs in a fluid because of these random movements of individual molecules.
Each individual molecule containing the property being transferred moves randomly in all directions,
and there are fluxes in all directions. Hence, if there is a concentration gradient of the property, there
will be a net flux of the property from high to low concentration. This occurs because equal numbers
of molecules diffuse in each direction between the high-concentration and low-concentration re-
gions.

Momentum transport and Newton's law

When a fluid is flowing in the x direction parallel to a solid surface, a velocity gradient exists where
the velocity νx in the x direction decreases as we approach the surface in the z direction. The fluid
has x-directed momentum and its concentration is νxρ momentum/m3, where the momentum has
units of kg · m/s. Hence, the units of νxρ are (kg · m/s)/m3. By random diffusion of molecules there
is an exchange of molecules in the z direction, an equal number moving in each direction (+z and
−z directions) between the faster-moving layer of molecules and the slower adjacent layer. Hence,
the x-directed momentum has been transferred in the z direction from the faster- to the slower-
moving layer. The equation for this transport of momentum is similar to Eq. (2.3-2) and is Newton's
law of viscosity written as follows for constant density ρ:

Equation 2.3-13. 

where τZX is flux of x-directed momentum in the z direction, (kg · m/s)/s · m2; v is μ/ρ, the momentum
diffusivity in m2/s; z is the distance of transport or diffusion in m; ρ is the density in kg/m3; and μ is
the viscosity in kg/m · s.

Heat transport and Fourier's law

Fourier's law for molecular transport of heat or heat conduction in a fluid or solid can be written as
follows for constant density ρ and heat capacity cp:

Equation 2.3-14. 

where qz/A is the heat flux in J/s · m2, α is the thermal diffusivity in m2/s, and ρcpT is the concentration
of heat or thermal energy in J/m3. When there is a temperature gradient in a fluid, equal numbers
of molecules diffuse in each direction between the hot and the colder region. In this way energy is
transferred in the z direction.
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Mass transport and Fick's law

Fick's law for molecular transport of mass in a fluid or solid for constant total concentration in the
fluid is
Equation 2.3-15. 

where  is the flux of A in kg mol A/s · m2, DAB is the molecular diffusivity of the molecule A in
B in m2/s, and cA is the concentration of A in kg mol A/m3. In a manner similar to momentum and
heat transport, when there is a concentration gradient in a fluid, equal numbers of molecules diffuse
in each direction between the high- and low-concentration regions and a net flux of mass occurs.
Hence, Eqs. (2.3-13), (2.3-14), and (2.3-15) for momentum, heat, and mass transfer are all similar
to each other and to the general molecular transport equation (2.3-2). All equations have a flux on
the left-hand side of each equation, a diffusivity in m2/s, and the derivative of the concentration with
respect to distance. All three of the molecular transport equations are mathematically identical.
Thus, we state that we have an analogy or similarity among them. It should be emphasized, how-
ever, that even though there is a mathematical analogy, the actual physical mechanisms occurring
may be totally different. For example, in mass transfer two components are often being transported
by relative motion through one another. In heat transport in a solid, the molecules are relatively
stationary and the transport is done mainly by the electrons. Transport of momentum can occur by
several types of mechanisms. More-detailed considerations of each of the transport processes of
momentum, energy, and mass are presented in this and succeeding chapters.

VISCOSITY OF FLUIDS

Newton's Law and Viscosity

When a fluid is flowing through a closed channel such as a pipe or between two flat plates, either
of two types of flow may occur, depending on the velocity of this fluid. At low velocities the fluid tends
to flow without lateral mixing, and adjacent layers slide past one another like playing cards. There
are no cross currents perpendicular to the direction of flow, nor eddies or swirls of fluid. This regime
or type of flow is called laminar flow. At higher velocities eddies form, which leads to lateral mixing.
This is called turbulent flow. The discussion in this section is limited to laminar flow.
A fluid can be distinguished from a solid in this discussion of viscosity by its behavior when subjected
to a stress (force per unit area) or applied force. An elastic solid deforms by an amount proportional
to the applied stress. However, a fluid, when subjected to a similar applied stress, will continue to
deform, that is, to flow at a velocity that increases with increasing stress. A fluid exhibits resistance
to this stress. Viscosity is that property of a fluid which gives rise to forces that resist the relative
movement of adjacent layers in the fluid. These viscous forces arise from forces existing between
the molecules in the fluid and are similar in character to the shear forces in solids.
The ideas above can be clarified by a more quantitative discussion of viscosity. In Fig. 2.4-1 a fluid
is contained between two infinite (very long and very wide) parallel plates. Suppose that the bottom
plate is moving parallel to the top plate and at a constant velocity Δνz m/s faster relative to the top
plate because of a steady force F newtons being applied. This force is called the viscous drag, and
it arises from the viscous forces in the fluid. The plates are Δy m apart. Each layer of liquid moves
in the z direction. The layer immediately adjacent to the bottom plate is carried along at the velocity
of this plate. The layer just above is at a slightly slower velocity, each layer moving at a slower
velocity as we go up in the y direction. This velocity profile is linear, with y direction as shown in Fig.
2.4-1. An analogy to a fluid is a deck of playing cards, where, if the bottom card is moved, all the
other cards above will slide to some extent.
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Figure 2.4-1. Fluid shear between two parallel plates.

It has been found experimentally for many fluids that the force F in newtons is directly proportional
to the velocity Δνz in m/s and to the area A in m2 of the plate used, and inversely proportional to the
distance Δy in m. Or, as given by Newton's law of viscosity when the flow is laminar,

Equation 2.4-1. 

where μ is a proportionality constant called the viscosity of the fluid, in Pa · s or kg/m · s. If we let
Δy approach zero, then, using the definition of the derivative,

Equation 2.4-2. 

where τyz = F/A and is the shear stress or force per unit area in newtons/m2 (N/m2). In the cgs
system, F is in dynes, μ in g/cm · s, νz in cm/s, and y in cm. We can also write Eq. (2.2-2) as

Equation 2.4-3. 

where τyz is in units of lbf/ft2.
The units of viscosity in the cgs system are g/cm · s, called poise or centipoise (cp). In the SI system,
viscosity is given in Pa · s (N · s/m2 or kg/m · s):

Other conversion factors for viscosity are given in Appendix A.1. Sometimes the viscosity is given
as μ/p, kinematic viscosity, in m2/s or cm2/s, where ρ is the density of the fluid.

EXAMPLE 2.4-1. Calculation of Shear Stress in a Liquid
Referring to Fig. 2.4-1, the distance between plates is Δy = 0.5 cm, Δνz = 10 cm/s, and the fluid is ethyl alcohol
at 273 K having a viscosity of 1.77 cp (0.0177 g/cm · s).

a. Calculate the shear stress τyz and the velocity gradient or shear rate dνz/dy using cgs units.
b. Repeat, using lb force, s, and ft units (English units).
c. Repeat, using SI units.
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Solution: We can substitute directly into Eq. (2.4-1) or we can integrate Eq. (2.4-2). Using the latter method,
rearranging Eq. (2.4-2), calling the bottom plate point 1, and integrating,

Equation 2.4-4. 

Equation 2.4-5. 

Substituting the known values,

Equation 2.4-6. 

To calculate the shear rate dνz/dy, since the velocity change is linear with y,

Equation 2.4-7. 

For part (b), using lb force units and the viscosity conversion factor from Appendix A.1,

Integrating Eq. (2.4-3),

Equation 2.4-8. 

Substituting known values into Eq. (2.4-8) and converting Δνz to ft/s and Δy to ft, τyz = 7.39 × 10−4 lbf/ft2. Also,
dνz/dy = 20 s−1.

For part (c), Δy = 0.5/100 = 0.005 m, Δνz = 10/100 = 0.1 m/s, and μ = 1.77 × 10−3 kg/m · s = 1.77 × 10−3 Pa ·
s. Substituting into Eq. (2.4-5),

The shear rate will be the same at 20.0 s−1.
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Momentum Transfer in a Fluid

The shear stress τyz in Eqs. (2.4-1)–(2.4-3) can also be interpreted as a flux of z-directed momentum
in the y direction, which is the rate of flow of momentum per unit area. The units of momentum are
mass times velocity in kg · m/s. The shear stress can be written

Equation 2.4-9. 

This gives an amount of momentum transferred per second per unit area.
This can be shown by considering the interaction between two adjacent layers of a fluid in Fig.
2.4-1 which have different velocities, and hence different momentum, in the z direction. The random
motions of the molecules in the faster-moving layer send some of the molecules into the slower-
moving layer, where they collide with the slower-moving molecules and tend to speed them up or
increase their momentum in the z direction. Also, in the same fashion, molecules in the slower layer
tend to retard those in the faster layer. This exchange of molecules between layers produces a
transfer or flux of z-directed momentum from high-velocity to low-velocity layers. The negative sign
in Eq. (2.4-2) indicates that momentum is transferred down the gradient from high- to low-velocity
regions. This is similar to the transfer of heat from high- to low-temperature regions.

Viscosities of Newtonian Fluids

Fluids that follow Newton's law of viscosity, Eqs. (2.4-1)–(2.4-3), are called Newtonian fluids. For a
Newtonian fluid, there is a linear relation between the shear stress τyz and the velocity gradient dνz/
dy (rate of shear). This means that the viscosity μ is a constant and is independent of the rate of
shear. For non-Newtonian fluids, the relation between τyz and dνz/dy is not linear; that is, the viscosity
μ does not remain constant but is a function of shear rate. Certain liquids do not obey this simple
law of Newton's. These are primarily pastes, slurries, high polymers, and emulsions. The science
of the flow and deformation of fluids is often called rheology. A discussion of non-Newtonian fluids
will not be given here but will be included in Section 3.5.
The viscosity of gases, which are Newtonian fluids, increases with temperature and is approximately
independent of pressure up to a pressure of about 1000 kPa. At higher pressures, the viscosity of
gases increases with increase in pressure. For example, the viscosity of N2 gas at 298 K approxi-
mately doubles in going from 100 kPa to about 5 × 104 kPa (R1). In liquids, the viscosity decreases
with increasing temperature. Since liquids are essentially incompressible, the viscosity is not affec-
ted by pressure.
In Table 2.4-1 some experimental viscosity data are given for some typical pure fluids at 101.32
kPa. The viscosities for gases are the lowest and do not differ markedly from gas to gas, being about
5 × 10−6 to 3 × 10−5 Pa · s. The viscosities for liquids are much greater. The value for water at 293
K is about 1 × 10−3 and for glycerol 1.069 Pa · s. Hence, there are great differences between vis-
cosities of liquids. More complete tables of viscosities are given for water in Appendix A.2, for in-
organic and organic liquids and gases in Appendix A.3, and for biological and food liquids in Ap-
pendix A.4. Extensive data are available in other references (P1, R1, W1, L1). Methods of estimating
viscosities of gases and liquids when experimental data are not available are summarized elsewhere
(R1). These estimation methods for gases at pressures below 100 kPa are reasonably accurate,
with an error within about ±5%, but the methods for liquids are often quite inaccurate.
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Table 2.4-1. Viscosities of Some Gases and Liquids at 101.32 kPa Pressure

Gases Liquids

Substance Temp., K

Viscosity
(Pa · s) 103

or (kg/m · s)
103 Ref. Substance Temp., K

Viscosity
(Pa · s) 103

or (kg/m · s)
103 Ref.

Air 293 0.01813 N1 Water 293 1.0019 S1

CO2 273 0.01370 R1  373 0.2821 S1

 373 0.01828 R1 Benzene 278 0.826 R1

CH4 293 0.01089 R1     
    Glycerol 293 1069 L1

SO2 373 0.01630 R1 Hg 293 1.55 R2

    Olive oil 303 84 E1

TYPES OF FLUID FLOW AND REYNOLDS NUMBER

Introduction and Types of Fluid Flow

The principles of the statics of fluids, treated in Section 2.2, are almost an exact science. On the
other hand, the principles of the motions of fluids are quite complex. The basic relations describing
the motions of a fluid are the equations for the overall balances of mass, energy, and momentum,
which will be covered in the following sections.
These overall or macroscopic balances will be applied to a finite enclosure or control volume fixed
in space. We use the term “overall” because we wish to describe these balances from outside the
enclosure. The changes inside the enclosure are determined in terms of the properties of the
streams entering and leaving and the exchanges of energy between the enclosure and its sur-
roundings.
When making overall balances on mass, energy, and momentum we are not interested in the details
of what occurs inside the enclosure. For example, in an overall balance, average inlet and outlet
velocities are considered. However, in a differential balance, the velocity distribution inside an en-
closure can be obtained by the use of Newton's law of viscosity.
In this section we first discuss the two types of fluid flow that can occur: laminar flow and turbulent
flow. Also, the Reynolds number used to characterize the regimes of flow is considered. Then in
Sections 2.6, 2.7, and 2.8, the overall mass balance, energy balance, and momentum balance are
covered together with a number of applications. Finally, a discussion is given in Section 2.9 on the
methods of making a shell balance on an element to obtain the velocity distribution in the element
and the pressure drop.

Laminar and Turbulent Flow

The type of flow occurring in a fluid in a channel is important in fluid dynamics problems. When fluids
move through a closed channel of any cross section, either of two distinct types of flow can be
observed, according to the conditions present. These two types of flow can commonly be seen in
a flowing open stream or river. When the velocity of flow is slow, the flow patterns are smooth.
However, when the velocity is quite high, an unstable pattern is observed, in which eddies or small
packets of fluid particles are present, moving in all directions and at all angles to the normal line of
flow.
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The first type of flow, at low velocities, where the layers of fluid seem to slide by one another without
eddies or swirls being present, is called laminar flow, and Newton's law of viscosity holds, as dis-
cussed in Section 2.4A. The second type of flow, at higher velocities, where eddies are present
giving the fluid a fluctuating nature, is called turbulent flow.
The existence of laminar and turbulent flow is most easily visualized by the experiments of Reynolds.
His experiments are shown in Fig. 2.5-1. Water was allowed to flow at steady state through a trans-
parent pipe with the flow rate controlled by a valve at the end of the pipe. A fine, steady stream of
dyed water was introduced from a fine jet as shown and its flow pattern observed. At low rates of
water flow, the dye pattern was regular and formed a single line or stream similar to a thread, as
shown in Fig. 2.5-1a. There was no lateral mixing of the fluid, and it flowed in streamlines down the
tube. By putting in additional jets at other points in the pipe cross section, it was shown that there
was no mixing in any parts of the tube and the fluid flowed in straight parallel lines. This type of flow
is called laminar or viscous flow.

Figure 2.5-1. Reynolds' experiment for different types of flow: (a) laminar flow; (b) turbulent flow.

As the velocity was increased, it was found that at a definite velocity the thread of dye became
dispersed and the pattern was very erratic, as shown in Fig. 2.5-1b. This type of flow is known as
turbulent flow. The velocity at which the flow changes is known as the critical velocity.

Reynolds Number

Studies have shown that the transition from laminar to turbulent flow in tubes is not only a function
of velocity but also of density and viscosity of the fluid and the tube diameter. These variables are
combined into the Reynolds number, which is dimensionless:

Equation 2.5-1. 
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where NRe is the Reynolds number, D the diameter in m, ρ the fluid density in kg/m3, μ the fluid
viscosity in Pa · s, and μ the average velocity of the fluid in m/s (where average velocity is defined
as the volumetric rate of flow divided by the cross-sectional area of the pipe). Units in the cgs system
are D in cm, ρ in g/cm3, μ in g/cm · s, and ν in cm/s. In the English system D is in ft, ρ in lbm/ft3, μ
in lbm/ft · s, and ν in ft/s.
The instability of the flow that leads to disturbed or turbulent flow is determined by the ratio of the
kinetic or inertial forces to the viscous forces in the fluid stream. The inertial forces are proportional
to ρν2 and the viscous forces to μν/D, and the ratio ρν2/(μν/D) is the Reynolds number Dνρ/μ. Further
explanation and derivation of dimensionless numbers are given in Section 3.11.
For a straight circular pipe, when the value of the Reynolds number is less than 2100, the flow is
always laminar. When the value is over 4000, the flow will be turbulent, except in very special cases.
In between—called the transition region—the flow can be viscous or turbulent, depending upon the
apparatus details, which cannot be predicted.

EXAMPLE 2.5-1. Reynolds Number in a Pipe
Water at 303 K is flowing at the rate of 10 gal/min in a pipe having an inside diameter (ID) of 2.067 in. Calculate
the Reynolds number using both English units and SI units.

Solution: From Appendix A.1, 7.481 gal = 1 ft3. The flow rate is calculated as

From Appendix A.2, for water at 303 K (30°C),

Substituting into Eq. (2.5-1).

Hence, the flow is turbulent. Using SI units,
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OVERALL MASS BALANCE AND CONTINUITY EQUATION

Introduction and Simple Mass Balances

In fluid dynamics fluids are in motion. Generally, they are moved from place to place by means of
mechanical devices such as pumps or blowers, by gravity head, or by pressure, and flow through
systems of piping and/or process equipment. The first step in the solution of flow problems is gen-
erally to apply the principles of the conservation of mass to the whole system or to any part of the
system. First, we will consider an elementary balance on a simple geometry, and later we shall
derive the general mass-balance equation.
Simple mass or material balances were introduced in Section 1.5, where

Equation 1.5-1. 

Since, in fluid flow, we are usually working with rates of flow and usually at steady state, the rate of
accumulation is zero and we obtain

Equation 2.6-1. 

In Fig. 2.6-1 a simple flow system is shown, where fluid enters section 1 with an average velocity
ν1 m/s and density ρ1 kg/m3. The cross-sectional area is A1 m2. The fluid leaves section 2 with
average velocity ν2. The mass balance, Eq. (2.6-1), becomes

Equation 2.6-2. 

Figure 2.6-1. Mass balance on flow system.

where m = kg/s. Often, νρ is expressed as G = νρ, where G is mass velocity or mass flux in kg/s ·
m2. In English units, ν is in ft/s, ρ in lbm/ft3, A in ft2, m in lbm/s, and G in lbm/s · ft2.
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EXAMPLE 2.6-1. Flow of Crude Oil and Mass Balance
A petroleum crude oil having a density of 892 kg/m3 is flowing through the piping arrangement shown in Fig.
2.6-2 at a total rate of 1.388 × 10−3 m3/s entering pipe 1.

Figure 2.6-2. Piping arrangement for Example 2.6-1.

The flow divides equally in each of pipes 3. The steel pipes are schedule 40 pipe (see Appendix A.5 for actual
dimensions). Calculate the following, using SI units:

a. The total mass flow rate m in pipe 1 and pipes 3.
b. The average velocity v in 1 and 3.
c. The mass velocity G in 1.

Solution: From Appendix A.5, the dimensions of the pipes are as follows: 2-in. pipe: D1 (ID) = 2.067 in.; cross-
sectional area

-in. pipe: D3 (ID) = 1.610 in.; cross-sectional area

The total mass flow rate is the same through pipes 1 and 2 and is

Since the flow divides equally in each of pipes 3,

For part (b), using Eq. (2.6-2) and solving for v,

For part (c),
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Control Volume for Balances

The laws for the conservation of mass, energy, and momentum are all stated in terms of a system;
these laws give the interaction of a system with its surroundings. A system is defined as a collection
of fluid of fixed identity. However, in flow of fluids, individual particles are not easily identifiable. As
a result, attention is focused on a given space through which the fluid flows rather than on a given
mass of fluid. The method used, which is more convenient, is to select a control volume, which is a
region fixed in space through which the fluid flows.
In Fig. 2.6-3 the case of a fluid flowing through a conduit is shown. The control surface shown as a
dashed line is the surface surrounding the control volume. In most problems part of the control
surface will coincide with some boundary, such as the wall of the conduit. The remaining part of the
control surface is a hypothetical surface through which the fluid can flow, shown as point 1 and point
2 in Fig. 2.6-3. The control-volume representation is analogous to the open system of thermody-
namics.

Figure 2.6-3. Control volume for flow through a conduit.

Overall Mass-Balance Equation

In deriving the general equation for the overall balance of the property mass, the law of conservation
of mass may be stated as follows for a control volume where no mass is being generated.

Equation 2.6-3. 

We now consider the general control volume fixed in space and located in a fluid flow field, as shown
in Fig. 2.6-4. For a small element of area dA m2 on the control surface, the rate of mass efflux from
this element = (ρν)(dA cos α), where (dA cos α) is the area dA projected in a direction normal to the
velocity vector ν, α is the angle between the velocity vector ν and the outward-directed unit normal
vector n to dA, and ρ is the density in kg/m3. The quantity ρν has units of kg/s · m2 and is called a
flux or mass velocity G.
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Figure 2.6-4. Flow through a differential area dA on a control surface.

From vector algebra we recognize that (ρν)(dA cos α) is the scalar or dot product ρ(v · n) dA. If we
now integrate this quantity over the entire control surface A, we have the net outflow of mass across
the control surface, or the net mass efflux in kg/s from the entire control volume V:

Equation 2.6-4. 

We should note that if mass is entering the control volume, that is, flowing inward across the control
surface, the next efflux of mass in Eq. (2.6-4) is negative, since α > 90° and cos α is negative. Hence,
there is a net influx of mass. If α < 90°, there is a net efflux of mass.
The rate of accumulation of mass within the control volume V can be expressed as follows:

Equation 2.6-5. 

where M is the mass of fluid in the volume in kg. Substituting Eqs. (2.6-4) and (2.6-5) into (2.6-3),
we obtain the general form of the overall mass balance:

Equation 2.6-6. 

The use of Eq. (2.6-6) can be shown for a common situation of steady-state one-dimensional flow,
where all the flow inward is normal to A1 and outward normal to A2, as shown in Fig. 2.6-3. When
the velocity ν2 leaving (Fig. 2.6-3) is normal to A2, the angle α2 between the normal to the control
surface and the direction of the velocity is 0°, and cos α2 = 1.0. Where ν1 is directed inward, α1 >
π/2, and for the case in Fig. 2.6-3, α1 is 180° (cos α1 = −1.0). Since α2 is 0° and α1 is 180°, using
Eq. (2.6-4),

Principles of Momentum Transfer and Overall Balances 59

Chapter 2. Principles of Momentum Transfer and Overall Balances. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



Equation 2.6-7. 

For steady state, dM/dt = 0 in Eq. (2.6-5), and Eq. (2.6-6) becomes

Equation 2.6-2. 

which is Eq. (2.6-2), derived earlier.
In Fig. 2.6-3 and Eqs. (2.6-3)–(2.6-7) we were not concerned with the composition of any of the
streams. These equations can easily be extended to represent an overall mass balance for com-
ponent i in a multicomponent system. For the case shown in Fig. 2.6-3, we combine Eqs. (2.6-5),
(2.6-6), and (2.6-7), add a generation term, and obtain

Equation 2.6-8. 

where mi2 is the mass flow rate of component i leaving the control volume and Ri is the rate of
generation of component i in the control volume in kg per unit time. (Diffusion fluxes are neglected
here or are assumed negligible.) In some cases, of course, Ri = 0 for no generation. Often it is more
convenient to use Eq. (2.6-8) written in molar units.

EXAMPLE 2.6-2. Overall Mass Balance in Stirred Tank
Initially, a tank holds 500 kg of salt solution containing 10% salt. At point (1) in the control volume in Fig.
2.6-5, a stream enters at a constant flow rate of 10 kg/h containing 20% salt. A stream leaves at point (2) at a
constant rate of 5 kg/h. The tank is well stirred. Derive an equation relating the weight fraction wA of the salt
in the tank at any time t in hours.

Figure 2.6-5. Control volume for flow in a stirred tank for Example 2.6-2.

Solution: First we make a total mass balance using Eq. (2.6-7) for the net total mass efflux from the control
volume:

Equation 2.6-9. 

From Eq. (2.6-5), where M is total kg of solution in control volume at time t,
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Equation 2.6-5. 

Substituting Eqs. (2.6-5) and (2.6-9) into (2.6-6), and then integrating,

Equation 2.6-10. 

Equation 2.6-11. 

Equation (2.6-11) relates the total mass M in the tank at any time to t.
Next, making a component A salt balance, let wA = weight fraction of salt in tank at time t and also the con-
centration in the stream m2 leaving at time t. Again using Eq. (2.6-7) but for a salt balance,

Equation 2.6-12. 

Using Eq. (2.6-5) for a salt balance,

Equation 2.6-13. 

Substituting Eqs. (2.6-12) and (2.6-13) into (2.6-6),

Equation 2.6-14. 

Substituting the value for M from Eq. (2.6-11) into (2.6-14), separating variables, integrating, and solving for wA,

Equation 2.6-15. 
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Equation 2.6-16. 

Note that Eq. (2.6-8) for component i could have been used for the salt balance with Ri = 0 (no generation).

Average Velocity to Use in Overall Mass Balance

In solving the case in Eq. (2.6-7), we assumed a constant velocity ν1 at section 1 and constant ν2
at section 2. If the velocity is not constant but varies across the surface area, an average or bulk
velocity is defined by

Equation 2.6-17. 

for a surface over which ν is normal to A and the density ρ is assumed constant.

EXAMPLE 2.6-3. Variation of Velocity Across Control Surface and Average
Velocity

For the case of incompressible flow (ρ is constant) through a circular pipe of radius R, the velocity profile is
parabolic for laminar flow as follows:

Equation 2.6-18. 

where νmax is the maximum velocity at the center where r = 0 and ν is the velocity at a radial distance r from
the center. Derive an expression for the average or bulk velocity νav to use in the overall mass-balance equation.

Solution: The average velocity is represented by Eq. (2.6-17). In Cartesian coordinates dA is dx dy. However,
using polar coordinates, which are more appropriate for a pipe, dA = rdrdθ, where θ is the angle in polar
coordinates. Substituting Eq. (2.6-18), dA = rdrdθ, and A = πR2 into Eq. (2.6-17) and integrating,

Equation 2.6-19. 

Equation 2.6-20. 
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In this discussion overall or macroscopic mass balances were made because we wish to describe
these balances from outside the enclosure. In this section on overall mass balances, some of the
equations presented may have seemed quite obvious. However, the purpose was to develop the
methods which should be helpful in the next sections. Overall balances will also be made on energy
and momentum in the next sections. These overall balances do not tell us the details of what hap-
pens inside. However, in Section 2.9 a shell momentum balance will be made in order to obtain
these details, which will give us the velocity distribution and pressure drop. To further study these
details of the processes occurring inside the enclosure, differential balances rather than shell bal-
ances can be written; these are discussed later in Sections 3.6–3.9 on differential equations of
continuity and momentum transfer, Sections 5.6 and 5.7 on differential equations of energy change
and boundary-layer flow, and Section 7.5B on differential equations of continuity for a binary mixture.

OVERALL ENERGY BALANCE

Introduction

The second property to be considered in the overall balances on a control volume is energy. We
shall apply the principle of the conservation of energy to a control volume fixed in space in much
the same manner as the principle of conservation of mass was used to obtain the overall mass
balance. The energy-conservation equation will then be combined with the first law of thermody-
namics to obtain the final overall energy-balance equation.
We can write the first law of thermodynamics as

Equation 2.7-1. 

where E is the total energy per unit mass of fluid, Q is the heat absorbed per unit mass of fluid, and
W is the work of all kinds done per unit mass of fluid upon the surroundings. In the calculations,
each term in the equation must be expressed in the same type of units, such as J/kg (SI), btu/lbm,
or ft · lbf/lbm (English).
Since mass carries with it associated energy due to its position, motion, or physical state, we will
find that each of these types of energy will appear in the energy balance. In addition, we can also
transport energy across the boundary of the system without transferring mass.

Derivation of Overall Energy-Balance Equation

The entity balance for a conserved quantity such as energy is similar to Eq. (2.6-3) and is as follows
for a control volume:

Equation 2.7-2. 

The energy E present within a system can be classified in three ways:

1. Potential energy zg of a unit mass of fluid is the energy present because of the position of the
mass in a gravitational field g, where z is the relative height in meters from a reference plane.
The units for zg in the SI system are m · m/s2. Multiplying and dividing by kg mass, the units
can be expressed as (kg · m/s2) · (m/kg), or J/kg. In English units the potential energy is zg/
gc in ft · lbf/lbm.
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2. Kinetic energy ν2/2 of a unit mass of fluid is the energy present because of translational or
rotational motion of the mass, where ν is the velocity in m/s relative to the boundary of the
system at a given point. Again, in the SI system the units of ν2/2 are J/kg. In the English system
the kinetic energy is ν2/2gc in ft · lbf/lbm.

3. Internal energy U of a unit mass of a fluid is all of the other energy present, such as rotational
and vibrational energy in chemical bonds. Again the units are in J/kg or ft · lbf/lbm.

The total energy of the fluid per unit mass is then

Equation 2.7-3. 

The rate of accumulation of energy within the control volume V in Fig. 2.6-4 is

Equation 2.7-4. 

Next we consider the rate of energy input and output associated with mass in the control volume.
The mass added or removed from the system carries internal, kinetic, and potential energy. In ad-
dition, energy is transferred when mass flows into and out of the control volume. Net work is done
by the fluid as it flows into and out of the control volume. This pressure–volume work per unit mass
fluid is pV. The contribution of shear work is usually neglected. The pV term and U term are combined
using the definition of enthalpy, H:

Equation 2.7-5. 

Hence, the total energy carried with a unit mass is (H + ν2/2 + zg).
For a small area dA on the control surface in Fig. 2.6-4, the rate of energy efflux is (H + ν2/2 + zg)
(ρν)(dA cos α), where (dA cos α) is the area dA projected in a direction normal to the velocity vector
ν and α is the angle between the velocity vector ν and the outward-directed unit normal vector n.
We now integrate this quantity over the entire control surface to obtain

Equation 2.7-6. 

Now we have accounted for all energy associated with mass in the system and moving across the
boundary in the entity balance, Eq. (2.7-2). Next we take into account heat and work energy which
transfers across the boundary and is not associated with mass. The term q is the heat transferred
per unit time across the boundary to the fluid because of a temperature gradient. Heat absorbed by
the system is positive by convention.

Principles of Momentum Transfer and Overall Balances 64

Chapter 2. Principles of Momentum Transfer and Overall Balances. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



The work , which is energy per unit time, can be divided into , purely mechanical shaft work
identified with a rotating shaft crossing the control surface, and the pressure–volume work, which
has been included in the enthalpy term H in Eq. (2.7-6). By convention, work done by the fluid upon
the surroundings, that is, work out of the system, is positive.
To obtain the overall energy balance, we substitute Eqs. (2.7-4) and (2.7-6) into the entity balance

Eq. (2.7-2) and equate the resulting equation to q − :

Equation 2.7-7. 

Overall Energy Balance for Steady-State Flow System

A common special case of the overall or macroscopic energy balance is that of a steady-state system
with one-dimensional flow across the boundaries, a single inlet, a single outlet, and negligible var-
iation of height z, density ρ, and enthalpy H across either inlet or outlet area. This is shown in Fig.
2.7-1. Setting the accumulation term in Eq. (2.7-7) equal to zero and integrating,

Equation 2.7-8. 

Figure 2.7-1. Steady-state flow system for a fluid.

For steady state, m1 = ρ1ν1 avA1 = m2 = m. Dividing through by m so that the equation is on a unit
mass basis,

Equation 2.7-9. 
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The term (ν3)av/(2νav) can be replaced by , where α is the kinetic-energy velocity correction

factor and is equal to . The term α has been evaluated for various flows in pipes and is

 for laminar flow and close to 1.0 for turbulent flow. (See Section 2.7D.) Hence, Eq. (2.7-9) be-
comes

Equation 2.7-10. 

Some useful conversion factors from Appendix A.1 are as follows:

Kinetic-Energy Velocity Correction Factor α

Introduction

In obtaining Eq (2.7-8) it was necessary to integrate the kinetic-energy term,

Equation 2.7-11. 

which appeared in Eq. (2.7-7). To do this we first take ρ as a constant and cos α = 1.0. Then
multiplying the numerator and denominator by νavA, where νav is the bulk or average velocity, and
noting that m = ρνavA, Eq. (2.7-11) becomes

Equation 2.7-12. 

Dividing through by m so that Eq. (2.7-12) is on a unit mass basis,

Equation 2.7-13. 

where α is defined as
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Equation 2.7-14. 

and (ν3)av is defined as follows:

Equation 2.7-15. 

The local velocity ν varies across the cross-sectional area of a pipe. To evaluate (ν3)av and, hence,
the value of α, we must have an equation relating ν as a function of position in the cross-sectional
area.

Laminar flow

In order to determine the value of α for laminar flow, we first combine Eqs. (2.6-18) and (2.6-20) for
laminar flow to obtain ν as a function of position r:

Equation 2.7-16. 

Substituting Eq. (2.7-16) into (2.7-15) and noting that A = πR2 and dA = r dr dθ (see Example
2.6-3), Eq. (2.7-15) becomes

Equation 2.7-17. 

Integrating Eq. (2.7-17) and rearranging,

Equation 2.7-18. 

Substituting Eq. (2.7-18) into (2.7-14),
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Equation 2.7-19. 

Hence, for laminar flow the value of α to use in the kinetic-energy term of Eq. (2.7-10) is 0.50.

Turbulent flow

For turbulent flow a relationship is needed between ν and position. This can be approximated by
the following expression:

Equation 2.7-20. 

where r is the radial distance from the center. Eq. (2.7-20) is substituted into Eq. (2.7-15) and the
resultant integrated to obtain the value of (ν3)av. Next, Eq. (2.7-20) is substituted into Eq. (2.6-17)
and this equation integrated to obtain νav and (νav)3. Combining the results for (ν3)av and (νav)3 into
Eq. (2.7-14), the value of a α is 0.945. (See Problem 2.7-1 for solution.) The value of α for turbulent
flow varies from about 0.90 to 0.99. In most cases (except for precise work) the value of α is taken
to be 1.0.

Applications of Overall Energy-Balance Equation

The total energy balance, Eq. (2.7-10), in the form given is not often used when appreciable enthalpy
changes occur or appreciable heat is added (or subtracted), since the kinetic- and potential-energy
terms are usually small and can be neglected. As a result, when appreciable heat is added or sub-
tracted or large enthalpy changes occur, the methods for doing heat balances described in Section
1.7 are generally used. Examples will be given to illustrate this and other cases.

EXAMPLE 2.7-1. Energy Balance on Steam Boiler
Water enters a boiler at 18.33°C and 137.9 kPa through a pipe at an average velocity of 1.52 m/s. Exit steam
at a height of 15.2 m above the liquid inlet leaves at 137.9 kPa, 148.9°C, and 9.14 m/s in the outlet line. At
steady state, how much heat must be added per kg mass of steam? The flow in the two pipes is turbulent.

Solution: The process flow diagram is shown in Fig. 2.7-2. Rearranging Eq. (2.7-10) and setting α = 1 for
turbulent flow and WS = 0 (no external work),

Equation 2.7-21. 

Figure 2.7-2. Process flow diagram for Example 2.7-1.

To solve for the kinetic-energy terms,
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Taking the datum height z1 at point 1, z2 = 15.2 m. Then,

From Appendix A.2, steam tables in SI units, H1 at 18.33°C = 76.97 kJ/kg, H2 of superheated steam at 148.9°C
= 2771.4 kJ/kg, and

Substituting these values into Eq. (2.7-21),

Hence, the kinetic-energy and potential-energy terms totaling 189.75 J/kg are negligible compared to the en-
thalpy change of 2.694 × 106 J/kg. This 189.75 J/kg would raise the temperature of liquid water about 0.0453°C,
a negligible amount.

EXAMPLE 2.7-2. Energy Balance on a Flow System with a Pump
Water at 85.0°C is being stored in a large, insulated tank at atmospheric pressure, as shown in Fig. 2.7-3. It
is being pumped at steady state from this tank at point 1 by a pump at the rate of 0.567 m3/min. The motor
driving the pump supplies energy at the rate of 7.45 kW. The water passes through a heat exchanger, where
it gives up 1408 kW of heat. The cooled water is then delivered to a second large open tank at point 2, which
is 20 m above the first tank. Calculate the final temperature of the water delivered to the second tank. Neglect
any kinetic-energy changes, since the initial and final velocities in the tanks are essentially zero.

Figure 2.7-3. Process flow diagram for energy balance for Example 2.7-2.

Solution: From Appendix A.2, steam tables, H1 (85°C) = 355.90 × 103 J/kg and ρ1 = 1/0.0010325 = 968.5 kg/
m3. Then, for steady state,

Also, z1 = 0 and z2 = 20 m. The work done by the fluid is WS, but in this case work is done on the fluid and
WS is negative:
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The heat added to the fluid is also negative since it gives up heat and is

Setting  and substituting into Eq. (2.7-10),

Solving, H2 = 202.71 × 103 J/kg. From the steam tables this corresponds to t2 = 48.41°C. Note that in this
example, WS and g(z2 − z1) are very small compared to Q.

EXAMPLE 2.7-3. Energy Balance in Flow Calorimeter
A flow calorimeter is being used to measure the enthalpy of steam. The calorimeter, which is a horizontal
insulated pipe, consists of an electric heater immersed in a fluid flowing at steady state. Liquid water at 0°C at
a rate of 0.3964 kg/min enters the calorimeter at point 1. The liquid is vaporized completely by the heater,
where 19.63 kW is added, and steam leaves point 2 at 250°C and 150 kPa absolute. Calculate the exit enthalpy
H2 of the steam if the liquid enthalpy at 0°C is set arbitrarily as 0. The kinetic-energy changes are small and
can be neglected. (It will be assumed that pressure has a negligible effect on the enthalpy of the liquid.)

Solution: For this case, WS = 0 since there is no shaft work between points 1 and 2. Also,

 and g(z2 − z1) = 0. For steady state, m1 = m2 = 0.3964/60 = 6.607 × 10−3

kg/s. Since heat is added to the system,

The value of H1 = 0. Equation (2.7-10) becomes

The final equation for the calorimeter is

Equation 2.7-22. 

Substituting Q = 2971 kJ/kg and H1 = 0 into Eq. (2.7-22), H2 = 2971 kJ/kg at 250°C and 150 kPa, which is close
to the value from the steam table of 2972.7 kJ/kg.

Overall Mechanical-Energy Balance

A more useful type of energy balance for flowing fluids, especially liquids, is a modification of the
total energy balance to deal with mechanical energy. Engineers are often concerned with this special
type of energy, called mechanical energy, which includes the work term, kinetic energy, potential
energy, and the flow work part of the enthalpy term. Mechanical energy is a form of energy that is
either work or a form that can be directly converted into work. The other terms in the energy-balance
equation (2.7-10), heat terms and internal energy, do not permit simple conversion into work be-
cause of the second law of thermodynamics and the efficiency of conversion, which depends on the
temperatures. Mechanical-energy terms have no such limitation and can be converted almost com-
pletely into work. Energy converted to heat or internal energy is lost work or a loss in mechanical
energy caused by frictional resistance to flow.
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It is convenient to write an energy balance in terms of this loss, Σ F, which is the sum of all frictional
losses per unit mass. For the case of steady-state flow, when a unit mass of fluid passes from inlet
to outlet, the batch work done by the fluid, W', is expressed as

Equation 2.7-23. 

This work W' differs from the W of Eq. (2.7-1), which also includes kinetic- and potential-energy
effects. Writing the first law of thermodynamics for this case, where ΔE becomes ΔU,

Equation 2.7-24. 

The equation defining enthalpy, Eq. (2.7-5), can be written as

Equation 2.7-25. 

Substituting Eq. (2.7-23) into (2.7-24) and then combining the resultant with Eq. (2.7-25), we obtain

Equation 2.7-26. 

Finally, we substitute Eq. (2.7-26) into (2.7-10) and 1/ρ for V, to obtain the overall mechanical-
energy-balance equation:

Equation 2.7-27. 

For English units the kinetic- and potential-energy terms of Eq. (2.7-27) are divided by gc.
The value of the integral in Eq. (2.7-27) depends on the equation of state of the fluid and the path
of the process. If the fluid is an incompressible liquid, the integral becomes (p2 − p1)/ρ and Eq.
(2.7-27) becomes

Equation 2.7-28. 
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EXAMPLE 2.7-4. Mechanical-Energy Balance on Pumping System
Water with a density of 998 kg/m3 is flowing at a steady mass flow rate through a uniform-diameter pipe. The
entrance pressure of the fluid is 68.9 kN/m2 abs in the pipe, which connects to a pump that actually supplies
155.4 J/kg of fluid flowing in the pipe. The exit pipe from the pump is the same diameter as the inlet pipe. The
exit section of the pipe is 3.05 m higher than the entrance, and the exit pressure is 137.8 kN/m2 abs. The
Reynolds number in the pipe is above 4000 in the system. Calculate the frictional loss Σ F in the pipe system.

Solution: First a flow diagram of the system is drawn (Fig. 2.7-4), with 155.4 J/kg mechanical energy added
to the fluid. Hence, WS = −155.4, since the work done by the fluid is positive.

Figure 2.7-4. Process flow diagram for Example 2.7-4.

Setting the datum height z1 = 0, z2 = 3.05 m. Since the pipe is of constant diameter, ν1 = ν2. Also, for turbulent
flow α = 1.0 and

Since the liquid can be considered incompressible, Eq. (2.7-28) is used:

Using Eq. (2.7-28) and solving for Σ F, the frictional losses,

Equation 2.7-29. 

Substituting the known values, and solving for the frictional losses,
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EXAMPLE 2.7-5. Pump Horsepower in Flow System
A pump draws 69.1 gal/min of a liquid solution having a density of 114.8 lbm/ft3 from an open storage feed tank
of large cross-sectional area through a 3.068-in.-ID suction line. The pump discharges its flow through a 2.067-
in.-ID line to an open overhead tank. The end of the discharge line is 50 ft above the level of the liquid in the
feed tank. The friction losses in the piping system are Σ F = 10.0 ft-lb force/lb mass. What pressure must the
pump develop and what is the horsepower of the pump if its efficiency is 65% (η = 0.65)? The flow is turbulent.

Solution: First, a flow diagram of the system is drawn (Fig. 2.7-5). Equation (2.7-28) will be used. The term
WS in Eq. (2.7-28) becomes

Equation 2.7-30. 

Figure 2.7-5. Process flow diagram for Example 2.7-5.

where −WS = mechanical energy actually delivered to the fluid by the pump or net mechanical work, η =
fractional efficiency, and Wp is the energy or shaft work delivered to the pump.

From Appendix A.5, the cross-sectional area of the 3.068-in. pipe is 0.05134 ft2 and of the 2.067-in. pipe,
0.0233 ft2. The flow rate is

ν1 = 0, since the tank is very large. Then  The pressure p1 = 1 atm and p2 = 1 atm. Also, α = 1.0
since the flow is turbulent. Hence,
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Using the datum of z1 = 0, we have

Using Eq. (2.4-28), solving for WS, and substituting the known values,

Using Eq. (2.7-30) and solving for Wp,

To calculate the pressure the pump must develop, Eq. (2.7-28) must be written over the pump itself between
points 3 and 4 as shown on the diagram:

Since the difference in level between z3 and z4 of the pump itself is negligible, it will be neglected. Rewriting
Eq. (2.7-28) between points 3 and 4 and substituting known values (Σ F = 0, since this is for the piping system),
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Equation 2.7-31. 

Bernoulli Equation for Mechanical-Energy Balance

In the special case where no mechanical energy is added (WS = 0) and for no friction (Σ F= 0), then
Eq. (2.7-28) becomes the Bernoulli equation, Eq. (2.7-32), for turbulent flow, which is of sufficient
importance to deserve further discussion:

Equation 2.7-32. 

This equation covers many situations of practical importance and is often used in conjunction with
the mass-balance equation (2.6-2) for steady state:

Equation 2.6-2. 

Several examples of its use will be given.

EXAMPLE 2.7-6. Rate of Flow from Pressure Measurements
A liquid with a constant density ρ kg/m3 is flowing at an unknown velocity ν1 m/s through a horizontal pipe of
cross-sectional area A1 m2 at a pressure p1 N/m2, and then it passes to a section of the pipe in which the area
is reduced gradually to A2 m2 and the pressure is p2. Assuming no friction losses, calculate the velocities ν1
and ν2 if the pressure difference (p1 − p2) is measured.

Solution: In Fig. 2.7-6, the flow diagram is shown with pressure taps to measure p1 and p2. From the mass-
balance continuity equation (2.6-2), for constant ρ where ρ1 = ρ2 = ρ,

Equation 2.7-33. 
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Figure 2.7-6. Process flow diagram for Example 2.7-6.

For the items in the Bernoulli equation (2.7-32), for a horizontal pipe,

Then Eq. (2.7-32) becomes, after substituting Eq. (2.7-33) for ν2,

Equation 2.7-34. 

Rearranging,

Equation 2.7-35. 

Equation 2.7-36. 

Performing the same derivation but in terms of ν2,

Equation 2.7-37. 

EXAMPLE 2.7-7. Rate of Flow from a Nozzle in a Tank
A nozzle of cross-sectional area A2 is discharging to the atmosphere and is located in the side of a large tank,
in which the open surface of the liquid in the tank is H m above the center line of the nozzle. Calculate the
velocity ν2 in the nozzle and the volumetric rate of discharge if no friction losses are assumed.

Solution: The process flow is shown in Fig. 2.7-7, with point 1 taken in the liquid at the entrance to the nozzle
and point 2 at the exit of the nozzle.
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Figure 2.7-7. Nozzle flow diagram for Example 2.7-7.

Since A1 is very large compared to A2, ν1 ≅ 0. The pressure p1 is greater than 1 atm (101.3 kN/m2) by the head
of fluid of H m. The pressure p2, which is at the nozzle exit, is at 1 atm. Using point 2 as a datum, z2 = 0 and
z1 = 0 m. Rearranging Eq. (2.7-32),

Equation 2.7-38. 

Substituting the known values,

Equation 2.7-39. 

Solving for ν2,

Equation 2.7-40. 

Since p1 − p3 = Hρg and p3 = p2 (both at 1 atm),

Equation 2.7-41. 

where H is the head of liquid with density ρ. Then Eq. (2.4-40) becomes

Equation 2.7-42. 

The volumetric flow rate is

Equation 2.7-43. 

To illustrate the fact that different points can be used in the balance, points 3 and 2 will be used. Writing Eq.
(2.7-32),

Equation 2.7-44. 
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Equation 2.7-45. 

OVERALL MOMENTUM BALANCE

Derivation of General Equation

A momentum balance can be written for the control volume shown in Fig. 2.6-3 which is somewhat
similar to the overall mass-balance equation. Momentum, in contrast to mass and energy, is a vector
quantity. The total linear momentum vector P of the total mass M of a moving fluid having a velocity
of v is

Equation 2.8-1. 

The term Mv is the momentum of this moving mass M enclosed at a particular instant in the control
volume shown in Fig. 2.6-4. The units of Mν are kg · m/s in the SI system.
Starting with Newton's second law, we will develop the integral momentum-balance equation for
linear momentum. Angular momentum will not be considered here. Newton's law may be stated:
The time rate of change of momentum of a system is equal to the summation of all forces acting on
the system and takes place in the direction of the net force:

Equation 2.8-2. 

where F is force. In the SI system F is in newtons (N) and 1 N = 1 kg · m/s2. Note that in the SI
system gc is not needed, but it is needed in the English system.
The equation for the conservation of momentum with respect to a control volume can be written as
follows:

Equation 2.8-3. 

This is in the same form as the general mass-balance equation (2.6-3), with the sum of the forces
as the generation rate term. Hence, momentum is not conserved, since it is generated by external
forces on the system. If external forces are absent, momentum is conserved.
Using the general control volume shown in Fig. 2.6-4, we shall evaluate the various terms in Eq.
(2.8-3), using methods very similar to the development of the general mass balance. For a small
element of area dA on the control surface, we write

Equation 2.8-4. 
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Note that the rate of mass efflux is (ρν)(dA cos α). Also, note that (dA cos α) is the area dA projected
in a direction normal to the velocity vector ν, and α is the angle between the velocity vector ν and
the outward-directed-normal vector n. From vector algebra the product in Eq. (2.8-4) becomes

Equation 2.8-5. 

Integrating over the entire control surface A,

Equation 2.8-6. 

The net efflux represents the first two terms on the right-hand side of Eq. (2.8-3).
Similarly to Eq. (2.6-5), the rate of accumulation of linear momentum within the control volume V is

Equation 2.8-7. 

Substituting Equations (2.8-2), (2.8-6), and (2.8-7) into (2.8-3), the overall linear momentum balance
for a control volume becomes

Equation 2.8-8. 

We should note that Σ F in general may have a component in any direction, and that F is the force
the surroundings exert on the control-volume fluid. Since Eq. (2.8-8) is a vector equation, we may
write the component scalar equations for the x, y, and z directions:

Equation 2.8-9. 

Equation 2.8-10. 

Equation 2.8-11. 
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The force term Σ Fx in Eq. (2.8-9) is composed of the sum of several forces. These are given as
follows:

1. Body force. The body force Fxg is the x-directed force caused by gravity acting on the total
mass M in the control volume. This force, Fxg, is Mgx. It is zero if the x direction is horizontal.

2. Pressure force. The force Fxp is the x-directed force caused by the pressure forces acting on
the surface of the fluid system. When the control surface cuts through the fluid, the pressure
is taken to be directed inward and perpendicular to the surface. In some cases part of the
control surface may be a solid, and this wall is included inside the control surface. Then there
is a contribution to Fxp from the pressure on the outside of this wall, which typically is atmos-
pheric pressure. If gage pressure is used, the integral of the constant external pressure over
the entire outer surface can be automatically ignored.

3. Friction force. When the fluid is flowing, an x-directed shear or friction force Fxs is present,
which is exerted on the fluid by a solid wall when the control surface cuts between the fluid
and the solid wall. In some or many cases, this frictional force may be negligible compared to
the other forces and is neglected.

4. Solid surface force. In cases where the control surface cuts through a solid, there is present
force Rx, which is the x component of the resultant of the forces acting on the control volume
at these points. This occurs typically when the control volume includes a section of pipe and
the fluid it contains. This is the force exerted by the solid surface on the fluid.

The force terms of Eq. (2.8-9) can then be represented as

Equation 2.8-12. 

Similar equations can be written for the y and z directions. Then Eq. (2.8-9) becomes, for the x
direction,

Equation 2.8-13. 

Overall Momentum Balance in Flow System in One Direction

A quite common application of the overall momentum-balance equation is the case of a section of
a conduit with its axis in the x direction. The fluid will be assumed to be flowing at steady state in
the control volume shown in Fig. 2.6-3 and in Fig. 2.8-1. Since ν = νx, Eq. (2.8-13) for the x direction
becomes as follows:

Equation 2.8-14. 
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Figure 2.8-1. Flow through a horizontal nozzle in the x direction only.

Integrating, with cos α = ±1.0 and ρA = m/νav,

Equation 2.8-15. 

where, if the velocity is not constant and varies across the surface area,

Equation 2.8-16. 

The ratio  is replaced by νxav/β where β, which is the momentum velocity correction

factor, has a value of 0.95 to 0.99 for turbulent flow and  for laminar flow. For most applications

in turbulent flow,  is replaced by νx av, the average bulk velocity. Note that the sub-
script x on νx and Fx can be dropped, since νx = ν and Fx = F for one-directional flow.
The term Fxp, which is the force caused by the pressures acting on the surface of the control volume,
is

Equation 2.8-17. 

The friction force will be neglected in Eq. (2.8-15), so Fxs = 0. The body force Fxg = 0 since gravity
is acting only in the y direction. Substituting Fxp from Eq. (2.8-17) into (2.8-15), replacing

 by ν/β (where νx av = ν), setting β = 1.0, and solving for Rx in Eq. (2.8-15),

Equation 2.8-18. 

where Rx is the force exerted by the solid on the fluid. The force of the fluid on the solid (reaction
force) is the negative of this, or −Rx.

EXAMPLE 2.8-1. Momentum Velocity Correction Factor β for Laminar Flow
The momentum velocity correction factor β is defined as follows for flow in one direction, where the subscript
x is dropped:
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Equation 2.8-19. 

Equation 2.8-20. 

Determine β for laminar flow in a tube.

Solution: Using Eq. (2.8-16),

Equation 2.8-21. 

Substituting Eq. (2.7-16) for laminar flow into Eq. (2.8-21) and noting that A = πR2 and dA = r dr dθ, we obtain
(see Example 2.6-3)

Equation 2.8-22. 

Integrating Eq. (2.8-22) and rearranging,

Equation 2.8-23. 

Substituting Eq. (2.8-23) into (2.8-20), β = .

EXAMPLE 2.8-2. Momentum Balance for Horizontal Nozzle
Water is flowing at a rate of 0.03154 m3/s through a horizontal nozzle shown in Fig. 2.8-1 and discharges to
the atmosphere at point 2. The nozzle is attached at the upstream end at point 1 and frictional forces are
considered negligible. The upstream ID is 0.0635 m and the downstream 0.0286 m. Calculate the resultant
force on the nozzle. The density of the water is 1000 kg/m3.

Solution: First, the mass flow and average or bulk velocities at points 1 and 2 are calculated. The area at point
1 is A1 = (π/4)(0.0635)2 = 3.167 × 10−3 m2 and A2 = (π/4)(0.0286)2 = 6.424 × 10−4 m2. Then,

The velocity at point 1 is ν1 = 0.03154/(3.167 × 10−3) = 9.96 m/s, and ν2 = 0.03154/(6.424 × 10−4) = 49.1 m/s.

To evaluate the upstream pressure p1 we use the mechanical-energy-balance equation (2.7-28) assuming no
frictional losses and turbulent flow. (This can be checked by calculating the Reynolds number.) This equation
then becomes, for α = 1.0,
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Equation 2.8-24. 

Setting p2 = 0 gage pressure, ρ = 1000 kg/m3, ν1 = 9.96 m/s, ν2 = 49.1 m/s, and solving for p1,

For the x direction, the momentum-balance equation (2.8-18) is used. Substituting the known values and solv-
ing for Rx,

Since the force is negative, it is acting in the negative x direction, or to the left. This is the force of the nozzle
on the fluid. The force of the fluid on the solid is −Rx, or +2427 N.

Overall Momentum Balance in Two Directions

Another application of the overall momentum balance is shown in Fig. 2.8-2 for a flow system with
fluid entering a conduit at point 1 inclined at an angle of α1 relative to the horizontal x direction and
leaving a conduit at point 2 at an angle α2. The fluid will be assumed to be flowing at steady state
and the frictional force Fxs will be neglected. Then Eq. (2.8-13) for the x direction becomes as follows
for no accumulation:

Equation 2.8-25. 

Figure 2.8-2. Overall momentum balance for flow system with fluid entering at point 1 and leaving at 2.

Integrating the surface (area) integral,

Equation 2.8-26. 
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The term (ν2)av/νav can again be replaced by νav/β, with β being set at 1.0. From Fig. 2.8-2, the term
Fxp is

Equation 2.8-27. 

Then Eq. (2.8-26) becomes as follows after solving for Rx:

Equation 2.8-28. 

The term Fxg = 0 in this case.
For Ry the body force Fyg is in the negative y direction and Fyg = −mtg, where mt is the total mass
fluid in the control volume. Replacing cos α by sin α, the equation for the y direction becomes

Equation 2.8-29. 

EXAMPLE 2.8-3. Momentum Balance in a Pipe Bend
Fluid is flowing at steady state through a reducing pipe bend, as shown in Fig. 2.8-3. Turbulent flow will be
assumed with frictional forces negligible. The volumetric flow rate of the liquid and the pressure p2 at point 2
are known, as are the pipe diameters at both ends. Derive the equations to calculate the forces on the bend.
Assume that the density ρ is constant.

Figure 2.8-3. Flow through a reducing bend in Example 2.8-3.

Solution: The velocities ν1 and ν2 can be obtained from the volumetric flow rate and the areas. Also, m =
ρ1ν1A1 = ρ2ν2A2. As in Example 2.8-2, the mechanical-energy-balance equation (2.8-24) is used to obtain the
upstream pressure, p1. For the x direction, Eq. (2.8-28) is used for the momentum balance. Since α1 = 0°, cos
α1 = 1.0. Equation (2.8-28) becomes

Equation 2.8-30. 

For the y direction, the momentum-balance equation (2.8-29) is used, where sin α1 = 0:

Equation 2.8-31. 
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where mt is total mass fluid in the pipe bend. The pressures at points 1 and 2 are gage pressures since the
atmospheric pressures acting on all surfaces cancel. The magnitude of the resultant force of the bend acting
on the control volume fluid is

Equation 2.8-32. 

The angle this makes with the vertical is θ = arctan(Rx/Ry). Often the gravity force Fyg is small compared to the
other terms in Eq. (2.8-31) and is neglected.

EXAMPLE 2.8-4. Friction Loss in a Sudden Enlargement
A mechanical-energy loss occurs when a fluid flows from a small pipe to a large pipe through an abrupt ex-
pansion, as shown in Fig. 2.8-4. Use the momentum balance and mechanical-energy balance to obtain an
expression for the loss for a liquid. (Hint: Assume that p0 = p1 and ν0 = ν1. Make a mechanical-energy balance
between points 0 and 2 and a momentum balance between points 1 and 2. It will be assumed that p1 and p2
are uniform over the cross-sectional area.)

Figure 2.8-4. Losses in expansion flow.

Solution: The control volume is selected so that it does not include the pipe wall and Rx drops out. The boun-
daries selected are points 1 and 2. The flow through plane 1 occurs only through an area A0. The frictional
drag force will be neglected, and all the loss is assumed to be from eddies in this volume. Making a momentum
balance between points 1 and 2 using Eq. (2.8-18) and noting that p0 = p1, ν1 = ν0, and A1 = A2,

Equation 2.8-33. 

The mass flow rate is m = ν0ρA0 and ν2 = (A0/A2)ν0. Substituting these terms into Eq. (2.8-33) and rearranging
gives us

Equation 2.8-34. 

Applying the mechanical-energy-balance equation (2.7-28) to points 1 and 2,
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Equation 2.8-35. 

Finally, combining Eqs. (2.8-34) and (2.8-35),

Equation 2.8-36. 

Overall Momentum Balance for Free Jet Striking a Fixed Vane

When a free jet impinges on a fixed vane as in Fig. 2.8-5, the overall momentum balance can be
applied to determine the force on the smooth vane. Since there are no changes in elevation or
pressure before and after impact, there is no loss in energy, and application of the Bernoulli equation
shows that the magnitude of the velocity is unchanged. Losses due to impact are neglected. The
frictional resistance between the jet and the smooth vane is also neglected. The velocity is assumed
to be uniform throughout the jet upstream and downstream. Since the jet is open to the atmosphere,
the pressure is the same at all ends of the vane.

Figure 2.8-5. Free jet impinging on a fixed vane: (a) smooth, curved vane, (b) smooth, flat vane.

In making a momentum balance for the control volume shown for the curved vane in Fig. 2.8-5a,
Eq. (2.8-28) is written as follows for steady state, where the pressure terms are zero, ν1 = ν2, A1 =
A2, and m = ν1A1ρ1 = ν2A2ν2:

Equation 2.8-37. 

Using Eq. (2.8-29) for the y direction and neglecting the body force,

Equation 2.8-38. 

Hence, Rx and Ry are the force components of the vane on the control volume fluid. The force
components on the vane are −Rx and −Ry.
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EXAMPLE 2.8-5. Force of Free Jet on a Curved, Fixed Vane
A jet of water having a velocity of 30.5 m/s and a diameter of 2.54 × 10−2 m is deflected by a smooth, curved
vane as shown in Fig. 2.8-5a, where α2 = 60°. What is the force of the jet on the vane? Assume that ρ = 1000
kg/m3.

Solution: The cross-sectional area of the jet is A1 = π(2.54 × 10−2)2/4 = 5.067 × 10−4 m2. Then, m = ν1A1ρ1 =
30.5 × 5.067 × 10−4 × 1000 = 15.45 kg/s. Substituting into Eqs. (2.8-37) and (2.8-38),

The force on the vane is −Rx = +235.6 N and −Ry = −408.1 N. The resultant force is calculated using Eq.
(2.8-32).

In Fig. 2.8-5b a free jet at velocity ν1 strikes a smooth, inclined flat plate and the flow divides into
two separate streams whose velocities are all equal (ν1 = ν2 = ν3) since there is no loss in energy.
It is convenient to make a momentum balance in the p direction parallel to the plate. No force is
exerted on the fluid by the flat plate in this direction; that is, there is no tangential force. Then, the
initial momentum component in the p direction must equal the final momentum component in this
direction. This means Σ F p = 0. Writing an equation similar to Eq. (2.8-26), where m1 is kg/s entering
at 1 and m2 leaves at 2 and m3 at 3,

Equation 2.8-39. 

By the continuity equation,

Equation 2.8-40. 

Combining and solving,

Equation 2.8-41. 

The resultant force exerted by the plate on the fluid must be normal to it. This means the resultant
force is simply m1ν1 sin α2. Alternatively, the resultant force on the fluid can be calculated by de-
termining Rx and Ry from Eqs. (2.8-28) and (2.8-29) and then using Eq. (2.8-32). The force on the
bend is the opposite of this.
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SHELL MOMENTUM BALANCE AND VELOCITY PROFILE IN
LAMINAR FLOW

Introduction

In Section 2.8 we analyzed momentum balances using an overall, macroscopic control volume.
From this we obtained the total or overall changes in momentum crossing the control surface. This
overall momentum balance did not tell us the details of what happens inside the control volume. In
the present section we analyze a small control volume and then shrink this control volume to dif-
ferential size. In doing this we make a shell momentum balance using the momentum-balance con-
cepts of the preceding section, and then, using the equation for the definition of viscosity, we obtain
an expression for the velocity profile inside the enclosure and the pressure drop. The equations are
derived for flow systems of simple geometry in laminar flow at steady state.
In many engineering problems a knowledge of the complete velocity profile is not needed, but a
knowledge of the maximum velocity, the average velocity, or the shear stress on a surface is needed.
In this section we show how to obtain these quantities from the velocity profiles.

Shell Momentum Balance Inside a Pipe

Engineers often deal with the flow of fluids inside a circular conduit or pipe. In Fig. 2.9-1 we have a
horizontal section of pipe in which an incompressible Newtonian fluid is flowing in one-dimensional,
steady-state, laminar flow. The flow is fully developed; that is, it is not influenced by entrance effects
and the velocity profile does not vary along the axis of flow in the x direction.

Figure 2.9-1. Control volume for shell momentum balance on a fluid flowing in a circular tube.

The cylindrical control volume is a shell with an inside radius r, thickness Δr, and length Δx. At steady
state the conservation of momentum, Eq. (2.8-3), becomes as follows: sum of forces acting on
control volume = rate of momentum out − rate of momentum into volume. The pressure forces
become, from Eq. (2.8-17),

Equation 2.9-1. 

The shear force or drag force acting on the cylindrical surface at the radius r is the shear stress
τrx times the area 2πr Δx. However, this can also be considered as the rate of momentum flow into
the cylindrical surface of the shell as described by Eq. (2.4-9). Hence, the net rate of momentum
efflux is the rate of momentum out − rate of momentum in and is
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Equation 2.9-2. 

The net convective momentum flux across the annular surface at x and x + Δx is zero, since the
flow is fully developed and the terms are independent of x. This is true since νx at x is equal to νx at
x + Δx.
Equating Eq. (2.9-1) to (2.9-2) and rearranging,

Equation 2.9-3. 

In fully developed flow, the pressure gradient (Δp/Δx) is constant and becomes (Δp/L), where Δp is
the pressure drop for a pipe of length L. Letting Δr approach zero, we obtain

Equation 2.9-4. 

Separating variables and integrating,

Equation 2.9-5. 

The constant of integration C1 must be zero if the momentum flux is not infinite at r = 0. Hence,

Equation 2.9-6. 

This means that the momentum flux varies linearly with the radius, as shown in Fig. 2.9-2, and the
maximum value occurs at r = R at the wall.
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Figure 2.9-2. Velocity and momentum flux profiles for laminar flow in a pipe.

Substituting Newton's law of viscosity,

Equation 2.9-7. 

into Eq. (2.9-6), we obtain the following differential equation for the velocity:

Equation 2.9-8. 

Integrating using the boundary condition that at the wall, νx = 0 at r = R, we obtain the equation for
the velocity distribution:

Equation 2.9-9. 

This result shows us that the velocity distribution is parabolic, as shown in Fig. 2.9-2.
The average velocity νxav for a cross section is found by summing up all the velocities over the cross
section and dividing by the cross-sectional area, as in Eq. (2.6-17). Following the procedure given
in Example 2.6-3, where dA = rdrdθ and A = πR2,

Equation 2.9-10. 

Combining Eqs. (2.9-9) and (2.9-10) and integrating,

Equation 2.9-11. 
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where diameter D = 2R. Hence, Eq. (2.9-11), which is the Hagen–Poiseuille equation, relates the
pressure drop and average velocity for laminar flow in a horizontal pipe.
The maximum velocity for a pipe is found from Eq. (2.9-9) and occurs at r = 0:

Equation 2.9-12. 

Combining Eqs. (2.9-11) and (2.9-12), we find that

Equation 2.9-13. 

Also, dividing Eq. (2.9-9) by (2.9-11),

Equation 2.9-14. 

Shell Momentum Balance for Falling Film

We now use an approach similar to that used for laminar flow inside a pipe for the case of flow of a
fluid as a film in laminar flow down a vertical surface. Falling films have been used to study various
phenomena in mass transfer, coatings on surfaces, and so on. The control volume for the falling
film is shown in Fig. 2.9-3a, where the shell of fluid considered is Δx thick and has a length of L in
the vertical z direction. This region is sufficiently far from the entrance and exit regions so that the
flow is not affected by these regions. This means the velocity νz(x) does not depend on position z.
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Figure 2.9-3. Vertical laminar flow of a liquid film: (a) shell momentum balance for a control volume Δx thick; (b) velocity and
momentum flux profiles.

To start we set up a momentum balance in the z direction over a system Δx thick, bounded in the
z direction by the planes z = 0 and z = L, and extending a distance W in the y direction. First, we
consider the momentum flux due to molecular transport. The rate of momentum out − rate of mo-
mentum in is the momentum flux at point x + Δx minus that at x times the area LW:

Equation 2.9-15. 

The net convective momentum flux is the rate of momentum entering the area ΔxW at z = L minus
that leaving at z = 0. This net efflux is equal to 0, since νz at z = 0 is equal to νz at z = L for each
value of x:

Equation 2.9-16. 

The gravity force acting on the fluid is

Equation 2.9-17. 

Then, using Eq. (2.8-3) for the conservation of momentum at steady state,

Equation 2.9-18. 

Rearranging Eq. (2.9-18) and letting Δx → 0,
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Equation 2.9-19. 

Equation 2.9-20. 

Integrating using the boundary conditions at x = 0, τxz = 0 at the free liquid surface and at x = x, τxz =
τxz,

Equation 2.9-21. 

This means the momentum-flux profile is linear, as shown in Fig. 2.9-3b, and the maximum value
is at the wall. For a Newtonian fluid using Newton's law of viscosity,

Equation 2.9-22. 

Combining Eqs. (2.9-21) and (2.9-22) we obtain the following differential equation for the velocity:

Equation 2.9-23. 

Separating variables and integrating gives

Equation 2.9-24. 

Using the boundary condition that νz = 0 at x = δ, C1 = (ρg/2μ)δ2. Hence, the velocity-distribution
equation becomes

Equation 2.9-25. 

This means the velocity profile is parabolic, as shown in Fig. 2.9-3b. The maximum velocity occurs
at x = 0 in Eq. (2.9-25) and is

Equation 2.9-26. 

The average velocity can be found by using Eq. (2.6-17):
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Equation 2.9-27. 

Substituting Eq. (2.9-25) into (2.9-27) and integrating,

Equation 2.9-28. 

Combining Eqs. (2.9-26) and (2.9-28), we obtain . The volumetric flow rate q is
obtained by multiplying the average velocity νzav times the cross-sectional area δW:

Equation 2.9-29. 

Often in falling films, the mass rate of flow per unit width of wall Г in kg/s · m is defined as Г =
ρδνzav and a Reynolds number is defined as

Equation 2.9-30. 

Laminar flow occurs for NRe < 1200. Laminar flow with rippling present occurs above a NRe of 25.

EXAMPLE 2.9-1. Falling Film Velocity and Thickness
An oil is flowing down a vertical wall as a film 1.7 mm thick. The oil density is 820 kg/m3 and the viscosity is
0.20 Pa · s. Calculate the mass flow rate per unit width of wall, Г, needed and the Reynolds number. Also
calculate the average velocity.

Solution: The film thickness is δ = 0.0017 m. Substituting Eq. (2.9-28) into the definition of Г,

Equation 2.9-31. 

Using Eq. (2.9-30),

Hence, the film is in laminar flow. Using Eq. (2.9-28),
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DESIGN EQUATIONS FOR LAMINAR AND TURBULENT
FLOW IN PIPES

Velocity Profiles in Pipes

One of the most important applications of fluid flow is flow inside circular conduits, pipes, and tubes.
Appendix A.5 gives sizes of commercial standard steel pipe. Schedule 40 pipe in the different sizes
is the standard usually used. Schedule 80 has a thicker wall and will withstand about twice the
pressure of schedule 40 pipe. Both have the same outside diameter so that they will fit the same
fittings. Pipes of other metals have the same outside diameters as steel pipe to permit interchanging
parts of a piping system. Sizes of tubing are generally given by the outside diameter and wall thick-
ness. Perry and Green (P1) give detailed tables of various types of tubing and pipes.
When fluid is flowing in a circular pipe and the velocities are measured at different distances from
the pipe wall to the center of the pipe, it has been shown that in both laminar and turbulent flow, the
fluid in the center of the pipe is moving faster than the fluid near the walls. These measurements
are made at a reasonable distance from the entrance to the pipe. Figure 2.10-1 is a plot of the
relative distance from the center of the pipe versus the fraction of maximum velocity ν′/νmax, where
ν′ is local velocity at the given position and νmax the maximum velocity at the center of the pipe. For
viscous or laminar flow, the velocity profile is a true parabola, as derived in Eq. (2.9-9). The velocity
at the wall is zero.

Figure 2.10-1. Velocity distribution of a fluid across a pipe.

In many engineering applications the relation between the average velocity νav in a pipe and the
maximum velocity νmax is useful, since in some cases only the νmax at the center point of the tube
is measured. Hence, from only one point measurement this relationship between νmax and νav can
be used to determine νav. In Fig. 2.10-2 experimentally measured values of νav/νmax are plotted as
a function of the Reynolds numbers Dνav ρ/μ and Dνmax ρ/μ.
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Figure 2.10-2. Ratio νav/νmax as a function of Reynolds number for pipes.

The average velocity over the whole cross section of the pipe is precisely 0.5 times the maximum
velocity at the center as given by the shell momentum balance in Eq. (2.9-13) for laminar flow. On
the other hand, for turbulent flow, the curve is somewhat flattened in the center (see Fig. 2.10-1)
and the average velocity is about 0.8 times the maximum. This value of 0.8 varies slightly, depending
upon the Reynolds number, as shown in the correlation in Fig. 2.10-2. (Note: See Problem 2.6-3,

where a value of 0.817 is derived using the -power law.)

Pressure Drop and Friction Loss in Laminar Flow

Pressure drop and loss due to friction

When the fluid is in steady-state laminar flow in a pipe, then for a Newtonian fluid the shear stress
is given by Eq. (2.4-2), which is rewritten for change in radius dr rather than distance dy, as follows:

Equation 2.10-1. 

Using this relationship and making a shell momentum balance on the fluid over a cylindrical shell,
the Hagen–Poiseuille equation (2.9-11) for laminar flow of a liquid in circular tubes is obtained. This
can be written as

Equation 2.10-2. 

where p1 is upstream pressure at point 1, N/m2; p2 is pressure at point 2; ν is average velocity in
tube, m/s; D is inside diameter, m; and (L2 − L1) or ΔL is length of straight tube, m. For English units,
the right-hand side of Eq. (2.10-2) is divided by gc.
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The quantity (p1 − p2)f or Δpf is the pressure loss due to skin friction. Then, for constant ρ, the friction
loss Ff is

Equation 2.10-3. 

This is the mechanical-energy loss due to skin friction for the pipe in N · m/kg of fluid and is part of
the Σ F term for frictional losses in the mechanical-energy-balance equation (2.7-28). This term
(p1 − p2)f for skin-friction loss is different from the (p1 − p2) term, owing to velocity head or potential
head changes in Eq. (2.7-28). That part of Σ F which arises from friction within the channel itself by
laminar or turbulent flow is discussed in Sections 2.10B and 2.10C. The part of friction loss due to
fittings (valves, elbows, etc.), bends, and the like, which sometimes constitute a large part of the
friction, is discussed in Section 2.10F. Note that if Eq. (2.7-28) is applied to steady flow in a straight,
horizontal tube, we obtain (p1 − p2)/ρ = Σ F.
One of the uses of Eq. (2.10-2) is in the experimental measurement of the viscosity of a fluid by
measuring the pressure drop and volumetric flow rate through a tube of known length and diameter.
Slight corrections for kinetic energy and entrance effects are usually necessary in practice. Also,
Eq. (2.10-2) is often used in the metering of small liquid flows.

EXAMPLE 2.10-1. Metering of Small Liquid Flows
A small capillary with an inside diameter of 2.22 × 10−3 m and a length 0.317 m is being used to continuously
measure the flow rate of a liquid having a density of 875 kg/m3 and μ = 1.13 × 10−3 Pa · s. The pressure-drop
reading across the capillary during flow is 0.0655 m water (density 996 kg/m3). What is the flow rate in m3/s if
end-effect corrections are neglected?

Solution: Assuming that the flow is laminar, Eq. (2.10-2) will be used. First, to convert the height h of 0.0655
m water to a pressure drop using Eq. (2.2-4),

Substituting into Eq. (2.10-2) the values μ = 1.13 × 10−3 Pa · s, L2 − L1 = 0.317 m, D = 2.22 × 10−3 m, and
Δpf = 640 N/m2, and solving for ν,

Equation 2.10-2. 

The volumetric rate is then
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Since it was assumed that laminar flow is occurring, the Reynolds number will be calculated to check this:

Hence, the flow is laminar as assumed.

Use of friction factor for friction loss in laminar flow

A common parameter used in laminar and especially in turbulent flow is the Fanning friction factor,
f, which is defined as the drag force per wetted surface unit area (shear stress τs at the surface)

divided by the product of density times velocity head, or . The force is Δpf times the cross-
sectional area πR2 and the wetted surface area is 2πR ΔL. Hence, the relation between the pressure
drop due to friction and f is as follows for laminar and turbulent flow:

Equation 2.10-4. 

Rearranging, this becomes

Equation 2.10-5. 

Equation 2.10-6. 

For laminar flow only, combining Eqs. (2.10-2) and (2.10-5),

Equation 2.10-7. 
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Equations (2.10-2), (2.10-5), (2.10-6), and (2.10-7) for laminar flow hold up to a Reynolds number
of 2100. Beyond that, at a NRe value above 2100, Eqs. (2.10-2) and (2.10-7) do not hold for turbulent
flow. For turbulent flow, Eqs. (2.10-5) and (2.10-6), however, are used extensively along with em-
pirical methods for predicting the friction factor f, as discussed in the next section.

EXAMPLE 2.10-2. Use of Friction Factor in Laminar Flow
Assume the same known conditions as in Example 2.10-1 except that the velocity of 0.275 m/s is known and
the pressure drop Δpf is to be predicted. Use the Fanning friction factor method.

Solution: The Reynolds number is, as before,

From Eq. (2.10-7) the friction factor f is

Using Eq. (2.10-5) with ΔL = 0.317 m, ν = 0.275 m/s, D = 2.22 × 10−3 m, and ρ = 875 kg/m3,

This, of course, agrees with the value in Example 2.10-1.

When the fluid is a gas and not a liquid, the Hagen–Poiseuille equation (2.10-2) can be written as
follows for laminar flow:

Equation 2.10-8. 

where m = kg/s, M = molecular weight in kg/kg mol, T = absolute temperature in K, and R = 8314.3
N · m/kg mol · K. In English units, R = 1545.3 ft · lbf/lb mol · °R.

Pressure Drop and Friction Factor in Turbulent Flow

In turbulent flow, as in laminar flow, the friction factor also depends on the Reynolds number. How-
ever, it is not possible to predict theoretically the Fanning friction factor f for turbulent flow as was
done for laminar flow. The friction factor must be determined empirically (experimentally), and it not
only depends upon the Reynolds number but also on surface roughness of the pipe. In laminar flow
the roughness has essentially no effect.
Dimensional analysis also shows the dependence of the friction factor on these factors. In Sections
3.11 and 4.14, methods of obtaining the dimensionless numbers and their importance are dis-
cussed.
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A large number of experimental data on friction factors for smooth pipe and pipes of varying degrees
of equivalent roughness have been obtained and the data correlated. For design purposes, to predict
the friction factor f and, hence, the frictional pressure drop for round pipe, the friction-factor chart in
Fig. 2.10-3 can be used. It is a log–log plot of f versus NRe. This friction factor f is then used in Eqs.
(2.10-5) and (2.10-6) to predict the friction loss Δpf or Ff:

Equation 2.10-5. 

Equation 2.10-6. 

Figure 2.10-3. Friction factors for fluids inside pipes. [Based on L. F. Moody, Trans. A.S.M.E., 66, 671 (1944): Mech. Eng.
69, 1005 (1947). With permission.]

For the region with a Reynolds number below 2100, the line is the same as Eq. (2.10-7). For a
Reynolds number above 4000 for turbulent flow, the lowest line in Fig. 2.10-3 represents the friction-
factor line for smooth pipes and tubes, such as glass tubes and drawn copper and brass tubes. The
other lines, for higher friction factors, represent lines for different relative roughness factors, ε/D,
where D is the inside pipe diameter in m and ε is a roughness parameter, which represents the
average height in m of roughness projections from the wall (M1). In Fig. 2.10-3, values for the
equivalent roughness of new pipes are given (M1). The most common pipe, commercial steel, has
a roughness of ε = 4.6 × 10−5 m (1.5 × 10−4 ft).
The reader should be cautioned about using friction factors f from other sources. The Fanning friction
factor f in Eq. (2.10-6) is the one used here. Others use a friction factor that may be four times larger.
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EXAMPLE 2.10-3. Use of Friction Factor in Turbulent Flow
A liquid is flowing through a horizontal straight pipe at 4.57 m/s. The pipe used is commercial steel, schedule
40, 2-in. nominal diameter. The viscosity of the liquid is 4.46 cp and the density 801 kg/m3. Calculate the
mechanical-energy friction loss Ff in J/kg for a 36.6-m section of pipe.

Solution: The following data are given: From Appendix A.5, D = 0.0525 m, ν = 4.57 m/s, ρ = 801 kg/m3, ΔL =
36.6 m, and

The Reynolds number is calculated as

Hence, the flow is turbulent. For commercial steel pipe from the table in Fig. 2.10-3, the equivalent roughness
is 4.6 × 10−5 m:

For a NRe of 4.310 × 104, the friction factor from Fig. 2.10-3 is f = 0.0060. Substituting into Eq. (2.10-6), the
friction loss is

In problems involving the friction loss Ff in pipes, Ff is usually the unknown, with the diameter D,
velocity ν, and pipe length ΔL known. Then a direct solution is possible, as in Example 2.10-3.
However, in some cases, the friction loss Ff is already set by the available head of liquid. Then if
the volumetric flow rate and pipe length are set, the unknown to be calculated is the diameter. This
solution must be by trial and error, since the velocity y appears in both NRe and f, which are unknown.
In another case, with Ff again being already set, the diameter and pipe length are specified. This
solution is also by trial and error, to calculate the velocity. Example 2.10-4 indicates the method to
be used to calculate the pipe diameter with Ff set. Others (M2) give a convenient chart to aid in
these types of calculations.

EXAMPLE 2.10-4. Trial-and-Error Solution to Calculate Pipe Diameter
Water at 4.4°C is to flow through a horizontal commercial steel pipe having a length of 305 m at the rate of 150
gal/min. A head of water of 6.1 m is available to overcome the friction loss Ff. Calculate the pipe diameter.

Solution: From Appendix A.2, the density ρ = 1000 kg/m3 and the viscosity μ is
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The solution is by trial and error since v appears in NRe and f. Assume that D = 0.089 m for the first trial.

For commercial steel pipe and using Fig. 2.10-3, ε = 4.6 × 10−5 m. Then,

From Fig. 2.10-3 for NRe = 8.730 × 104 and ε/D = 0.00052, f = 0.0051. Substituting into Eq. (2.10-6),

Solving for D, D = 0.0945 m. This does not agree with the assumed value of 0.089 m.

For the second trial, D will be assumed to be 0.0945 m.

From Fig. 2.10-3, f = 0.0052. It can be seen that f does not change much with NRe in the turbulent region:

Solving, D = 0.0954 m or 3.75 in. Hence, the solution agrees closely with the assumed value of D.
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Pressure Drop and Friction Factor in Flow of Gases

The equations and methods discussed in this section for turbulent flow in pipes hold for incompres-
sible liquids. They also hold for a gas if the density (or the pressure) changes by less than 10%.
Then an average density, ρav in kg/m3, should be used and the errors involved will be less than the
uncertainty limits in the friction factor f. For gases, Eq. (2.10-5) can be rewritten as follows for laminar
and turbulent flow:

Equation 2.10-9. 

where ρav is the density at pav = (p1 + p2)/2. Also, the NRe used is DG/μ, where G is kg/m2 · s and
is a constant independent of the density and velocity variations for the gas. Equation (2.10-5) can
also be written for gases as

Equation 2.10-10. 

where R is 8314.3 J/kg mol · K or 1545.3 ft · lbf/lb mol · °R and M is molecular weight.
The derivation of Eqs. (2.10-9) and (2.10-10) applies only to cases with gases where the relative
pressure change is small enough that large changes in velocity do not occur. If the exit velocity
becomes large, the kinetic-energy term, which has been omitted, becomes important. For pressure
changes above about 10%, compressible flow is occurring, and the reader should refer to Section
2.11. In adiabatic flow in a uniform pipe, the velocity in the pipe cannot exceed the velocity of sound.

EXAMPLE 2.10-5. Flow of Gas in Line and Pressure Drop
Nitrogen gas at 25°C is flowing in a smooth tube having an inside diameter of 0.010 m at the rate of 9.0 kg/s
· m2. The tube is 200 m long and the flow can be assumed to be isothermal. The pressure at the entrance to
the tube is 2.0265 × 105 Pa. Calculate the outlet pressure.

Solution: The viscosity of the gas from Appendix A.3 is μ = 1.77 × 10−5 Pa · s at T = 298.15 K. Inlet gas pressure
p1 = 2.0265 × 105 Pa, G = 9.0 kg/s · m2, D = 0.010 m, M = 28.02 kg/kg mol, ΔL = 200 m, and R = 8314.3 J/kg
mol · K. Assuming that Eq. (2.10-10) holds for this case and that the pressure drop is less than 10%, the
Reynolds number is

Hence, the flow is turbulent. Using Fig. 2.10-3, f = 0.0090 for a smooth tube.

Substituting into Eq. (2.10-10),
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Solving, p2 = 1.895 × 105 Pa. Hence, Eq. (2.10-10) can be used, since the pressure drop is less than 10%.

Effect of Heat Transfer on Friction Factor

The friction factor f in Fig. 2.10-3 is given for isothermal flow, that is, no heat transfer. When a fluid
is being heated or cooled, the temperature gradient will cause a change in physical properties of
the fluid, especially the viscosity. For engineering practice the following method of Sieder and Tate
(P1, S3) can be used to predict the friction factor for nonisothermal flow for liquids and gases:

1. Calculate the mean bulk temperature ta as the average of the inlet and outlet bulk fluid tem-
peratures.

2. Calculate the NRe using the viscosity μa at ta and use Fig. 2.10-3 to obtain f.
3. Using the tube wall temperature tw, determine μw at tw.
4. Calculate ψ for the appropriate case:

Equation 2.10-11. 

Equation 2.10-12. 

Equation 2.10-13. 

Equation 2.10-14. 

5. The final friction factor is obtained by dividing f from step 2 by ψ from step 4.

Hence, when the liquid is being heated, ψ is greater than 1.0 and the final f decreases. The reverse
occurs on cooling the liquid.
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Friction Losses in Expansion, Contraction, and Pipe Fittings

Skin-friction losses in flow through straight pipe are calculated by using the Fanning friction factor.
However, if the velocity of the fluid is changed in direction or magnitude, additional friction losses
occur. This results from additional turbulence which develops because of vortices and other factors.
Methods for estimating these losses are discussed below.

Sudden enlargement losses

If the cross section of a pipe enlarges very gradually, very little or no extra losses are incurred. If
the change is sudden, it results in additional losses due to eddies formed by the jet expanding in
the enlarged section. This friction loss can be calculated by the following for turbulent flow in both
sections. The following equation was derived in Example 2.8-4 as Eq. (2.8-3.6):

Equation 2.10-15. 

where hex is the friction loss in J/kg, Kex is the expansion-loss coefficent and equals (1 − A1/A2)2,
ν1 is the upstream velocity in the smaller area in m/s, ν2 is the downstream velocity, and α = 1.0. If

the flow is laminar in both sections, the factor α in the equation becomes . For English units the
right-hand side of Eq. (2.10-15) is divided by gc. Also, h = ft · lbf/lbm.

Sudden contraction losses

When the cross section of the pipe is suddenly reduced, the stream cannot follow around the sharp
corner, and additional frictional losses due to eddies occur. For turbulent flow, this is given by

Equation 2.10-16. 

where hc is the friction loss, α = 1.0 for turbulent flow, ν2 is the average velocity in the smaller or
downstream section, and Kc is the contraction-loss coefficient (P1) and approximately equals 0.55

(1 − A2/A1). For laminar flow, the same equation can be used with α =  (S2). For English units the
right side is divided by gc.

Losses in fittings and valves

Pipe fittings and valves also disturb the normal flow lines in a pipe and cause additional friction
losses. In a short pipe with many fittings, the friction loss from these fittings could be greater than
in the straight pipe. The friction loss for fittings and valves is given by the following equation:

Equation 2.10-17. 

where Kf is the loss factor for the fitting or valve and ν1 is the average velocity in the pipe leading
to the fitting. Experimental values for Kf are given in Table 2.10-1 for turbulent flow (P1) and in Table
2.10-2 for laminar flow.
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Table 2.10-1. Friction Loss for Turbulent Flow Through Valves and Fittings

Type of Fitting or Valve
Frictional Loss, Numberof Velocity Heads,

Kf

Frictional Loss, Equivalent Length
of Straight Pipe in Pipe Diameters,

Le/D

Elbow, 45° 0.35 17

Elbow, 90° 0.75 35

Tee 1 50

Return bend 1.5 75

Coupling 0.04 2

Union 0.04 2

Gate valve   
 Wide open 0.17 9

 Half open 4.5 225

Globe valve   
 Wide open 6.0 300

 Half open 9.5 475

Angle valve, wide open 2.0 100

Check valve   
 Ball 70.0 3500

 Swing 2.0 100

Water meter, disk 7.0 350

Source: R. H. Perry and C. H. Chilton, Chemical Engineers' Handbook, 5th ed. New York: McGraw-Hill Book Company,
1973. With permission.

Table 2.10-2. Friction Loss for Laminar Flow Through Valves and Fittings (K1)

 Frictional Loss, Number of Velocity Heads, Kf Reynolds Number

Type of Fitting or Valve 50 100 200 400 1000 Turbulent

Elbow, 90° 17 7 2.5 1.2 0.85 0.75

Tee 9 4.8 3.0 2.0 1.4 1.0

Globe valve 28 22 17 14 10 6.0

Check valve, swing 55 17 9 5.8 3.2 2.0

As an alternative method, some texts and references (B1) give data for losses in fittings as an
equivalent pipe length in pipe diameters. These data, also given in Table 2.10-1, are presented as Le/
D, where Le is the equivalent length of straight pipe in m having the same frictional loss as the fitting,
and D is the inside pipe diameter in m. The K values in Eqs. (2.10-15) and (2.10-16) can be converted
to Le/D values by multiplying the K by 50 (P1). The Le values for the fittings are simply added to the
length of the straight pipe to get the total length of equivalent straight pipe to use in Eq. (2.10-6).

Frictional losses in mechanical-energy-balance equation

The frictional losses from the friction in the straight pipe (Fanning friction), enlargement losses,
contraction losses, and losses in fittings and valves are all incorporated in the ΣF term of Eq.
(2.7-28) for the mechanical-energy balance, so that

Equation 2.10-18. 

If all the velocities, ν, ν1, and ν2, are the same, then by factoring, Eq. (2.10-18) becomes, for this
special case,
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Equation 2.10-19. 

The use of the mechanical-energy-balance equation (2.7-28) along with Eq. (2.10-18) will be shown
in the following examples.

EXAMPLE 2.10-6. Friction Losses and Mechanical-Energy Balance
An elevated storage tank contains water at 82.2°C, as shown in Fig. 2.10-4. It is desired to have a discharge
rate at point 2 of 0.223 ft3/s. What must be the height H in ft of the surface of the water in the tank relative to
the discharge point? The pipe used is commercial steel pipe, schedule 40, and the lengths of the straight
portions of pipe are shown.

Figure 2.10-4. Process flow diagram for Example 2.10-6.

Solution: The mechanical-energy-balance equation (2.7-28) is written between points 1 and 2.

Equation 2.10-20. 

From Appendix A.2, for water, ρ = 0.970(62.43) = 60.52 lbm/ft3 and μ = 0.347 cp = 0.347(6.7197 × 10−4) = 2.
33 × 10−4 lbm/ft · s. The diameters of the pipes are

The velocities in the 4-in. and 2-in. pipe are
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The Σ F term for frictional losses in the system includes the following: (1) contraction loss at tank exit, (2) friction
in the 4-in. straight pipe, (3) friction in 4-in. elbow, (4) contraction loss from 4-in. to 2-in. pipe, (5) friction in the
2-in. straight pipe, and (6) friction in the two 2-in. elbows. Calculations for the six items are as follows:

1. Contraction loss at tank exit. From Eq. (2.10-16), for contraction from A1 to A3 cross-sectional area, since
A1 of the tank is very large compared to A3,

2. Friction in the 4-in. pipe. The Reynolds number is

Hence, the flow is turbulent. From Fig. 2.10-3, ε = 4.6 × 10−5 m (1.5 × 10−4 ft).

Then, for NRe = 219 300, the Fanning friction factor f = 0.0047. Substituting into Eq. (2.10-6) for ΔL =
20.0 ft of 4-in. pipe,

3. Friction in 4-in. elbow. From Table 2.10-1, Kf = 0.75. Then, substituting into Eq. (2.10-17),

4. Contraction loss from 4- to 2-in. pipe. Using Eq. (2.10-16) again for contraction from A3 to A4 cross-
sectional area,

5. Friction in the 2-in pipe. The Reynolds number is

The Fanning friction factor from Fig. 2.10-3 is f = 0.0048. The total length ΔL = 125 + 10 + 50 = 185 ft.
Substituting into Eq. (2.10-6),
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6. Friction in the two 2-in. elbows. For a Kf = 0.75 and two elbows,

The total frictional loss Σ F is the sum of items (1) through (6):

Using as a datum level z2, z1 = H ft, z2 = 0. Since turbulent flow exists, α = 1.0. Also, ν1 = 0 and ν2 = ν4 = 9.57
ft/s. Since p1 and p2 are both at 1 atm abs pressure and ρ1 = ρ2,

Also, since no pump is used, WS = 0. Substituting these values into Eq. (2.10-20),

Solving, H(g/gc) = 33.77 ft · lbf/lbm (100.9 J/kg) and H is 33.77 ft (10.3 m) height of water level above the
discharge outlet.

EXAMPLE 2.10-7. Friction Losses with Pump in Mechanical-Energy Balance
Water at 20°C is being pumped from a tank to an elevated tank at the rate of 5.0 × 10−3 m3/s. All of the piping
in Fig. 2.10-5 is 4-in. schedule 40 pipe. The pump has an efficiency of 65%. Calculate the kW power needed
for the pump.

Figure 2.10-5. Process flow diagram for Example 2.10-7.

Solution: The mechanical-energy-balance equation (2.7-28) is written between points 1 and 2, with point 1
being the reference plane:

Equation 2.7-28. 
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From Appendix A.2, for water, ρ = 998.2 kg/m3 and μ = 1.005 × 10−3 Pa · s. For 4-in. pipe, from Appendix A.
5, D = 0.1023 m and A = 8.219 × 10−3 m2. The velocity in the pipe is ν = 5.0 × 10−3/(8.219 × 10−3) = 0.6083
m/s. The Reynolds number is

Hence, the flow is turbulent.

The Σ F term for frictional losses includes the following: (1) contraction loss at tank exit, (2) friction in the straight
pipe, (3) friction in the two elbows, and (4) expansion loss at the tank entrance.

1. Contraction loss at tank exit. From Eq. (2.10-16), for contraction from a large A1 to a small A2,

2. Friction in the straight pipe. From Fig. 2.10-3, ε = 4.6 × 10−5 m and ε/D = 4.6 × 10−5/0.1023 = 0.00045.
Then for NRe = 6.181 × 104, f = 0.0051. Substituting into Eq. (2.10-6) for ΔL = 5 + 50 + 15 + 100 = 170 m,

3. Friction in the two elbows. From Table 2.10-1, Kf = 0.75. Then, substituting into Eq. (2.10-7) for two
elbows,

4. Expansion loss at the tank entrance. Using Eq. (2.10-15),

The total frictional loss is Σ F:

Substituting into Eq. (2.7-28), where  and (p2 − p1) = 0,

Solving, WS = −153.93 J/kg. The mass flow rate is m = 5.0 × 10−3(998.2) = 4.991 kg/s. Using Eq. (2.7-30),
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Friction Loss in Noncircular Conduits

The friction loss in long, straight channels or conduits of noncircular cross section can be estimated
by using the same equations employed for circular pipes if the diameter in the Reynolds number
and in the friction-factor equation (2.10-6) is taken as the equivalent diameter. The equivalent di-
ameter D is defined as four times the hydraulic radius rH. The hydraulic radius is defined as the ratio
of the cross-sectional area of the channel to the wetted perimeter of the channel for turbulent flow
only. Hence,

Equation 2.10-21. 

For example, for a circular tube,

For an annular space with outside diameter D1 and inside D2,

Equation 2.10-22. 

For a rectangular duct of sides a and b ft,

Equation 2.10-23. 

For open channels and partly filled ducts in turbulent flow, the equivalent diameter and Eq.
(2.10-6) are also used (P1). For a rectangle with depth of liquid y and width b,

Equation 2.10-24. 

For a wide, shallow stream of depth y,
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Equation 2.10-25. 

For laminar flow in ducts running full and in open channels with various cross-sectional shapes other
than circular, equations are given elsewhere (P1).

Entrance Section of a Pipe

If the velocity profile at the entrance region of a tube is flat, a certain length of tube is necessary for
the velocity profile to be fully established. This length for the establishment of fully developed flow
is called the transition length or entry length. This is shown in Fig. 2.10-6 for laminar flow. At the
entrance the velocity profile is flat; that is, the velocity is the same at all positions. As the fluid
progresses down the tube, the thickness of the boundary layers increases until finally they meet at
the center of the pipe and the parabolic velocity profile is fully established.

Figure 2.10-6. Velocity profiles near a pipe entrance for laminar flow.

The approximate entry length Le of a pipe of diameter D for a fully developed velocity profile to be
formed in laminar flow is (L2)

Equation 2.10-26. 

For turbulent flow, no relation is available to predict the entry length for a fully developed turbulent
velocity profile to form. As an approximation, the entry length is nearly independent of the Reynolds
number and is fully developed after 50 diameters downstream.

EXAMPLE 2.10-8. Entry Length for a Fluid in a Pipe
Water at 20°C is flowing through a tube of diameter 0.010 m at a velocity of 0.10 m/s.

a. Calculate the entry length.
b. Calculate the entry length for turbulent flow.

Solution: For part (a), from Appendix A.2, ρ = 998.2 kg/m3, μ = 1.005 × 10−3 Pa · s. The Reynolds number is

Using Eq. (2.10-26) for laminar flow,

Hence, Le = 0.571 m.
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For turbulent flow in part (b), Le = 50(0.01) = 0.50 m.

The pressure drop or friction factor in the entry length is greater than in fully developed flow. For
laminar flow the friction factor is highest at the entrance (L2) and then decreases smoothly to the
fully developed flow value. For turbulent flow there will be some portion of the entrance over which
the boundary layer is laminar and the friction-factor profile is difficult to express. As an approxima-
tion, the friction factor for the entry length can be taken as two to three times the value of the friction
factor in fully developed flow.

Selection of Pipe Sizes

In large or complex process piping systems, the optimum size of pipe to use for a specific situation
depends upon the relative costs of capital investment, power, maintenance, and so on. Charts are
available for determining these optimum sizes (P1). However, for small installations, approximations
are usually sufficiently accurate. Representative values for ranges of velocity in pipes are shown in
Table 2.10-3. For stainless-steel pipes, recent data (D1) show that the velocities in Table 2.10-3 for
process lines or pump discharge should be increased by 70%.

Table 2.10-3. Representative Ranges of Velocities in Steel Pipes

  Velocity

Type of Fluid Type of Flow ft/s m/s

Nonviscous liquid Inlet to pump 2–3 0.6–0.9

 Process line or pump dis-
charge

5.7 1.7

Viscous liquid Inlet to pump 0.2–0.8 0.06–0.25

 Process line or pump dis-
charge

3 0.9

Gas air Process line 53 16

Steam 100 psig Process line 38 11.6

COMPRESSIBLE FLOW OF GASES

Introduction and Basic Equation for Flow in Pipes

When pressure changes in gases occur which are greater than about 10%, the friction-loss equa-
tions (2.10-9) and (2.10-10) may be in error since compressible flow is occurring. Then the solution
of the energy balance is more complicated because of the variation of the density or specific volume
with changes in pressure. The field of compressible flow is very large and covers a very wide range
of variation in geometry, pressure, velocity, and temperature. In this section we restrict our discus-
sion to isothermal and adiabatic flow in uniform, straight pipes and do not cover flow in nozzles,
which is discussed in some detail in other references (M2, P1).
The general mechanical-energy-balance equation (2.7-27) can be used as a starting point. Assum-
ing turbulent flow, so that α = 1.0, and no shaft work, so that WS = 0, and writing the equation for a
differential length dL, Eq. (2.7-27) becomes
Equation 2.11-1. 

For a horizontal duct, dz = 0. Using only the wall shear frictional term for dF and writing Eq.
(2.10-6) in differential form,
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Equation 2.11-2. 

where V = 1/ρ. Assuming steady-state flow and a uniform pipe diameter, G is constant and

Equation 2.11-3. 

Equation 2.11-4. 

Substituting Eqs. (2.11-3) and (2.11-4) into (2.11-2) and rearranging,

Equation 2.11-5. 

This is the basic differential equation that is to be integrated. To do this the relation between V and
p must be known so that the integral of dp/V can be evaluated. This integral depends upon the
nature of the flow, and two important conditions used are isothermal and adiabatic flow in pipes.

Isothermal Compressible Flow

To integrate Eq. (2.11-5) for isothermal flow, an ideal gas will be assumed, where

Equation 2.11-6. 

Solving for V in Eq. (2.11-6), and substituting it into Eq. (2.11-5) and integrating, assuming f is
constant,

Equation 2.11-7. 

Equation 2.11-8. 

Substituting p1/p2 for V2/V1 and rearranging,

Equation 2.11-9. 
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where M = molecular weight in kg mass/kg mol, R = 8314.34 N · m/kg mol · K, and T = temperature
K. The quantity RT/M = pav/pav, where pav = (p1 + p2)/2 and ρav is the average density at T and
pav. In English units, R = 1545.3 ft · lbf/lb · mol · °R and the right-hand terms are divided by gc.
Equation (2.11-9) then becomes

Equation 2.11-10. 

The first term on the right in Eqs. (2.11-9) and (2.11-10) represents the frictional loss as given by
Eqs. (2.10-9) and (2.10-10). The last term in both equations is generally negligible in ducts of ap-
preciable length unless the pressure drop is very large.

EXAMPLE 2.11-1. Compressible Flow of a Gas in a Pipe Line
Natural gas, which is essentially methane, is being pumped through a 1.016-m-ID pipeline for a distance of
1.609 × 105 m (D1) at a rate of 2.077 kg mol/s. It can be assumed that the line is isothermal at 288.8 K. The
pressure p2 at the discharge end of the line is 170.3 × 103 Pa absolute. Calculate the pressure p1 at the inlet
of the line. The viscosity of methane at 288.8 K is 1.04 × 10−5 Pa · s.

Solution: D = 1.016 m, A = πD2/4 = π(1.016)2/4 = 0.8107 m2. Then,

From Fig. 2.10-3, ε = 4.6 × 105 m.

The friction factor f = 0.0027.

In order to solve for p1 in Eq. (2.11-9), trial and error must be used. Estimating p1 at 620.5 × 103 Pa, R = 8314.34
N · m/kg mol · K, and ΔL = 1.609 × 105 m. Substituting into Eq. (2.11-9),

Now, P2 = 170.3 × 103 Pa. Substituting this into the above and solving for p1, p1 = 683.5 × 103 Pa. Substituting
this new value of p1 into Eq. (2.11-9) again and solving for p1, the final result is p1 = 683.5 × 103 Pa. Note that
the last term in Eq. (2.11-9) in this case is almost negligible.

When the upstream pressure p1 remains constant, the mass flow rate G changes as the downstream
pressure p2 is varied. From Eq. (2.11-9), when p1 = p2, G = 0, and when p2 = 0, G = 0. This indicates
that at some intermediate value of p2, the flow G must be a maximum. This means that the flow is
a maximum when dG/dp2 = 0. Performing this differentiation on Eq. (2.11-9) for constant p1 and f
and solving for G,
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Equation 2.11-11. 

Using Eqs. (2.11-3) and (2.11-6),

Equation 2.11-12. 

This is the equation for the velocity of sound in the fluid at the conditions for isothermal flow. Thus,
for isothermal compressible flow there is a maximum flow for a given upstream p1, and further
reduction of p2 will not give any further increase in flow. Further details as to the length of pipe and
the pressure at maximum flow conditions are discussed elsewhere (D1, M2, P1).

EXAMPLE 2.11-2. Maximum Flow for Compressible Flow of a Gas
For the conditions of Example 2.11-1, calculate the maximum velocity that can be obtained and the velocity of
sound at these conditions. Compare with Example 2.11-1.

Solution: Using Eq. (2.11-12) and the conditions in Example 2.11-1,

This is the maximum velocity obtainable if p2 is decreased. This is also the velocity of sound in the fluid at the
conditions for isothermal flow. To compare with Example 2.11-1, the actual velocity at the exit pressure p2 is
obtained by combining Eqs. (2.11-3) and (2.11-6) to give

Equation 2.11-13. 

Adiabatic Compressible Flow

When heat transfer through the wall of the pipe is negligible, the flow of gas in compressible flow in
a straight pipe of constant cross section is adiabatic. Equation (2.11-5) has been integrated for
adiabatic flow and details are given elsewhere (D1, M1, P1). Convenient charts for solving this case
are also available (P1). The results for adiabatic flow often deviate very little from isothermal flow,
especially in long lines. For very short pipes and relatively large pressure drops, the adiabatic flow
rate is greater than the isothermal, but the maximum possible difference is about 20% (D1). For
pipes of length about 1000 diameters or longer, the difference is generally less than 5%. Equation
(2.11-8) can also be used when the temperature change over the conduit is small by using an
arithmetic-average temperature.
Using the same procedures for finding maximum flow that were used in the isothermal case, max-
imum flow occurs when the velocity at the downstream end of the pipe is the sonic velocity for
adiabatic flow. This is
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Equation 2.11-14. 

where, γ = cp/cν, the ratio of heat capacities. For air, γ = 1.4. Hence, the maximum velocity for
adiabatic flow is about 20% greater than for isothermal flow. The rate of flow may not be limited by
the flow conditions in the pipe, in practice, but by the development of sonic velocity in a fitting or
valve in the pipe. Hence, care should be used in the selection of fittings in such pipes for compres-
sible flow. Further details as to the length of pipe and pressure at maximum flow conditions are given
elsewhere (D1, M2, P1).
A convenient parameter often used in compressible-flow equations is the Mach number, NMa, which
is defined as the ratio of ν, the speed of the fluid in the conduit, to νmax, the speed of sound in the
fluid at the actual flow conditions:

Equation 2.11-15. 

At a Mach number of 1.0, the flow is sonic. At a value less than 1.0, the flow is subsonic, and
supersonic at a number above 1.0.

PROBLEMS

2.2-1. Pressure in a Spherical Tank. Calculate the pressure in psia and
kN/m2 at the bottom of a spherical tank filled with oil having a di-
ameter of 8.0 ft. The top of the tank is vented to the atmosphere
having a pressure of 14.72 psia. The density of the oil is 0.922 g/
cm3.

A1: Ans. 17.92 lbf/in.2 (psia), 123.5 kN/m2

2.2-2. Pressure with Two Liquids, Hg and Water. An open test tube at 293
K is filled at the bottom with 12.1 cm of Hg, and 5.6 cm of water is
placed above the Hg. Calculate the pressure at the bottom of the
test tube if the atmospheric pressure is 756 mm Hg. Use a density
of 13.55 g/cm3 for Hg and 0.998 g/cm3 for water. Give the answer
in terms of dyn/cm2, psia, and kN/m2. See Appendix A.1 for con-
version factors.

A2: Ans. 1.175 × 106 dyn/cm2, 17.0 psia, 2.3 psig, 117.5 kN/m2

2.2-3. Head of a Fluid of Jet Fuel and Pressure. The pressure at the top
of a tank of jet fuel is 180.6 kN/m2. The depth of liquid in the tank is
6.4 m. The density of the fuel is 825 kg/m3. Calculate the head of
the liquid in m that corresponds to the absolute pressure at the bot-
tom of the tank.

2.2-4. Measurement of Pressure. An open U-tube manometer similar to
Fig. 2.2-4a is being used to measure the absolute pressure pa in a
vessel containing air. The pressure pb is atmospheric pressure,
which is 754 mm Hg. The liquid in the manometer is water having
a density of 1000 kg/m3. Assume that the density ρB is 1.30 kg/m3

and that the distance Z is very small. The reading R is 0.415 m.
Calculate pa in psia and kPa.
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A4: Ans. pa = 15.17 psia, 104.6 kPa
2.2-5. Measurement of Small Pressure Differences. The two-fluid U-tube

manometer is being used to measure the difference in pressure at
two points in a line containing air at 1 atm abs pressure. The value
of R0 = 0 for equal pressures. The lighter fluid is a hydrocarbon with
a density of 812 kg/m3 and the heavier water has a density of 998
kg/m3. The inside diameters of the U tube and reservoir are 3.2 mm
and 54.2 mm, respectively. The reading R of the manometer is
117.2 mm. Calculate the pressure difference in mm Hg and pascal.

2.2-6. Pressure in a Sea Lab. A sea lab 5.0 m high is to be designed to
withstand submersion to 150 m, measured from sea level to the top
of the sea lab. Calculate the pressure on top of the sea lab and also
the pressure variation on the side of the container measured as the
distance x in m from the top of the sea lab downward. The density
of seawater is 1020 kg/m3.

A6: Ans. p = 10.00(150 + ×) kN/m2

2.2-7. Measurement of Pressure Difference in Vessels. In Fig. 2.2-5b the
differential manometer is used to measure the pressure difference
between two vessels. Derive the equation for the pressure differ-
ence pA − pB in terms of the liquid heights and densities.

2.2-8. Design of Settler and Separator for Immiscible Liquids. A vertical
cylindrical settler–separator is to be designed for separating a mix-
ture flowing at 20.0 m3/h and containing equal volumes of a light
petroleum liquid (ρB = 875 kg/m3) and a dilute solution of wash water
(ρA = 1050 kg/m3). Laboratory experiments indicate a settling time
of 15 min is needed to adequately separate the two phases. For
design purposes use a 25-min settling time and calculate the size
of the vessel needed, the liquid levels of the light and heavy liquids
in the vessel, and the height hA2 of the heavy-liquid overflow. As-
sume that the ends of the vessel are approximately flat, that the
vessel diameter equals its height, and that one-third of the volume
is vapor space vented to the atmosphere. Use the nomenclature
given in Fig. 2.2-6.

A8: Ans. hA2 = 1.537 m
2.3-1. Molecular Transport of a Property with a Variable Diffusivity. A

property is being transported through a fluid at steady state through
a constant cross-sectional area. At point 1 the concentration Г1 is
2.78 × 10−2 amount of property/m3 and 1.50 × 10−2 at point 2 at a
distance of 2.0 m away. The diffusivity depends on concentration
Г as follows:

a. Derive the integrated equation for the flux in terms of Г1 and
Г2. Then calculate the flux.

b. Calculate Г at z = 1.0 m and plot Г versus z for the three points.
A9:

Ans. 
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2.3-2. Integration of General-Property Equation for Steady State. Inte-
grate the general-property equation (2.3-11) for steady state and
no generation between the points Г1 at z1 and Г2 at z2. The final
equation should relate Г to z.

A10: Ans. Г = (Г2 − Г1)(z − z1)/(z2 − z1) + Г1
2.4-1. Shear Stress in Soybean Oil. Using Fig. 2.4-1, the distance be-

tween the two parallel plates is 0.00914 m, and the lower plate is
being pulled at a relative velocity of 0.366 m/s greater than the top
plate. The fluid used is soybean oil with viscosity 4 × 10−2 Pa · s at
303 K (Appendix A.4).

a. Calculate the shear stress τ and the shear rate using lb force,
ft, and s units.

b. Repeat, using SI untis.
c. If glycerol at 293 K having a viscosity of 1.069 kg/m ·s is used

instead of soybean oil, what relative velocity in m/s is needed
using the same distance between plates so that the same
shear stress is obtained as in part (a)? Also, what is the new
shear rate?

A11: Ans. (a) Shear stress = 3.34 × 10−2 lbf/ft2, shear rate = 40.0 s−1; (b)
1.60 N/m2; (c) relative velocity = 0.01369 m/s, shear rate = 1.50 s−1

2.4.-2 Shear Stress and Shear Rate in Fluids. Using Fig. 2.4-1, the lower
plate is being pulled at a relative velocity of 0.40 m/s greater than
the top plate. The fluid used is water at 24°C.

a. How far apart should the two plates be placed so that the
shear stress τ is 0.30 N/m2? Also, calculate the shear rate.

b. If oil with a viscosity of 2.0 × 10−2 Pa · s is used instead at the
same plate spacing and velocity as in part (a), what are the
shear stress and the shear rate?

2.5-1. Reynolds Number for Milk Flow. Whole milk at 293 K having a
density of 1030 kg/m3 and viscosity of 2.12 cp is flowing at the rate
of 0.605 kg/s in a glass pipe having a diameter of 63.5 mm.

a. Calculate the Reynolds number. Is this turbulent flow?
b. Calculate the flow rate needed in m3/s for a Reynolds number

of 2100 and velocity in m/s.
A13: Ans. (a) NRe = 5723, turbulent flow
2.5-2. Pipe Diameter and Reynolds Number. An oil is being pumped in-

side a 10.0-mm-diameter pipe at a Reynolds number of 2100. The
oil density is 855 kg/m3 and the viscosity is 2.1 × 10−2 Pa · s.

a. What is the velocity in the pipe?
b. It is desired to maintain the same Reynolds number of 2100

and the same velocity as in part (a) using a second fluid with
a density of 925 kg/m3 and a viscosity of 1.5 × 10−2 Pa · s.
What pipe diameter should be used?

2.6-1. Average Velocity for Mass Balance in Flow Down Vertical
Plate. For a layer of liquid flowing in laminar flow in the z direction
down a vertical plate or surface, the velocity profile is
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where δ is the thickness of the layer, × is the distance from the free
surface of the liquid toward the plate, and νz is the velocity at a
distance × from the free surface.

a. What is the maximum velocity νz max?
b. Derive the expression for the average velocity νz av and also

relate it to νz max.
A15:

Ans. 
2.6-2. Flow of Liquid in a Pipe and Mass Balance. A hydrocarbon liquid

enters a simple flow system shown in Fig. 2.6-1 at an average ve-
locity of 1.282 m/s, where A1 = 4.33 × 10−3 m2 and ρ1 = 902 kg/
m3. The liquid is heated in the process and the exit density is 875
kg/m3. The cross-sectional area at point 2 is 5.26 × 10−3 m2. The
process is steady state.

a. Calculate the mass flow rate m at the entrance and exit.
b. Calculate the average velocity ν in 2 and the mass velocity

G in 1.
A16: Ans. (a) m1 = m2 = 5.007 kg/s, (b) G1 = 1156 kg/s · m2

2.6-3. Average Velocity for Mass Balance in Turbulent Flow. For turbulent
flow in a smooth, circular tube with a radius R, the velocity profile
varies according to the following expression at a Reynolds number
of about 105:

where r is the radial distance from the center and νmax the maximum
velocity at the center. Derive the equation relating the average ve-
locity (bulk velocity) νav to νmax for an incompressible fluid. (Hint:
The integration can be simplified by substituting z for R − r.)

A17:

Ans. 
2.6-4. Bulk Velocity for Flow Between Parallel Plates. A fluid flowing in

laminar flow in the x direction between two parallel plates has a
velocity profile given by the following:
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where 2y0 is the distance between the plates, y is the distance from
the center line, and νx is the velocity in the × direction at position
y. Derive an equation relating νx av (bulk or average velocity) to νx
max.

A18:
Ans. 

2.6-5. Overall Mass Balance for Dilution Process. A well-stirred storage
vessel contains 10 000 kg of solution of a dilute methanol solution
(wA = 0.05 mass fraction alcohol). A constant flow of 500 kg/min of
pure water is suddenly introduced into the tank and a constant rate
of withdrawal of 500 kg/min of solution is started. These two flows
are continued and remain constant. Assuming that the densities of
the solutions are the same and that the total contents of the tank
remain constant at 10000 kg of solution, calculate the time for the
alcohol content to drop to 1.0 wt%.

A19: Ans. 32.2 min
2.6-6. Overall Mass Balance for Unsteady-State Process. A storage ves-

sel is well stirred and contains 500 kg of total solution with a con-
centration of 5.0% salt. A constant flow rate of 900 kg/h of salt sol-
ution containing 16.67% salt is suddenly introduced into the tank
and a constant withdrawal rate of 600 kg/h is also started. These
two flows remain constant thereafter. Derive an equation relating
the outlet withdrawal concentration as a function of time. Also, cal-
culate the concentration after 2.0 h.

2.6-7 Mass Balance for Flow of Sucrose Solution. A 20 wt % sucrose
(sugar) solution having a density of 1074 kg/m3 is flowing through
the same piping system as in Example 2.6-1 (Fig. 2.6-2). The flow
rate entering pipe 1 is 1.892 m3/h. The flow divides equally in each
of pipes 3. Calculate the following:

a. The velocity in m/s in pipes 2 and 3.
b. The mass velocity G kg/m2 · s in pipes 2 and 3.

2.7-1. Kinetic-Energy Velocity Correction Factor for Turbulent Flow. De-
rive the equation to determine the value of α, the kinetic-energy
velocity correction factor, for turbulent flow. Use Eq. (2.7-20) to ap-
proximate the velocity profile and substitute this into Eq. (2.7-15) to
obtain (ν3)av. Then use Eqs. (2.7-20), (2.6-17), and (2.7-14) to ob-
tain α.

A22: Ans. α = 0.9448
2.7-2. Flow Between Parallel Plates and Kinetic-Energy Correction Fac-

tor. The equation for the velocity profile of a fluid flowing in laminar
flow between two parallel plates is given in Problem 2.6-4. Derive
the equation to determine the value of the kinetic-energy velocity
correction factor α. [Hint: First derive an equation relating ν to νav.
Then derive the equation for (ν3)av and, finally, relate these results
to α.]

2.7-3. Temperature Drop in Throttling Valve and Energy Balance. Steam
is flowing through an adiabatic throttling valve (no heat loss or ex-
ternal work). Steam enters point 1 upstream of the valve at 689 kPa
abs and 171.1°C and leaves the valve (point 2) at 359 kPa. Calcu-
late the temperature t2 at the outlet. [Hint: Use Eq. (2.7-21) for the
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energy balance and neglect the kinetic-energy and potential-energy
terms as shown in Example 2.7-1. Obtain the enthalpy H1 from
Appendix A.2, steam tables. For H2, linear interpolation of the val-
ues in the table will have to be done to obtain t2.] Use SI units.

A24: Ans. t2 = 160.6°C
2.7-4. Energy Balance on a Heat Exchanger and a Pump. Water at

93.3°C is being pumped from a large storage tank at 1 atm abs at
a rate of 0.189 m3/min by a pump. The motor that drives the pump
supplies energy to the pump at the rate of 1.49 kW. The water is
pumped through a heat exchanger, where it gives up 704 kW of
heat and is then delivered to a large open storage tank at an ele-
vation of 15.24 m above the first tank. What is the final temperature
of the water to the second tank? Also, what is the gain in enthalpy
of the water due to the work input? (Hint: Be sure to use the steam
tables for the enthalpy of the water. Neglect any kinetic-energy
changes but not potential-energy changes.)

A25: Ans. t2 = 38.2°C, work input gain = 0.491 kJ/kg
2.7-5. Steam Boiler and Overall Energy Balance. Liquid water under

pressure at 150 kPa enters a boiler at 24°C through a pipe at an
average velocity of 3.5 m/s in turbulent flow. The exit steam leaves
at a height of 25 m above the liquid inlet at 150°C and 150 kPa
absolute, and the velocity in the outlet line is 12.5 m/s in turbulent
flow. The process is steady state. How much heat must be added
per kg of steam?

2.7-6. Energy Balance on a Flow System with a Pump and Heat Ex-
changer. Water stored in a large, well-insulated storage tank at
21.0°C and atmospheric pressure is being pumped at steady state
from this tank by a pump at the rate of 40 m3/h. The motor driving
the pump supplies energy at the rate of 8.5 kW. The water is used
as a cooling medium and passes through a heat exchanger, where
255 kW of heat is added to the water. The heated water then flows
to a second large, vented tank, which is 25 m above the first tank.
Determine the final temperature of the water delivered to the second
tank.

2.7-7. Mechanical-Energy Balance in Pumping Soybean Oil. Soybean oil
is being pumped through a uniform-diameter pipe at a steady mass-
flow rate. A pump supplies 209.2 J/kg mass of fluid flowing. The
entrance abs pressure in the inlet pipe to the pump is 103.4 kN/
m2. The exit section of the pipe downstream from the pump is 3.35
m above the entrance and the exit pressure is 172.4 kN/m2. Exit
and entrance pipes are the same diameter. The fluid is in turbulent
flow. Calculate the friction loss in the system. See Appendix A.4 for
the physical properties of soybean oil. The temperature is 303 K.

A28: Ans. ∑F = 101.3 J/kg
2.7-8. Pump Horsepower in Brine System. A pump pumps 0.200 ft3/s of

brine solution having a density of 1.15 g/cm3 from an open feed tank
having a large cross-sectional area. The suction line has an inside
diameter of 3.548 in. and the discharge line from the pump a diam-
eter of 2.067 in. The discharge flow goes to an open overhead tank,
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and the open end of this line is 75 ft above the liquid level in the
feed tank. If the friction losses in the piping system are 18.0 ft lbf/
lbm, what pressure must the pump develop and what is the horse-
power of the pump if the efficiency is 70%? The flow is turbulent.

2.7-9. Pressure Measurements from Flows. Water having a density of
998 kg/m3 is flowing at the rate of 1.676 m/s in a 3.068-in.-diameter
horizontal pipe at a pressure p1 of 68.9 kPa abs. It then passes to
a pipe having an inside diameter of 2.067 in.

a. Calculate the new pressure p2 in the 2.067-in. pipe. Assume
no friction losses.

b. If the piping is vertical and the flow is upward, calculate the
new pressure p2. The pressure tap for p2 is 0.457 m above
the tap for p1.

A30: Ans. (a) p2 = 63.5 kPa; (b) p2 = 59.1 kPa
2.7-10. Draining Cottonseed Oil from a Tank. A cylindrical tank 1.52 m in

diameter and 7.62 m high contains cottonseed oil having a density
of 917 kg/m3. The tank is open to the atmosphere. A discharge
nozzle of inside diameter 15.8 mm and cross-sectional area A2 is
located near the bottom of the tank. The surface of the liquid is lo-
cated at H = 6.1 m above the center line of the nozzle. The dis-
charge nozzle is opened, draining the liquid level from H = 6.1 m to
H = 4.57 m. Calculate the time in seconds to do this. [Hint: The
velocity on the surface of the reservoir is small and can be neglec-
ted. The velocity ν2 m/s in the nozzle can be calculated for a given
H by Eq. (2.7-36). However, H, and hence ν2, are varying. Set up
an unsteady-state mass balance as follows: The volumetric flow
rate in the tank is (At dH)/dt, where At is the tank cross section in
m2 and At dH is the m3 liquid flowing in dt s. This rate must equal
the negative of the volumetric rate in the nozzle, or −A2ν2 m3/s. The
negative sign is present since dH is the negative of ν2. Rearrange
this equation and integrate between H = 6.1 m at t = 0 and H = 4.57
m at t = tF.]

A31: Ans. tF = 1388 s
2.7-11. Friction Loss in Turbine Water Power System. Water is stored in

an elevated reservoir. To generate power, water flows from this
reservoir down through a large conduit to a turbine and then through
a similar-sized conduit. At a point in the conduit 89.5 m above the
turbine, the pressure is 172.4 kPa, and at a level 5 m below the
turbine, the pressure is 89.6 kPa. The water flow rate is 0.800 m3/
s. The output of the shaft of the turbine is 658 kW. The water density
is 1000 kg/m3. If the efficiency of the turbine in converting the me-
chanical energy given up by the fluid to the turbine shaft is 89%
(ηt = 0.89), calculate the friction loss in the turbine in J/kg. Note that
in the mechanical-energy-balance equation, the Ws is equal to the
output of the shaft of the turbine over ηt.

A32: Ans. ∑F = 85.3 J/kg
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2.7-12. Pipeline Pumping of Oil. A pipeline laid cross-country carries oil at
the rate of 795 m3/d. The pressure of the oil is 1793 kPa gage leav-
ing pumping station 1. The pressure is 862 kPa gage at the inlet to
the next pumping station, 2. The second station is 17.4 m higher
than the first station. Calculate the lost work ( ∑F friction loss) in J/
kg mass oil. The oil density is 769 kg/m3.

2.7-13. Test of Centrifugal Pump and Mechanical-Energy Balance. A cen-
trifugal pump is being tested for performance, and during the test
the pressure reading in the 0.305-m-diameter suction line just ad-
jacent to the pump casing is −20.7 kPa (vacuum below atmospheric
pressure). In the discharge line with a diameter of 0.254 m at a point
2.53 m above the suction line, the pressure is 289.6 kPa gage. The
flow of water from the pump is measured as 0.1133 m3/s. (The
density can be assumed as 1000 kg/m3.) Calculate the kW input of
the pump.

A34: Ans. 38.11 kW
2.7-14. Friction Loss in Pump and Flow System. Water at 20°C is pumped

from the bottom of a large storage tank where the pressure is 310.3
kPa gage to a nozzle which is 15.25 m above the tank bottom and
discharges to the atmosphere with a velocity in the nozzle of 19.81
m/s. The water flow rate is 45.4 kg/s. The efficiency of the pump is
80% and 7.5 kW are furnished to the pump shaft. Calculate the
following:

a. The friction loss in the pump.
b. The friction loss in the rest of the process.

2.7-15. Power for Pumping in Flow System. Water is being pumped from
an open water reservoir at the rate of 2.0 kg/s at 10°C to an open

storage tank 1500 m away. The pipe used is schedule 40 3 in. pipe
and the frictional losses in the system are 625 J/kg. The surface of
the water reservoir is 20 m above the level of the storage tank. The
pump has an efficiency of 75%.

a. What is the kW power required for the pump?
b. If the pump is not present in the system, will there be a flow?

A36: Ans. (a) 1.143 kW
2.8-1. Momentum Balance in a Reducing Bend. Water is flowing at steady

state through the reducing bend in Fig. 2.8-3. The angle α2 = 90° (a
right-angle bend). The pressure at point 2 is 1.0 atm abs. The flow
rate is 0.020 m3/s and the diameters at points 1 and 2 are 0.050 m
and 0.030 m, respectively. Neglect frictional and gravitational
forces. Calculate the resultant forces on the bend in newtons and
lb force. Use ρ = 1000 kg/m3.

A37: Ans. −Rx = +450.0 N, −Ry = −565.8 N.
2.8-2. Forces on Reducing Bend. Water is flowing at steady state and 363

K at a rate of 0.0566 m3/s through a 60° reducing bend (α2 = 60°)
in Fig. 2.8-3. The inlet pipe diameter is 0.1016 m and the outlet
0.0762 m. The friction loss in the pipe bend can be estimated as

 Neglect gravity forces. The exit pressure p2 = 111.5 kN/m2

gage. Calculate the forces on the bend in newtons.
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A38: Ans. −Rx = +1344 N, −Ry = −1026 N
2.8-3. Force of Water Stream on a Wall. Water at 298 K discharges from

a nozzle and travels horizontally, hitting a flat, vertical wall. The
nozzle has a diameter of 12 mm and the water leaves the nozzle
with a flat velocity profile at a velocity of 6.0 m/s. Neglecting frictional
resistance of the air on the jet, calculate the force in newtons on the
wall.

A39: Ans. −Rx = 4.059 N
2.8-4. Flow Through an Expanding Bend. Water at a steady-state rate of

0.050 m3/s is flowing through an expanding bend that changes di-
rection by 120°. The upstream diameter is 0.0762 m and the down-
stream is 0.2112 m. The upstream pressure is 68.94 kPa gage.
Neglect energy losses within the elbow and calculate the down-
stream pressure at 298 K. Also calculate Rx and Ry.

2.8-5. Force of Stream on a Wall. Repeat Problem 2.8-3 for the same
conditions except that the wall is inclined 45° to the vertical. The
flow is frictionless. Assume no loss in energy. The amount of fluid
splitting in each direction along the plate can be determined by us-
ing the continuity equation and a momentum balance. Calculate this
flow division and the force on the wall.

A41: Ans. m2 = 0.5774 kg/s, m3 = 0.09907 kg/s, −Rx = 2.030 N, −Ry =
−2.030 N (force on wall).

2.8-6. Momentum Balance for Free Jet on a Curved, Fixed Vane. A free
jet having a velocity of 30.5 m/s and a diameter of 5.08 × 10−2 m is
deflected by a curved, fixed vane as in Fig. 2.8-5a. However, the
vane is curved downward at an angle of 60° instead of upward.
Calculate the force of the jet on the vane. The density is 1000 kg/m3.

A42: Ans. −Rx = 942.8 N, −Ry = 1633 N
2.8-7. Momentum Balance for Free Jet on a U-Type, Fixed Vane. A free

jet having a velocity of 30.5 m/s and a diameter of 1.0 × 10−2 m is
deflected by a smooth, fixed vane as in Fig. 2.8-5a. However, the
vane is in the form of a U so that the exit jet travels in a direction
exactly opposite to the entering jet. Calculate the force of the jet on
the vane. Use ρ = 1000 kg/m3.

A43: Ans. −Rx = 146.1 N, −Ry = 0
2.8-8. Momentum Balance on Reducing Elbow and Friction Losses. Wa-

ter at 20°C is flowing through a reducing bend, where α2 (see Fig.
2.8-3) is 120°. The inlet pipe diameter is 1.829 m, the outlet is 1.219
m, and the flow rate is 8.50 m3/s. The exit point z2 is 3.05 m above
the inlet and the inlet pressure is 276 kPa gage. Friction losses are

estimated as 0.5 /2 and the mass of water in the elbow is 8500
kg. Calculate the forces Rx and Ry and the resultant force on the
control-volume fluid.

2.8-9. Momentum Velocity Correction Factor β for Turbulent Flow. Deter-
mine the momentum velocity correction factor β for turbulent flow
in a tube. Use Eq. (2.7-20) for the relationship between ν and po-
sition.

2.9-1. Film of Water on Wetted-Wall Tower. Pure water at 20°C is flowing
down a vertical wetted-wall column at a rate of 0.124 kg/s · m. Cal-
culate the film thickness and the average velocity.
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A46: Ans. δ = 3.370 × 10−4 m, νz av = 0.3687 m/s
2.9-2. Shell Momentum Balance for Flow Between Parallel Plates. A fluid

of constant density is flowing in laminar flow at steady state in the
horizontal x direction between two flat and parallel plates. The dis-
tance between the two plates in the vertical y direction is 2y0. Using
a shell momentum balance, derive the equation for the velocity pro-
file within this fluid and the maximum velocity for a distance L m in
the x direction. [Hint: See the method used in Section 2.9B to derive
Eq. (2.9-9). One boundary condition used is dνx/dy = 0 at y = 0.]

A47:

Ans. 
2.9-3. Velocity Profile for Non-Newtonian Fluid. The stress rate of shear

for a non-Newtonian fluid is given by

where K and n are constants. Find the relation between velocity and
radial position r for this incompressible fluid at steady state. [Hint:
Combine the equation given here with Eq. (2.9-6). Then raise both
sides of the resulting equation to the 1/n power and integrate.]

A48: Ans.

2.9-4. Shell Momentum Balance for Flow Down an Inclined Plane. Con-
sider the case of a Newtonian fluid in steady-state laminar flow
down an inclined plane surface that makes an angle θ with the hor-
izontal. Using a shell momentum balance, find the equation for the
velocity profile within the liquid layer having a thickness L and the
maximum velocity of the free surface. (Hint: The convective-mo-
mentum terms cancel for fully developed flow and the pressure-
force terms also cancel, because of the presence of a free surface.
Note that there is a gravity force on the fluid.)

A49: Ans. νx max = ρgL2 sin θ/2μ
2.10-1. Viscosity Measurement of a Liquid. One use of the Hagen–Pois-

euille equation (2.10-2) is in determining the viscosity of a liquid by
measuring the pressure drop and velocity of the liquid in a capillary
of known dimensions. The liquid used has a density of 912 kg/m3,
and the capillary has a diameter of 2.222 mm and a length of 0.1585
m. The measured flow rate is 5.33 × 10−7 m3/s of liquid and the
pressure drop 131 mm of water (density 996 kg/m3). Neglecting end
effects, calculate the viscosity of the liquid in Pa · s.

A50: Ans. μ = 9.06 × 10−3 Pa · s
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2.10-2. Frictional Pressure Drop in Flow of Olive Oil. Calculate the frictional
pressure drop in pascal for olive oil at 293 K flowing through a com-
mercial pipe having an inside diameter of 0.0525 m and a length of
76.2 m. The velocity of the fluid is 1.22 m/s. Use the friction factor
method. Is the flow laminar or turbulent? Use physical data from
Appendix A.4.

2.10-3. Frictional Loss in Straight Pipe and Effect of Type of Pipe. A liquid
having a density of 801 kg/m3 and a viscosity of 1.49 × 10−3 Pa · s
is flowing through a horizontal straight pipe at a velocity of 4.57 m/

s. The commercial steel pipe is in. nominal pipe size, schedule
40. For a length of pipe of 61 m, do as follows:

a. Calculate the friction loss Ff.
b. For a smooth tube of the same inside diameter, calculate the

friction loss. What is the percent reduction of Ff for the smooth
tube?

A52: Ans. (a) 348.9 J/kg; (b) 274.2 J/kg (91.7 ft · lbf/lbm), 21.4% reduction
2.10-4. Trial-and-Error Solution for Hydraulic Drainage. In a hydraulic

project a cast-iron pipe having an inside diameter of 0.156 m and a
305-m length is used to drain wastewater at 293 K. The available
head is 4.57 m of water. Neglecting any losses in fittings and joints
in the pipe, calculate the flow rate in m3/s. (Hint: Assume the phys-
ical properties of pure water. The solution is trial and error, since
the velocity appears in NRe, which is needed to determine the fric-
tion factor. As a first trial, assume that ν = 1.7 m/s.)

2.10-5. Mechanical-Energy Balance and Friction Losses. Hot water is be-
ing discharged from a storage tank at the rate of 0.223 ft3/s. The
process flow diagram and conditions are the same as given in Ex-
ample 2.10-6, except for different nominal pipe sizes of schedule
40 steel pipe as follows. The 20-ft-long outlet pipe from the storage

tank is  pipe instead of 4-in. pipe. The other piping, which was
2-in. pipe, is now 2.5-in. pipe. Note that now a sudden expansion

occurs after the elbow in the  pipe to a  pipe.
2.10-6. Friction Losses and Pump Horsepower. Hot water in an open stor-

age tank at 82.2°C is being pumped at the rate of 0.379 m3/min from
the tank. The line from the storage tank to the pump suction is 6.1
m of 2-in. schedule 40 steel pipe and it contains three elbows. The
discharge line after the pump is 61 m of 2-in. pipe and contains two
elbows. The water discharges to the atmosphere at a height of 6.1
m above the water level in the storage tank.

a. Calculate all frictional losses Σ F.
b. Make a mechanical-energy balance and calculate WS of the

pump in J/kg.
c. What is the kW power of the pump if its efficiency is 75%?

A55: Ans. (a) Σ F = 122.8 J/kg; (b) WS = −186.9 J/kg; (c) 1.527 kW
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2.10-7. Pressure Drop of a Flowing Gas. Nitrogen gas is flowing through a
4-in. schedule 40 commercial steel pipe at 298 K. The total flow rate
is 7.40 × 10−2 kg/s and the flow can be assumed as isothermal. The
pipe is 3000 m long and the inlet pressure is 200 kPa. Calculate the
outlet pressure.

A56: Ans. p2 = 188.5 kPa
2.10-8. Entry Length for Flow in a Pipe. Air at 10°C and 1.0 atm abs pres-

sure is flowing at a velocity of 2.0 m/s inside a tube having a diam-
eter of 0.012 m.

a. Calculate the entry length.
b. Calculate the entry length for water at 10°C and the same

velocity.
2.10-9. Friction Loss in Pumping Oil to Pressurized Tank. An oil having a

density of 833 kg/m3 and a viscosity of 3.3 × 10−3 Pa · s is pumped
from an open tank to a pressurized tank held at 345 kPa gage. The
oil is pumped from an inlet at the side of the open tank through a
line of commercial steel pipe having an inside diameter of 0.07792
m at the rate of 3.494 × 10−3 m3/s. The length of straight pipe is 122
m, and the pipe contains two elbows (90°) and a globe valve half
open. The level of the liquid in the open tank is 20 m above the liquid
level in the pressurized tank. The pump efficiency is 65%. Calculate
the kW power of the pump.

2.10-10. Flow in an Annulus and Pressure Drop. Water flows in the annulus
of a horizontal, concentric-pipe heat exchanger and is being heated
from 40°C to 50°C in the exchanger, which has a length of 30 m of
equivalent straight pipe. The flow rate of the water is 2.90 × 10−3

m3/s. The inner pipe is 1-in. schedule 40 and the outer is 2-in.
schedule 40. What is the pressure drop? Use an average temper-
ature of 45°C for bulk physical properties. Assume that the wall
temperature is an average of 4°C higher than the average bulk
temperature so that a correction can be made for the effect of heat
transfer on the friction factor.

2.11-1. Derivation of Maximum Velocity for Isothermal Compressible
Flow. Starting with Eq. (2.11-9), derive Eqs. (2.11-11) and
(2.11-12) for the maximum velocity in isothermal compressible flow.

2.11-2. Pressure Drop in Compressible Flow. Methane gas is being pum-
ped through a 305-m length of 52.5-mm-ID steel pipe at the rate of
41.0 kg/m2 · s. The inlet pressure is p1 = 345 kPa abs. Assume
isothermal flow at 288.8 K.

a. Calculate the pressure p2 at the end of the pipe. The viscosity
is 1.04 × 10−5 Pa · s.

b. Calculate the maximum velocity that can be attained at these
conditions and compare with the velocity in part (a).

A61: Ans. (a) p2 = 298.4 kPa; (b) νmax = 387.4 m/s, ν2 = 20.62 m/s
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2.11-3. Pressure Drop in Isothermal Compressible Flow. Air at 288 K and
275 kPa abs enters a pipe and is flowing in isothermal compressible
flow in a commercial pipe having an ID of 0.080 m. The length of
the pipe is 60 m. The mass velocity at the entrance to the pipe is
165.5 kg/m2 · s. Assume 29 for the molecular weight of air. Calculate
the pressure at the exit. Also, calculate the maximum allowable ve-
locity that can be attained and compare with the actual.
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