


Table of Contents

Chapter 3. Principles of Momentum Transfer and Applications.............................................. 1
Section 3.1. FLOW PAST IMMERSED OBJECTS AND PACKED AND FLUIDIZED BEDS......................................................................................................... 1
Section 3.2. MEASUREMENT OF FLOW OF FLUIDS................................................................................................................................................................. 17
Section 3.3. PUMPS AND GAS-MOVING EQUIPMENT............................................................................................................................................................. 27
Section 3.4. AGITATION AND MIXING OF FLUIDS AND POWER REQUIREMENTS............................................................................................................ 37
Section 3.5. NON-NEWTONIAN FLUIDS.................................................................................................................................................................................... 53
Section 3.6. DIFFERENTIAL EQUATIONS OF CONTINUITY................................................................................................................................................... 70
Section 3.7. DIFFERENTIAL EQUATIONS OF MOMENTUM TRANSFER OR MOTION........................................................................................................ 76
Section 3.8. USE OF DIFFERENTIAL EQUATIONS OF CONTINUITY AND MOTION........................................................................................................... 83
Section 3.9. OTHER METHODS FOR SOLUTION OF DIFFERENTIAL EQUATIONS OF MOTION....................................................................................... 92
Section 3.10. BOUNDARY-LAYER FLOW AND TURBULENCE.............................................................................................................................................. 100
Section 3.11. DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER.................................................................................................................................. 115
PROBLEMS.................................................................................................................................................................................................................................. 118
REFERENCES............................................................................................................................................................................................................................. 128

Chapter 3. Principles of Momentum Transfer and Applications. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



Chapter 3. Principles of Momentum Transfer
and Applications

FLOW PAST IMMERSED OBJECTS AND PACKED AND
FLUIDIZED BEDS

Definition of Drag Coefficient for Flow Past Immersed Objects

Introduction and types of drag

In Chapter 2 we were concerned primarily with the momentum transfer and frictional losses for flow
of fluids inside conduits or pipes. In this section we consider in some detail the flow of fluids around
solid, immersed objects.
The flow of fluids outside immersed bodies appears in many chemical engineering applications and
other processing applications. These occur, for example, in flow past spheres in settling, flow
through packed beds in drying and filtration, flow past tubes in heat exchangers, and so on. It is
useful to be able to predict the frictional losses and/or the force on the submerged objects in these
various applications.
In the examples of fluid friction inside conduits that we considered in Chapter 2, the transfer of
momentum perpendicular to the surface resulted in a tangential shear stress or drag on the smooth
surface parallel to the direction of flow. This force exerted by the fluid on the solid in the direction of
flow is called skin or wall drag. For any surface in contact with a flowing fluid, skin friction will exist.
In addition to skin friction, if the fluid is not flowing parallel to the surface but must change direction
to pass around a solid body such as a sphere, significant additional frictional losses will occur; this
is called form drag.
In Fig. 3.1-1a the flow of fluid is parallel to the smooth surface of the flat, solid plate, and the force
F in newtons on an element of area dA m2 of the plate is the wall shear stress τw times the area
dA, or τw dA. The total force is the sum of the integrals of these quantities evaluated over the entire
area of the plate. Here the transfer of momentum to the surface results in a tangential stress or skin
drag on the surface.
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Figure 3.1-1. Flow past immersed objects: (a) flat plate, (b) sphere, (c) streamlined object.

In many cases, however, the immersed body is a blunt-shaped solid which presents various angles
to the direction of the fluid flow. As shown in Fig. 3.1-1b, the free-stream velocity is ν0 and is uniform
on approaching the blunt-shaped body suspended in a very large duct. Lines called streamlines
represent the path of fluid elements around the suspended body. The thin boundary layer adjacent
to the solid surface is shown as a dashed line; at the edge of this layer the velocity is essentially the
same as the bulk fluid velocity adjacent to it. At the front center of the body, called the stagnation
point, the fluid velocity will be zero; boundary-layer growth begins at this point and continues over
the surface until the layer separates. The tangential stress on the body because of the velocity
gradient in the boundary layer is the skin friction. Outside the boundary layer the fluid changes
direction to pass around the solid and also accelerates near the front and then decelerates. Because
of these effects, an additional force is exerted by the fluid on the body. This phenomenon, called
form drag, is in addition to the skin drag in the boundary layer.
In Fig. 3.1-1b, as shown, separation of the boundary layer occurs and a wake, covering the entire
rear of the object, occurs where large eddies are present and contribute to the form drag. The point
of separation depends on the shape of the particle, Reynolds number, and so on, and is discussed
in detail elsewhere (S3).
Form drag for bluff bodies can be minimized by streamlining the body (Fig. 3.1-1c), which forces
the separation point toward the rear of the body, greatly reducing the size of the wake. Additional
discussion of turbulence and boundary layers is given in Section 3.10.

Drag coefficient

From the preceding discussion it is evident that the geometry of the immersed solid is a major factor
in determining the amount of total drag force exerted on the body. Correlations of the geometry and
flow characteristics for solid objects suspended or held in a free stream (immersed objects) are
similar in concept and form to the friction factor-Reynolds number correlation given for flow inside
conduits. In flow through conduits, the friction factor was defined as the ratio of the drag force per
unit area (shear stress) to the product of density times velocity head, as given in Eq. (2.10-4).
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In a similar manner, for flow past immersed objects the drag coefficient CD is defined as the ratio of

the total drag force per unit area to /2:

Equation 3.1-1. 

where FD is the total drag force in N, Ap is an area in m2, CD is dimensionless, ν0 is free-stream
velocity in m/s, and ρ is density of fluid in kg/m3. In English units, FD is in 1bf, ν0 is in ft/s, ρ is in
1bm/ft3, and Ap is in ft2. The area Ap used is the area obtained by projecting the body on a plane
perpendicular to the line of flow. For a sphere, Ap = , where Dp is sphere diameter; for a
cylinder whose axis is perpendicular to the flow direction, Ap = LDP, where L = cylinder length.
Solving Eq. (3.1-1) for the total drag force,

Equation 3.1-2. 

The Reynolds number for a given solid immersed in a flowing liquid is

Equation 3.1-3. 

where G0 = ν0ρ.

Flow Past Sphere, Long Cylinder, and Disk

For each particular shape of object and orientation of the object with respect to the direction of flow,
a different relation of CD versus NRe exists. Correlations of drag coefficient versus Reynolds number
are shown in Fig. 3.1-2 for spheres, long cylinders, and disks. The face of the disk and the axis of
the cylinder are perpendicular to the direction of flow. These curves have been determined exper-
imentally. However, in the laminar region for low Reynolds numbers, less than about 1.0, the ex-
perimental drag force for a sphere is the same as the theoretical Stokes' law equation as follows:

Equation 3.1-4. 
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Figure 3.1-2. Drag coefficients for flow past immersed spheres, long cylinders, and disks. (Reprinted with permission from
C. E. Lapple and C. B. Shepherd, Ind. Eng. Chem., 32, 606 (1940). Copyright by the American Chemical Society.)

Combining Eqs. (3.1-2) and (3.1-4) and solving for CD, the drag coefficient predicted by Stokes' law
is

Equation 3.1-5. 

The variation of CD with NRe (Fig. 3.1-2) is quite complicated because of the interaction of the factors
that control skin drag and form drag. For a sphere, as the Reynolds number is increased beyond
the Stokes' law range, separation occurs and a wake is formed. Further increases in NRe cause
shifts in the separation point. At about NRe = 3 × 105 the sudden drop in CD is the result of the
boundary layer becoming completely turbulent and the point of separation moving downstream. In
the region of NRe about 1 × 103 to 2 × 105, the drag coefficient is approximately constant for each
shape and CD = 0.44 for a sphere. Above NRe about 5 × 105, the drag coefficients are again ap-
proximately constant, with CD being 0.13 for a sphere, 0.33 for a cylinder, and 1.12 for a disk.
Additional discussions and theory concerning flow past spheres are given in Section 3.9E.
For derivations of theory and detailed discussions of the drag force for flow parallel to a flat plate,
Section 3.10 on boundary-layer flow and turbulence should be consulted. The flow of fluids normal
to banks of cylinders or tubes occurs in heat exchangers and other processing applications. The
banks of tubes can be arranged in a number of different geometries. Because of the many possible
geometric tube configurations and spacings, it is not possible to have one correlation for the data
on pressure drop and friction factors. Details of the many correlations available are given elsewhere
(P1).

EXAMPLE 3.1-1. Force on a Submerged Sphere
Air at 37.8°C and 101.3 kPa absolute pressure flows at a velocity of 23 m/s past a sphere having a diameter
of 42 mm. What are the drag coefficient CD and the force on the sphere?

Solution: From Appendix A.3, for air at 37.8°C, ρ = 1.137 kg/m3 and μ = 1.90 × 10-5 Pa · s. Also, Dp = 0.042
m and ν0 = 23.0 m/s. Using Eq. (3.1-3),
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From Fig. 3.1-2 for a sphere, CD = 0.47. Substituting into Eq. (3.1-2), where Ap =  for a sphere,

EXAMPLE 3.1-2. Force on a Cylinder in a Tunnel
Water at 24°C is flowing past a long cylinder at a velocity of 1.0 m/s in a large tunnel. The axis of the cylinder
is perpendicular to the direction of flow. The diameter of the cylinder is 0.090 m. What is the force per meter
length on the cylinder?

Solution: From Appendix A.2, for water at 24°C, ρ = 997.2 kg/m3 and μ = 0.9142 × 10−3 Pa · s. Also, Dp =
0.090 m, L = 1.0 m, and v0 = 1.0 m/s. Using Eq. (3.1-3),

From Fig. 3.1-2 for a long cylinder, CD = 1.4. Substituting into Eq. (3.1-2), where Ap = LDp = 1.0(0.090) = 0.090
m2,

Flow in Packed Beds

Introduction

A system of considerable importance in chemical and other process engineering fields is the packed
bed or packed column, which is used for a fixed-bed catalytic reactor, adsorption of a solute, ab-
sorption, filter bed, and so on. The packing material in the bed may be spheres, irregular particles,
cylinders, or various kinds of commercial packings. In the discussion to follow it is assumed that the
packing is everywhere uniform and that little or no channeling occurs. The ratio of diameter of the
tower to packing diameter should be a minimum of 8:1 to 10:1 for wall effects to be small. In the
theoretical approach used, the packed column is regarded as a bundle of crooked tubes of varying
cross-sectional area. The theory developed in Chapter 2 for single straight tubes is used to develop
the results for the bundle of crooked tubes.

Laminar flow in packed beds

Certain geometric relations for particles in packed beds are used in the derivations for flow. The
void fraction ε in a packed bed is defined as

Equation 3.1-6. 

The specific surface of a particle av in m−1 is defined as
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Equation 3.1-7. 

where Sp is the surface area of a particle in m2 and vp the volume of a particle in m3. For a spherical
particle,

Equation 3.1-8. 

where Dp is diameter in m. For a packed bed of nonspherical particles, the effective particle diameter
Dp is defined as

Equation 3.1-9. 

Since (1 - ε) is the volume fraction of particles in the bed,

Equation 3.1-10. 

where a is the ratio of total surface area in the bed to total volume of bed (void volume plus particle
volume) in m−1.

EXAMPLE 3.1-3. Surface Area in Packed Bed of Cylinders
A packed bed is composed of cylinders having a diameter D = 0.02 m and a length h = D. The bulk density of
the overall packed bed is 962 kg/m3 and the density of the solid cylinders is 1600 kg/m3.

a. Calculate the void fraction ε.
b. Calculate the effective diameter Dp of the particles.
c. Calculate the value of a in Eq. (3.1-10).

Solution: For part (a), taking 1.00 m3 of packed bed as a basis, the total mass of the bed is (962 kg/m3)(1.00
m3) = 962 kg. This mass of 962 kg is also the mass of the solid cylinders. Hence, volume of cylinders = 962
kg/(1600 kg/m3) = 0.601 m3. Using Eq. (3.1-6),

For the effective particle diameter Dp in part (b), for a cylinder where h = D, the surface area of a particle is

The volume vp of a particle is
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Substituting into Eq. (3.1-7),

Finally, substituting into Eq. (3.1-9),

Hence, the effective diameter to use is Dp = D = 0.02 m. For part (c), using Eq. (3.1-10),

The average interstitial velocity in the bed is v m/s and is related to the superficial velocity v' based
on the cross section of the empty container by

Equation 3.1-11. 

The hydraulic radius rH for flow defined in Eq. (2.10-21) is modified as follows (B2):

Equation 3.1-12. 

Combining Eqs. (3.1-10) and (3.1-12),

Equation 3.1-13. 

Since the equivalent diameter D for a channel is D = 4rH, the Reynolds number for a packed bed is
as follows, using Eq. (3.1-13) and v' = εv:

Equation 3.1-14. 

For packed beds Ergun (E1) defined the Reynolds number as above but without the 4/6 term:

Principles of Momentum Transfer and Applications 137

Chapter 3. Principles of Momentum Transfer and Applications. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



Equation 3.1-15. 

where G' = ν'ρ.
For laminar flow, the Hagen-Poiseuille equation (2.10-2) can be combined with Eq. (3.1-13) for rH
and Eq. (3.1-11) to give

Equation 3.1-16. 

The true ΔL is larger because of the tortuous path, and use of the hydraulic radius predicts too large
a v'. Experimental data show that the constant should be 150, which gives the Blake-Kozeny equa-
tion for laminar flow, void fractions less than 0.5, effective particle diameter Dp, and NRe,p < 10:

Equation 3.1-17. 

Turbulent flow in packed beds

For turbulent flow we use the same procedure by starting with Eq. (2.10-5) and substituting Eqs.
(3.1-11) and (3.1-13) into this equation to obtain

Equation 3.1-18. 

For highly turbulent flow the friction factor should approach a constant value. Also, it is assumed
that all packed beds should have the same relative roughness. Experimental data indicate that 3f
= 1.75. Hence, the final equation for turbulent flow for NRe,p > 1000, which is called the Burke-
Plummer equation, becomes

Equation 3.1-19. 

Adding Eq. (3.1-17) for laminar flow and Eq. (3.1-19) for turbulent flow, Ergun (E1) proposed the
following general equation for low, intermediate, and high Reynolds numbers, which has been tested
experimentally:

Equation 3.1-20. 

Rewriting Eq. (3.1-20) in terms of dimensionless groups,
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Equation 3.1-21. 

See also Eq. (3.1-33) for another form of Eq. (3.1-21). The Ergun equation (3.1-21) can be used for
gases by taking the density ρ of the gas as the arithmetic average of the inlet and outlet pressures.
The velocity v' changes throughout the bed for a compressible fluid, but G' is a constant. At high
values of NRe,p, Eqs. (3.1-20) and (3.1-21) reduce to Eq. (3.1-19), and to Eq. (3.1-17) for low values.
For large pressure drops with gases, Eq. (3.1-20) can be written in differential form (P1).

EXAMPLE 3.1-4. Pressure Drop and Flow of Gases in Packed Bed
Air at 311 K is flowing through a packed bed of spheres having a diameter of 12.7 mm. The void fraction ε of
the bed is 0.38 and the bed has a diameter of 0.61 m and a height of 2.44 m. The air enters the bed at 1.10
atm abs at the rate of 0.358 kg/s. Calculate the pressure drop of the air in the packed bed. The average
molecular weight of air is 28.97.

Solution: From Appendix A.3, for air at 311 K, μ = 1.90 × 10−5 Pa · s. The cross-sectional area of the bed is
A = (π/4)D2 = (π/4)(0.61)2 = 0.2922 m2. Hence, G' = 0.358/0.2922 = 1.225 kg/m2 · s (based on empty cross
section of container or bed). Dp = 0.0127 m, ΔL = 2.44 m, and inlet pressure p1 = 1.1(1.01325 × 105) = 1.115
× 105 Pa.

From Eq. (3.1-15),

To use Eq. (3.1-21) for gases, the density ρ to use is the average at the inlet p1 and outlet p2 pressures, or at
(pl + p2)/2. This is trial and error since p2 is unknown. Assuming that Δp = 0.05 × 105 Pa, p2 = 1.115 × 105 -
0.05 × 105 = 1.065 × 105 Pa. The average pressure is pav = (1.115 × 105 + 1.065 × 105)/2 = 1.090 × 105 Pa.
The average density to use is

Equation 3.1-22. 

Substituting into Eq. (3.1-21) and solving for Δp,

Solving, Δp = 0.0497 × 105 Pa. This is close enough to the assumed value, so a second trial is not needed.
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Shape factors

Many particles in packed beds are often irregular in shape. The equivalent diameter of a particle is
defined as the diameter of a sphere having the same volume as this particle. The sphericity shape
factor φS of a particle is the ratio of the surface area of this sphere having the same volume as the

particle to the actual surface area of the particle. For a sphere, the surface area  and

the volume  Hence, for any particle, , where Sp is the actual sur-
face area of the particle and Dp is the diameter (equivalent diameter) of the sphere having the same
volume as the particle. Then

Equation 3.1-23. 

From Eq. (3.1-7),

Equation 3.1-24. 

Then Eq. (3.1-10) becomes

Equation 3.1-25. 

For a sphere, φS = 1.0. For a cylinder where diameter = length, φS is calculated to be 0.874, and
for a cube, φS is calculated to be 0.806. For granular materials it is difficult to measure the actual
volume and surface area to obtain the equivalent diameter. Hence, Dp is usually taken to be the
nominal size from a screen analysis or visual length measurements. The surface area is determined
by adsorption measurements or measurement of the pressure drop in a bed of particles. Then Eq.
(3.1-23) is used to calculate φS (Table 3.1-1). Typical values for many crushed materials are be-
tween 0.6 and 0.7. For convenience, for the cylinder and the cube, the nominal diameter is some-
times used (instead of the equivalent diameter), which then gives a shape factor of 1.0.

Table 3.1-1. Shape Factors (Sphericity) of Some Materials

Material Shape Factor, φS Reference

Spheres 1.0  
Cubes 0.81  
Cylinders, Dp = h (length) 0.87  
Berl saddles 0.3 (B4)

Raschig rings 0.3 (C2)

Coal dust, pulverized 0.73 (C2)

Sand, average 0.75 (C2)

Crushed glass 0.65 (C2)

Mixtures of particles

For mixtures of particles of various sizes we can define a mean specific surface avm as
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Equation 3.1-26. 

where xi is volume fraction. Combining Eqs. (3.1-24) and (3.1-26),

Equation 3.1-27. 

where Dpm is the effective mean diameter for the mixture.

EXAMPLE 3.1-5. Mean Diameter for a Particle Mixture
A mixture contains three sizes of particles: 25% by volume of 25 mm size, 40% of 50 mm, and 35% of 75 mm.
The sphericity is 0.68. Calculate the effective mean diameter.

Solution: The following data are given: x1 = 0.25, Dp1 = 25 mm; x2 = 0.40, Dp2 = 50; x3 = 0.35, Dp3 = 75; φS
= 0.68. Substituting into Eq. (3.1-27),

Darcy's empirical law for laminar flow

Equation (3.1-17) for laminar flow in packed beds shows that the flow rate is proportional to Δp and
inversely proportional to the viscosity μ and length ΔL. This is the basis for Darcy's law, as follows,
for purely viscous flow in consolidated porous media:

Equation 3.1-28. 

where v' is superficial velocity based on the empty cross section in cm/s, q' is flow rate in cm3/s, A
is empty cross section in cm2, μ is viscosity in cp, Δp is pressure drop in atm, ΔL is length in cm,
and k is permeability in (cm3 flow/s) · (cp) · (cm length)/(cm2 area) · (atm pressure drop). The units
used for k of cm2 · cp/s · atm are often given in darcy or in millidarcy (1/1000 darcy). Hence, if a
porous medium has a permeability of 1 darcy, a fluid of 1 cp viscosity will flow at 1 cm3/s per 1
cm2 cross section with a Δp of 1 atm per cm length. This equation is often used in measuring
permeabilities of underground oil reservoirs.

Flow in Fluidized Beds

Types of fluidization in beds

In a packed bed of small particles, when a fluid enters at sufficient velocity from the bottom and
passes up through the particles, the particles are pushed upward and the bed expands and becomes
fluidized. Two general types of fluidization, particulate fluidization and bubbling fluidization, can
occur.
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In particulate fluidization, as the fluid velocity is increased the bed continues to expand and remains
homogeneous for a time. The particles move farther apart and their motion becomes more rapid.
The average bed density at a given velocity is the same in all regions of the bed. An example is
catalytic cracking catalysts fluidized by gases. This type of fluidization is very desirable in promoting
intimate contact between the gas and solids. Liquids often give particulate fluidization.
In bubbling fluidization, the gas passes through the bed as voids or bubbles which contain few
particles, and only a small percentage of the gas passes in the spaces between individual particles.
The expansion of the bed is small as gas velocity is increased. Sand and glass beads provide
examples of this behavior. Since most of the gas is in bubbles, little contact occurs between the
individual particles and the bubbles.
Particles which behave as above have been classified by Geldart (G2) into classes. Those called
Type A, which exhibit particulate fluidization in gases, fall into the following approximate ranges: For
Δρ = (ρp − ρ) = 2000 kg/m3, Dp = 20–125 μm; Δρ = 1000, Dp = 25−250; Δρ = 500, Dp = 40–450;
Δρ = 200, Dp = 100–1000. For those called Type B, which exhibit bubbling fluidization, approximate
ranges are as follows: Δρ = 2000, Dp = 125−700 μm; Δρ = 1000, Dp = 250−1000; Δρ = 500, Dp =
450−1500; Δρ = 200, Dp = 1000−2000.
Another type of behavior, called slugging, can occur in bubbling since the bubbles tend to coalesce
and grow as they rise in the bed. If the column is small in diameter with a deep bed, bubbles can
become large and fill the entire cross section and travel up the tower separated by slugs of solids.

Minimum velocity and porosity for particulate fluidization

When a fluid flows upward through a packed bed of particles at low velocities, the particles remain
stationary. As the fluid velocity is increased, the pressure drop increases according to the Ergun
equation (3.1-20). Upon further increases in velocity, conditions finally occur where the force of the
pressure drop times the cross-sectional area equals the gravitational force on the mass of particles.
Then the particles begin to move, and this is the onset of fluidization or minimum fluidization. The
fluid velocity at which fluidization begins is the minimum fluidization velocity  in m/s based on
the empty cross section of the tower (superficial velocity).
The porosity of the bed when true fluidization occurs is the minimum porosity for fluidization, εmf.
Some typical values of εmf for various materials are given in Table 3.1-2. The bed expands to this
voidage or porosity before particle motion appears. This minimum voidage can be determined ex-
perimentally by subjecting the bed to a rising gas stream and measuring the height of the bed Lmf
in m. Generally, it appears best to use gas as the fluid rather than a liquid, since liquids give some-
what higher values of εmf.

Table 3.1-2. Void Fraction, εmf, at Minimum Fluidization Conditions (L2)

Type of Particles

Particle Size, DP (mm)

0.06 0.10 0.20 0.40

 Void fraction, εmf

Sharp sand (φS = 0.67) 0.60 0.58 0.53 0.49

Round sand (φS = 0.86) 0.53 0.48 0.43 (0.42)

Anthracite coal (φS = 0.63) 0.61 0.60 0.56 0.52

Absorption carbon 0.71 0.69   
Fischer Tropsch catalyst (φS = 0.58)  0.58 0.56 (0.54)
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As stated earlier, the pressure drop increases as the gas velocity is increased until the onset of
minimum fluidization. Then, as the velocity is further increased, the pressure drop decreases very
slightly, and then it remains practically unchanged as the bed continues to expand or increase in
porosity with increases in velocity. The bed resembles a boiling liquid. As the bed expands with
increase in velocity, it continues to retain its top horizontal surface. Eventually, as the velocity is
increased much further, entrainment of particles from the actual fluidized bed becomes appreciable.
The relation between bed height L and porosity ε is as follows for a bed having a uniform cross-
sectional area A. Since the volume LA(1 − ε) is equal to the total volume of solids if they existed as
one piece,

Equation 3.1-29. 

Equation 3.1-30. 

where L1 is height of bed with porosity ε1 and L2 is height with porosity ε2.

Pressure drop and minimum fluidizing velocity

As a first approximation, the pressure drop at the start of fluidization can be determined as follows.
The force obtained from the pressure drop times the cross-sectional area must equal the gravita-
tional force exerted by the mass of the particles minus the buoyant force of the displaced fluid:

Equation 3.1-31. 

Hence,

Equation 3.1-32. 

Often we have irregular-shaped particles in the bed, and it is more convenient to use the particle
size and shape factor in the equations. First we substitute for the effective mean diameter Dp the
term φSDP, where DP now represents the particle size of a sphere having the same volume as the
particle and φS the shape factor. Often, the value of DP is approximated by using the nominal size
from a sieve analysis. Then Eq. (3.1-20) for pressure drop in a packed bed becomes

Equation 3.1-33. 

where ΔL = L, bed length in m.
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Equation (3.1-33) can now be used by a small extrapolation for packed beds to calculate the mini-
mum fluid velocity  at which fluidization begins by substituting  for v', εmf for ε, and Lmf for
L, and combining the result with Eq. (3.1-32) to give

Equation 3.1-34. 

Defining a Reynolds number as

Equation 3.1-35. 

Eq. (3.1-34) becomes

Equation 3.1-36. 

When NRe,mf < 20 (small particles), the first term of Eq. (3.1-36) can be dropped, and when NRe,mf
> 1000 (large particles), the second term drops out.
If the terms εmf and/or φS are not known, Wen and Yu (W4) found for a variety of systems that

Equation 3.1-37. 

Substituting into Eq. (3.1-36), the following simplified equation is obtained:

Equation 3.1-38. 

This equation holds for a Reynolds-number range of 0.001 to 4000, with an average deviation of ±
25%. Alternative equations are available in the literature (K1, W4).

EXAMPLE 3.1-6. Minimum Velocity for Fluidization
Solid particles having a size of 0.12 mm, a shape factor φS of 0.88, and a density of 1000 kg/m3 are to be
fluidized using air at 2.0 atm abs and 25°C. The voidage at minimum fluidizing conditions is 0.42.

a. If the cross section of the empty bed is 0.30 m2 and the bed contains 300 kg of solid, calculate the
minimum height of the fluidized bed.

b. Calculate the pressure drop at minimum fluidizing conditions.
c. Calculate the minimum velocity for fluidization.
d.

Use Eq. (3.1-38) to calculate  assuming that data for φS and εmf are not available.
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Solution: For part (a), the volume of solids = 300 kg/(1000 kg/m3) = 0.300 m3. The height the solids would
occupy in the bed if ε1 = 0 is L1 = 0.300 m3/(0.30 m2 cross section) = 1.00 m. Using Eq. (3.1-30) and calling
Lmf = L2 and εmf = ε2,

Solving, Lmf = 1.724 m.

The physical properties of air at 2.0 atm and 25°C (Appendix A.3) are μ = 1.845 × 10-5 Pa · s, ρ = 1.187 × 2 =
2.374 kg/m3, and p = 2.0265 × 105 Pa. For the particle, DP = 0.00012 m, ρp = 1000 kg/m3, φS = 0.88, and εmf
= 0.42.

For part (b), using Eq. (3.1-32) to calculate Δp,

To calculate  for part (c), Eq. (3.1-36) is used:

Solving,

Using the simplified Eq. (3.1-38) for part (d),

Solving,  = 0.004618 m/s.
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Expansion of fluidized beds

For the case of small particles and where NRe,f = Dpν'ρ/μ < 20, we can estimate the variation of
porosity or bed height L as follows. We assume that Eq. (3.1-36) applies over the whole range of
fluid velocities, with the first term being neglected. Then, solving for ν',

Equation 3.1-39. 

We find that all terms except ε are constant for the particular system, and ε depends upon ν'. This
equation can be used with liquids to estimate ε with ε < 0.80. However, because of clumping and
other factors, errors can occur when used for gases.

The flow rate in a fluidized bed is limited on the one hand by the minimum  and on the other by
entrainment of solids from the bed proper. This maximum allowable velocity is approximated as the
terminal settling velocity  of the particles. (See Section 13.3 for methods for calculating this set-
tling velocity.) Approximate equations for calculating the operating range are as follows (P2). For
fine solids and NRe,f < 0.4,

Equation 3.1-40. 

For large solids and NRe,f > 1000,

Equation 3.1-41. 

EXAMPLE 3.1-7. Expansion of Fluidized Bed

Using the data from Example 3.1-6, estimate the maximum allowable velocity . Using an operating velocity
of 3.0 times the minimum, estimate the voidage of the bed.

Solution: From Example 3.1-6, NRe,mf = 0.07764,  = 0.005029 m/s, and εmf = 0.42. Using Eq. (3.1-40),
the maximum allowable velocity is

Using an operating velocity ν' of 2.0 times the minimum,

To determine the voidage at this new velocity, we substitute into Eq. (3.1-39) using the known values at min-
imum fluidizing conditions to determine K1:

Solving K1 = 0.03938. Then using the operating velocity in Eq. (3.1-39),
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Solving, the voidage of the bed ε = 0.503 at the operating velocity.

Minimum bubbling velocity

The fluidization velocity at which bubbles are first observed is called the minimum bubbling veloc-
ity, . For Group B particles, which exhibit bubbling fluidization,  is reasonably close to

. For Group A particles,  is substantially greater than . The following equation (G3) can
be used to calculate :

Equation 3.1-42. 

where  is minimum bubbling velocity in m/s, μ is viscosity in Pa · s, and ρ is gas density in kg/
m3. If the calculated  is greater than the calculated  by Eq. (3.1-42), then the  should
be used as the minimum bubbling velocity (G4).

EXAMPLE 3.1-8. Minimum Bubbling Velocity

Using data from Example 3.1-6, calculate the .

Solution: Substituting into Eq. (3.1-42),

This is substantially greater than the  of 0.005029 m/s.

MEASUREMENT OF FLOW OF FLUIDS
It is important to be able to measure and control the amount of material entering and leaving a
chemical or other processing plant. Since many of the materials are in the form of fluids, they are
flowing in pipes or conduits. Many different types of devices are used to measure the flow of fluids.
The simplest are those that measure directly the volume of the fluids, such as ordinary gas and
water meters and positive-displacement pumps. Current meters make use of an element, such as
a propeller or cups on a rotating arm, which rotates at a speed determined by the velocity of the
fluid passing through it. Very widely used for fluid metering are the pitot tube, venturi meter, orifice
meter, and open-channel weirs.

Pitot Tube

The pitot tube is used to measure the local velocity at a given point in the flow stream and not the
average velocity in the pipe or conduit. In Fig. 3.2-1a, a sketch of this simple device is shown. One
tube, the impact tube, has its opening normal to the direction of flow, while the static tube has its
opening parallel to the direction of flow.
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Figure 3.2-1. Diagram of pitot tube: (a) simple tube, (b) tube with static pressure holes.

The fluid flows into the opening at point 2; pressure builds up and then remains stationary at this
point, called the stagnation point. The difference in the stagnation pressure at point 2 and the static
pressure measured by the static tube represents the pressure rise associated with deceleration of
the fluid. The manometer measures this small pressure rise. If the fluid is incompressible, we can
write the Bernoulli equation (2.7-32) between point 1, where the velocity ν1 is undisturbed before
the fluid decelerates, and point 2, where the velocity ν2 is zero:

Equation 3.2-1. 

Setting ν2 = 0 and solving for ν1,

Equation 3.2-2. 

where ν is the velocity v1 in the tube at point 1 in m/s, p2 is the stagnation pressure, ρ is the density
of the flowing fluid at the static pressure p1, and Cp is a dimensionless coefficient to take into account
deviations from Eq. (3.2-1) that generally varies between about 0.98 and 1.0. For accurate use, the
coefficient should be determined by calibration of the pitot tube. This equation applies to incom-
pressible fluids but can be used to approximate the flow of gases at moderate velocities and pres-
sure changes of about 10% or less of the total pressure. For gases the pressure change is often
quite low and, hence, accurate measurement of velocities is difficult.
The value of the pressure drop p2 - p1 or Δp in Pa is related to Δh, the reading on the manometer,
by Eq. (2.2-14) as follows:

Equation 3.2-3. 

where ρA is the density of the fluid in the manometer in kg/m3 and Δh is the manometer reading in
m. In Fig. 3.2-1b, a more compact design is shown with concentric tubes. In the outer tube, static
pressure holes are parallel to the direction of flow. Further details are given elsewhere (P1).
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Since the pitot tube measures velocity at only one point in the flow, several methods can be used
to obtain the average velocity in the pipe. In the first method the velocity is measured at the exact
center of the tube to obtain νmax. Then by using Fig. 2.10-2, the νav can be obtained. Care should
be taken to have the pitot tube at least 100 diameters downstream from any pipe obstruction. In the
second method, readings are taken at several known positions in the pipe cross section and then,
using Eq. (2.6-17), a graphical or numerical integration is performed to obtain νav.

EXAMPLE 3.2-1. Flow Measurement Using a Pitot Tube
A pitot tube similar to Fig. 3.2-1a is used to measure the airflow in a circular duct 600 mm in diameter. The
flowing air temperature is 65.6°C. The pitot tube is placed at the center of the duct and the reading Δh on the
manometer is 10.7 mm of water. A static-pressure measurement obtained at the pitot tube position is 205 mm
of water above atmospheric. The pitot-tube coefficient Cp = 0.98.

a. Calculate the velocity at the center and the average velocity.
b. Calculate the volumetric flow rate of the flowing air in the duct.

Solution: For part (a), the properties of air at 65.6°C. from Appendix A.3 are μ = 2.03 × 10-5 Pa · s, ρ = 1.043
kg/m3 (at 101.325 kPa). To calculate the absolute static pressure, the manometer reading Δh = 0.205 m of
water indicates the pressure above 1 atm abs. Using Eq. (2.2-14), the water density as 1000 kg/m 3, and
assuming 1.043 kg/m3 as the air density,

Then the absolute static pressure p1 = 1.01325 × 105 + 0.02008 × 105 = 1.0333 × 105 Pa. The correct air
density in the flowing air is (1.0333 × 105/1.01325 × 105)(1.043) = 1.063 kg/m3. This correct value, when used
instead of 1.043, would have a negligible effect on the recalculation of p1.

To calculate Δp for the pitot tube, Eq. (3.2-3) is used:

Using Eq. (3.2-2), the maximum velocity at the center is

The Reynolds number, using the maximum velocity, is

From Fig. 2.10-2, νav/νmax = 0.85. Then, νav = 0.85(13.76) = 11.70 m/s.

To calculate the flow rate for part (b), the cross-sectional area of the duct, A = (π/4)(0.600)2 = 0.2827 m2. The
flow rate = 0.2827(11.70) = 3.308 m3/s.

Venturi Meter

A venturi meter, shown in Fig. 3.2-2, is usually inserted directly into a pipeline. A manometer or other
device is connected to the two pressure taps shown and measures the pressure difference p1 −
p2 between points 1 and 2. The average velocity at point 1 where the diameter is D1 m is ν1 m/s,
and at point 2 or the throat the velocity is ν2 and the diameter D2. Since the narrowing down from
D1 to D2 and the expansion from D2 back to D1 is gradual, little frictional loss due to contraction and
expansion is incurred.
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Figure 3.2-2. Venturi flow meter.

To derive the equation for the venturi meter, friction is neglected and the pipe is assumed horizontal.
Assuming turbulent flow and writing the mechanical-energy-balance equation (2.7-28) between
points 1 and 2 for an incompressible fluid,

Equation 3.2-4. 

The continuity equation for constant p is

Equation 3.2-5. 

Combining Eqs. (3.2-4) and (3.2-5) and eliminating ν1,

Equation 3.2-6. 

To account for the small friction loss, an experimental coefficient Cν is introduced to give

Equation 3.2-7. 

This holds for liquids and very small pressure drops in gases of less than 1%. For many meters and
a Reynolds number >104 at point 1, Cν is about 0.98 for pipe diameters below 0.2 m and 0.99 for
larger sizes. However, these coefficients can vary, and individual calibration is recommended if the
manufacturer's calibration is not available.
To calculate the volumetric flow rate, the velocity ν2 is multiplied by the area A2:

Equation 3.2-8. 
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For the measurement of compressible flow of gases, the adiabatic expansion from p1 to p2 pressure
must be allowed for in Eq. (3.2-7). A similar equation and the same coefficient Cν are used along
with the dimensionless expansion correction factor Y (shown in Fig. 3.2-3 for air) as follows:

Equation 3.2-9. 

Figure 3.2-3. Expansion factor for air in venturi, flow nozzle, and orifice. [Calculated from equations and data in references
(A2, M2, S3).]

where m is flow rate in kg/s, ρ1 is density of the fluid upstream at point 1 in kg/m3, and A2 is cross-
sectional area at point 2 in m2.
The pressure difference p1 − p2 occurs because the velocity is increased from ν1 to ν2. However,
farther down the tube the velocity returns to its original value of ν1 for liquids. Because of frictional
losses, some of the difference p1 − p2 is not fully recovered downstream to the original p1. In a
properly designed venturi meter, the permanent loss is about 10% of the differential p1 − p2, and
this represents power loss. A venturi meter is often used to measure flows in large lines, such as
city water systems.

Orifice Meter

For ordinary installations in a process plant the venturi meter has several disadvantages. It occupies
a lot of space and is expensive. Also, the throat diameter is fixed, so that if the flow-rate range is
changed considerably, inaccurate pressure differences may result. The orifice meter overcomes
these objections but at the price of a much larger permanent head or power loss.
A typical sharp-edged orifice is shown in Fig. 3.2-4. A machined and drilled plate having a hole of
diameter D0 is mounted between two flanges in a pipe of diameter D1. Pressure taps at points 1
upstream and 2 downstream measure p1 − p2. The exact positions of the two taps are somewhat
arbitrary: in one type of meter the taps are installed about 1 pipe diameter upstream and 0.3 to 0.8
pipe diameter downstream. The fluid stream, once past the orifice plate, forms a vena contracta or
free-flowing jet.
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Figure 3.2-4. Orifice flow meter.

The equation for the orifice is similar to Eq. (3.2-7):

Equation 3.2-10. 

where ν0 is the velocity in the orifice in m/s, D0 is the orifice diameter in m, and C0 is the dimen-
sionless orifice coefficient. The orifice coefficient C0 is always determined experimentally. If the
NRe at the orifice is above 20000 and D0/D1 is less than about 0.5, the value of C0 is approximately
constant and has the value 0.61, which is adequate for design for liquids or gases (M2, P1). Below
20000 the coefficient rises sharply and then drops, and a correlation for C0 is given elsewhere (P1).
As in the case of the venturi, for the measurement of compressible flow of gases in an orifice, a
correction factor Y given in Fig. 3.2-3 for air is used as follows:

Equation 3.2-11. 

where m is flow rate in kg/s, ρ1 is upstream density in kg/m3, and A0 is the cross-sectional area of
the orifice. For liquids, Y is 1.0.
The permanent pressure loss is much higher than for a venturi because of the eddies formed when
the jet expands below the vena contracta. This loss depends on D0/D1 and is as follows:

Equation 3.2-12. 

where β = D0/D1 (P1) and p4 is the fully recovered pressure 4 -8 pipe diameters downstream. For

β = , this power loss is 75% of p1 - p2.
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EXAMPLE 3.2-2. Metering Oil Flow by an Orifice
A sharp-edged orifice having a diameter of 0.0566 m is installed in a 0.1541-m pipe through which oil having
a density of 878 kg/m3 and a viscosity of 4.1 cp is flowing. The measured pressure difference across the orifice
is 93.2 kN/m2. Calculate the volumetric flow rate in m3/s. Assume that C0 = 0.61.

Solution:

Substituting into Eq. (3.2-10).

The NRe is calculated see if it is greater than 2 × 104 for C0 = 0.61:

Hence, the Reynolds number is above 2 × 104.

Flow-Nozzle Meter

A typical flow nozzle is shown in Fig. 3.2-5. It is essentially a short cylinder with the approach being
elliptical in shape. This meter has characteristics similar to those of the venturi meter but is shorter
and much less expensive. The length of the straight portion of the throat is about one-half the di-
ameter of the throat, D2. The upstream pressure tap p1 is 1 pipe diameter from the inlet-nozzle face,

and the downstream tap p2 is  pipe diameter from the inlet-nozzle face.
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Figure 3.2-5. Flow-nozzle meter.

The equation for flow for liquids is the same as Eq. (3.2-7) for the venturi, with the coefficient Cn for
the flow nozzle replacing Cv for the venturi. Also, the equation for compressible flow of gases for
the flow nozzle is the same as Eq. (3.2-9) for the venturi, with the coefficient Cn. The expansion
factor Y is the same for the flow nozzle and the venturi.
For the flow nozzle the coefficient Cn ranges from 0.95 at a pipe Reynolds number of 104, 0.98 at
105, and 0.99 at 106 or above (P1, S3). The permanent pressure loss (p1 − p4) is as follows, where
p4 is the final, fully recovered downstream pressure:

Equation 3.2-13. 

where β = D2/D1. This loss is greater than that for venturi meters and less than that for orifice meters.

For β = , this power loss is 60% of p1 − p2.

Variable-Area Flow Meters (Rotameters)

In Fig. 3.2-6 a variable-area flow meter is shown. The fluid enters at the bottom of the tapered glass
tube, flows through the annular area around the tube, and exits at the top. The float remains sta-
tionary. The differential head or pressure drop is held constant. At a higher flow rate the float rises
and the annular area increases to keep a constant pressure drop. The height of rise in the tube is
calibrated with the flow rate, and the relation between the meter reading and the flow rate is ap-
proximately linear.
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Figure 3.2-6. Rotameter: (a) flow diagram with glass tube, (b) spherical float, (c) viscosity-insensitive float.

For a given float of density pf and a fluid density ρA, the mass flow rate mA is given by

Equation 3.2-14. 

where qA, volumetric flow rate, is the reading on the rotameter, and K is a constant which is deter-
mined experimentally. If a fluid ρB is used instead of ρA, at the same height or reading of qA on the
rotameter and assuming K does not vary appreciably, the following approximation can be used:

Equation 3.2-15. 

For gases where ρf ≫ ρA and ρB,  Note that the reading on the rotameter is
taken at the highest and widest point of the float.

Other Types of Flow Meters

Many other types of flow meters are available; the more important ones are discussed briefly as
follows:

Turbine- and paddle-wheel meters

A turbine wheel or a paddle wheel is placed inside a pipe, and the rotary speed depends on the flow
rate of the fluid. Residential and industrial gas and water meters are often of the rotary wheel type.
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Thermal-gas mass flow meters

Gas flowing in a tube is divided into a constant ratio because of laminar flow into a main stream and
a small stream in a sensor tube. A small but constant amount of heat is added to the sensor tube
flow. By measuring the temperature rise, the output temperature rise can be related to the gas mass
flow rate. These meters are mass flow meters and are unaffected by temperature and pressure.

Magnetic flow meters

A magnetic field is generated across the conductive fluid flowing in a pipe. Using Faraday's law of
electromagnetic inductance, the induced voltage is directly proportional to the flow velocity (D3).
The meter is insensitive to changes in density and viscosity. The meter cannot be used with most
hydrocarbons because of their low conductivity.

Coriolis mass flow meter

This meter is insensitive to operating conditions of viscosity, density, type of fluid, and slurries. Fluid
from the main flow enters two U-tube side channels (D3). The fluid induces a Coriolis force according
to Newton's second law. The tubes then twist slightly, and the measured twist angle is proportional
to the mass flow rate.

Vortex-shedding flow meter

When a fluid flows past a blunt object, the fluid forms vortices or eddies (D3). The vortices are
counted and the signal is proportional to the flow rate.

Flow in Open Channels and Weirs

In many instances in process engineering and in agriculture, liquids are flowing in open channels
rather than closed conduits. To measure the flow rates, weir devices are often used. A weir is a dam
over which the liquid flows. The two main types of weirs are the rectangular weir and the triangular
weir shown in Fig. 3.2-7. The liquid flows over the weir, and the height h0 (weir head) in m is meas-
ured above the flat base or the notch as shown. This head should be measured at a distance of
about 3h0 m upstream of the weir by a level or float gage.

Figure 3.2-7. Types of weirs: (a) rectangular, (b) triangular.

The equation for the volumetric flow rate q in m3/s for a rectangular weir is given by

Equation 3.2-16. 

where L = crest length in m, g = 9.80665 m/s2, and h0 = weir head in m. This is called the modified
Francis weir formula and it agrees with experimental values within 3% if L > 2h0, velocity upstream
< 0.6 m/s, h0 > 0.09 m, and the height of the crest above the bottom of the channel > 3h0. In English
units L and h are in ft, q in ft3/s, and g = 32.174 ft/s2.
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For the triangular notch weir,

Equation 3.2-17. 

Both Eqs. (3.2-16) and (3.2-17) apply only to water. For other liquids, see data given elsewhere (P1).

PUMPS AND GAS-MOVING EQUIPMENT

Introduction

In order to make a fluid flow from one point to another in a closed conduit or pipe, it is necessary to
have a driving force. Sometimes this force is supplied by gravity, where differences in elevation
occur. Usually, the energy or driving force is supplied by a mechanical device such as a pump or
blower, which increases the mechanical energy of the fluid. This energy may be used to increase
the velocity (move the fluid), the pressure, or the elevation of the fluid, as seen in the mechanical-
energy-balance equation (2.7-28), which relates ν, p, ρ, and work. The most common methods of
adding energy are by positive displacement or centrifugal action.
Generally, the word "pump" designates a machine or device for moving an incompressible liquid.
Fans, blowers, and compressors are devices for moving gas (usually air). Fans discharge large
volumes of gas at low pressures on the order of several hundred mm of water. Blowers and com-
pressors discharge gases at higher pressures. In pumps and fans the density of the fluid does not
change appreciably, and incompressible flow can be assumed. Compressible flow theory is used
for blowers and compressors.

Pumps

Power and work required

Using the total mechanical-energy-balance equation (2.7-28) on a pump and piping system, the
actual or theoretical mechanical energy WS J/kg added to the fluid by the pump can be calculated.
Example 2.7-5 shows such a case. If η is the fractional efficiency and Wp the shaft work delivered
to the pump, Eq. (2.7-30) gives

Equation 3.3-1. 

The actual or brake power of a pump is as follows:

Equation 3.3-2. 

where Wp is J/kg, m is the flow rate in kg/s, and 1000 is the conversion factor W/kW. In English
units, WS is in ft · lbf/lbm and m in lbm/s. The theoretical or fluid power is
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Equation 3.3-3. 

The mechanical energy WS in J/kg added to the fluid is often expressed as the developed head H
of the pump in m of fluid being pumped, where

Equation 3.3-4. 

To calculate the power of a fan where the pressure difference is on the order of a few hundred mm
of water, a linear average density of the gas between the inlet and outlet of the fan is used to calculate
WS and brake kW or horsepower.

Electric motor efficiency

Since most pumps are driven by electric motors, the efficiency of the electric motor must be taken
into account to determine the total electric power to the motor. Typical efficiencies ηe of electric

motors are as follows: 77% for -kW motors, 82% for 2 kW, 85% for 5 kW, 88% for 20 kW, 90% for
50 kW, 91% for 100 kW, and 93% for 500 kW and larger. Hence, the total electric power input equals
the brake power divided by the electric motor drive efficiency ηe:

Equation 3.3-5. 

Suction lift of pumps (NPSH)

The power calculated by Eq. (3.3-4) depends on the differences in pressures and not on the actual
pressures being above or below atmospheric pressure. However, the lower limit of the absolute
pressure in the suction (inlet) line to the pump is fixed by the vapor pressure of the liquid at the
temperature of the liquid in the suction line. If the pressure on the liquid in the suction line drops
below the vapor pressure, some of the liquid flashes into vapor (cavitation). Then no liquid can be
drawn into the pump, and vibration can occur.
To avoid flashes of vapor or cavitation, the pressure at the inlet of the pump must be greater than
this vapor pressure and exceed it by a value termed the net positive suction head required, or
(NPSH)R. Pump manufacturers measure these values experimentally and include them with the
pumps furnished.
For water below 100°C at 1750 rpm and centrifugal pumps, typical values of (NPSH)R are as follows
(P4): For pressures 3500 kPa (500 psig) or below: up to 200 gpm, 1.5 m (5 ft); 500 gpm, 2.1 m (7
ft); 1000 gpm, 3 m (10 ft); 2000 gpm, 5.5 m (18 ft). At pressures of 7000 kPa (1000 psig) the values
are doubled at 200 gpm or less and at 2000 gpm increased by 20%. At an rpm of 3550, the
(NPSH)R increases by about a factor of 2.2.
To calculate the net positive suction head that will be available (NPSH)A at the pump suction for the
system shown in Fig. 3.3-1, Eq. (3.3-6) can be used:
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Equation 3.3-6. 

Figure 3.3-1. Diagram for (NPSH)A available in a pumping system.

where (NPSH)A is in m (ft), ρ is density of liquid in kg/m3 (lbm/ft3), p1 is pressure above liquid surface
in N/m2 (lbf/ft2), pvp is vapor pressure of fluid at the given temperature in N/m2 (lbf/ft2), z1 is height
of open surface of liquid above pump centerline in m (ft), ΣF is friction loss in suction line to pump
from Eq. (2.10-18) in J/kg (ft lbf/lbm), and ν2/2 is velocity head in J/kg (ν2/2gc is ft lbf/lbm). Note that
in Eq. (3.3-6) for SI units, the (NPSH)A in m is multiplied by g to give J/kg.
For cold water and the case where all the terms in Eq. (3.3-6) are small except p1, at atmospheric
pressure the (NPSH)A is 10.3 m (33.9 ft). However, a practical limit is about 7.5 m (24.6 ft). The
available NPSH for a given pump should be at least 1 m (3 ft) more than that required by the man-
ufacturer.

EXAMPLE 3.3-1. (NPSH)A Available for Pump
Water at 50°C is in an open tank at atmospheric pressure. The pump is 3.0 m above the open tank level. The
velocity in the pipe is 0.9 m/s. The friction head loss in the pipe has been calculated as 1.0 m. The required
(NPSH)R for this pump is 2.0 m. Calculate the available (NPSH)A.

Solution: From Appendix A.2-3, ρ = 988.07 kg/m3. Also, the vapor pressure pvp = 12.349 kPa from A.2-9 and
p1 = 1.01325 × 105 Pa. Substituting into Eq. (3.3-6) and noting that z1 is negative and that the friction loss head
of 1.0 m is multiplied by g,

Solving, (NPSH)A = 5.14m

Hence, the available (NPSH)A of 5.14 m is sufficiently greater than that required of 2.0 m.
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Centrifugal pumps

Process industries commonly use centrifugal pumps. They are available in sizes of about 0.004 to
380 m3/min (1 to 100000 gal/min) and for discharge pressures from a few m of head to 5000 kPa
or so. A centrifugal pump in its simplest form consists of an impeller rotating inside a casing. Figure
3.3-2 shows a schematic diagram of a simple centrifugal pump.

Figure 3.3-2. Simple centrifugal pump.

The liquid enters the pump axially at point 1 in the suction line and then enters the rotating eye of
the impeller, where it spreads out radially. On spreading radially it enters the channels between the
vanes at point 2 and flows through these channels to point 3 at the periphery of the impeller. From
here it is collected in the volute chamber 4 and flows out the pump discharge at 5. The rotation of
the impeller imparts a high-velocity head to the fluid, which is changed to a pressure head as the
liquid passes into the volute chamber and out the discharge. Some pumps are also made as two-
stage or even multistage pumps.
Many complicating factors determine the actual efficiency and performance characteristics of a
pump. Hence, the actual experimental performance of the pump is usually employed. The perform-
ance is usually expressed by the pump manufacturer in terms of curves called characteristic
curves, which are usually for water. The head H in m produced will be the same for any liquid of the
same viscosity. The pressure produced, p = Hρ g, will be in proportion to the density. Viscosities of
less than 0.05 Pa · s (50 cp) have little effect on the head produced. The brake kW varies directly
as the density.
Pump efficiencies typical of centrifugal pumps at rated capacities are as follows: 50% for 0.075 m3/
min (20 gal/min), 62% for 0.19 m3/min (50 gal/min), 68% for 0.38 m3/min (100 gal/min), 75% for
0.76 m3/min (200 gal/min), 82% for 1.89 m3/min (500 gal/min), and 85% for 3.8 m3/min (1000 gal/
min).
As rough approximations, the following relationships, called affinity laws, can be used for a given
pump. The capacity q1 in m3/s is directly proportional to the rpm N1 or

Equation 3.3-7. 

The head H1 is proportional to  or

Equation 3.3-8. 
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The power consumed W1 is proportional to the product of H1q1, or

Equation 3.3-9. 

A given pump can be modified when needed for a different capacity by changing the impeller size.
Then the affinity laws for a constant-rpm N are as follows: The capacity q is proportional to the
diameter D, the head H is proportional to D2, and the brake horsepower W is proportional to D3.
In most pumps, the speed is generally not varied. Characteristic curves for a typical single-stage
centrifugal pump operating at a constant speed are given in Fig. 3.3-3 Most pumps are usually rated
on the basis of head and capacity at the point of peak efficiency. The efficiency reaches a peak at
about 50 gal/min flow rate. As the discharge rate in gal/min increases, the developed head drops.
The brake hp increases, as expected, with flow rate.

Figure 3.3-3. Characteristic curves for a single-stage centrifugal pump with water. (From W. L. Badger and J. T. Banchero,
Introduction to Chemical Engineering. New York: McGraw-Hill Book Company, 1955. With permission.)

EXAMPLE 3.3-2. Calculation of Brake Horsepower of a Pump
In order to see how the brake-hp curve is determined, calculate the brake hp at 40 gal/min flow rate for the
pump in Fig. 3.3-3.

Solution: At 40 gal/min, the efficiency η from the curve is about 60% and the head H is 38.5 ft. A flow rate of
40 gal/min of water with a density of 62.4 lb mass/ft3 is

The work WS is as follows, from Eq. (3.3-4):

The brake hp from Eq. (3.3-2) is
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This value agrees with the value on the curve in Fig. 3.3-3.

Positive-displacement pumps

In this class of pumps, a definite volume of liquid is drawn into a chamber and then forced out of the
chamber at a higher pressure. There are two main types of positive-displacement pumps. In the
reciprocating pump the chamber is a stationary cylinder, and liquid is drawn into the cylinder by
withdrawal of a piston in the cylinder. Then the liquid is forced out by the piston on the return stroke.
In the rotary pump the chamber moves from inlet to discharge and back again. In a gear rotary pump
two intermeshing gears rotate, and liquid is trapped in the spaces between the teeth and forced out
the discharge.
Reciprocating and rotary pumps can be used to very high pressures, whereas centrifugal pumps
are limited in their head and are used for lower pressures. Centrifugal pumps deliver liquid at uniform
pressure without shocks or pulsations and can handle liquids with large amounts of suspended
solids. In general, in chemical and biological processing plants, centrifugal pumps are primarily
used.
Equations (3.3-1) through (3.3-5) hold for calculation of the power of positive-displacement pumps.
At a constant speed, the flow capacity will remain constant with different liquids. In general, the
discharge rate will be directly dependent upon the speed. The power increases directly as the head,
and the discharge rate remains nearly constant as the head increases.
Pump efficiencies η of reciprocating pumps used to calculate brake horsepower are as follows: 55%
at 2.2 kW (3 hp), 70% at 7.5 kW (10 hp), 77% at 14.9 kW (20 hp), 85% at 37 kW (50 hp), and 90%
at 373 kW (500 hp).

Gas-Moving Machinery

Gas-moving machinery comprises mechanical devices used for compressing and moving gases.
They are often classified or considered from the standpoint of the pressure heads produced and
include fans for low pressures, blowers for intermediate pressures, and compressors for high pres-
sures.

Fans

The commonest method for moving small volumes of gas at low pressures is by means of a fan.
Large fans are usually centrifugal and their operating principle is similar to that of centrifugal pumps.
The discharge heads are low, from about 0.1 m to 1.5 m H2O. However, in some cases much of the
added energy of the fan is converted to velocity energy and a small amount to pressure head.
In a centrifugal fan, the centrifugal force produced by the rotor causes a compression of the gas,
called the static pressure head. Also, since the velocity of the gas is increased, a velocity head is
produced. Both the static-pressure-head increase and velocity-head increase must be included in
estimating efficiency and power. Operating efficiencies are in the range 40–70%. The operating
pressure of a fan is generally given as inches of water gage and is the sum of the velocity head and
the static pressure of the gas leaving the fan. Incompressible flow theory can be used to calculate
the power of fans.
When the rpm or speed of centrifugal fans varies, the performance equations are similar to Eqs.
(3.3-7)-(3.3-9) for centrifugal pumps.

EXAMPLE 3.3-3. Brake-kW Power of a Centrifugal Fan
It is desired to use 28.32 m3/min of air (metered at a pressure of 101.3 kPa and 294.1 K) in a process. This
amount of air, which is at rest, enters the fan suction at a pressure of 741.7 mm Hg and a temperature of 366.3
K and is discharged at a pressure of 769.6 mm Hg and a velocity of 45.7 m/s. A centrifugal fan having a fan
efficiency of 60% is to be used. Calculate the brake-kW power needed.
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Solution: Incompressible flow can be assumed, since the pressure drop is only (27.9/741.7)100, or 3.8% of
the upstream pressure. The average density of the flowing gas can be used in the mechanical-energy-balance
equation.

The density at the suction, point 1, is

(The molecular weight of 28.97 for air, the volume of 22.414 m3/kg mol at 101.3 kPa, and 273.2 K were obtained
from Appendix A.1.) The density at the discharge, point 2, is

The average density of the gas is

The mass flow rate of the gas is

The developed pressure head is

The developed velocity head for ν1 = 0 is

Writing the mechanical-energy-balance equation (2.7-28),

Setting z1 = 0, z2 = 0, v1 = 0, and Σ F = 0, and solving for WS,

Substituting into Eq. (3.3-2),
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Blowers and compressors

For handling gas volumes at higher pressure rises than fans, several distinct types of equipment
are used. Turboblowers or centrifugal compressors are widely used to move large volumes of gas
for pressure rises from about 5 kPa to several thousand kPa. The principles of operation for a
turboblower are the same as for a centrifugal pump. The turboblower resembles the centrifugal
pump in appearance, the main difference being that the gas in the blower is compressible. The head
of the turboblower, as in a centrifugal pump, is independent of the fluid handled. Multistage turbo-
blowers are often used to go to the higher pressures.
Rotary blowers and compressors are machines of the positive-displacement type and are essentially
constant-volume flow-rate machines with variable discharge pressure. Changing the speed will
change the volume flow rate. Details of construction of the various types (P1) vary considerably,
and pressures up to about 1000 kPa can be obtained, depending on the type.
Reciprocating compressers which are of the positive displacement type using pistons are available
for higher pressures. Multistage machines are also available for pressures up to 10 000 kPa or more.

Equations for Compression of Gases

In blowers and compressors, pressure changes are large and compressible flow occurs. Since the
density changes markedly, the mechanical-energy-balance equation must be written in differential
form and then integrated to obtain the work of compression. In compression of gases the static-
head terms, velocity-head terms, and friction terms are dropped and only the work term dW and the
dp/ρ term remain in the differential form of the mechanical-energy equation; or,

Equation 3.3-10. 

Integration between the suction pressure p1 and discharge pressure p2 gives the work of compres-
sion:

Equation 3.3-11. 

Isothermal compression

To integrate Eq. (3.3-11) for a perfect gas, either isothermal or adiabatic compression is assumed.
For isothermal compression, where the gas is cooled on compression, p/ρ is a constant equal to
RT/M, where R = 8314.3 J/kg mol · K in SI units and 1545.3 ft · lbf/lb mol · °R in English units. Then,

Equation 3.3-12. 

Solving for ρ in Eq. (3.3-12) and substituting it in Eq. (3.3-11), the work for isothermal compression
is
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Equation 3.3-13. 

Also, T1 = T2, since the process is isothermal.

Adiabatic compression

For adiabatic compression, the fluid follows an isentropic path and

Equation 3.3-14. 

where γ = cp/cν, the ratio of heat capacities. By combining Eqs. (3.3-11) and (3.3-14) and integrating,

Equation 3.3-15. 

The adiabatic temperatures are related by

Equation 3.3-16. 

To calculate the brake power when the efficiency is η,

Equation 3.3-17. 

where m = kg gas/s and WS = J/kg.
The values of γ are approximately 1.40 for air, 1.31 for methane, 1.29 for SO2, 1.20 for ethane, and
1.40 for N2 (P1). For a given compression ratio, the work for isothermal compression in Eq.
(3.3-13) is less than the work for adiabatic compression in Eq. (3.3-15). Hence, cooling is sometimes
used in compressors.

EXAMPLE 3.3-4. Compression of Methane
A single-stage compressor is to compress 7.56 × 10-3 kg mol/s of methane gas at 26.7°C and 137.9 kPa abs
to 551.6 kPa abs.

a. Calculate the power required if the mechanical efficiency is 80% and the compression is adiabatic.
b. Repeat, but for isothermal compression.

Solution: For part (a), p1 = 137.9 kPa, p2 = 551.6 kPa, M = 16.0 kg mass/kg mol, and T1 = 273.2 + 26.7 =
299.9 K. The mass flow rate per sec is
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Substituting into Eq. (3.3-15) for γ = 1.31 for methane and p2/p1 = 551.6/137.9 = 4.0/1,

Using Eq. (3.3-17),

For part (b), using Eq. (3.3-13) for isothermal compression,

Hence, isothermal compression uses 15.8% less power.

Polytropic compression

In large compressors neither isothermal nor adiabatic compression is achieved. This polytropic path
is

Equation 3.3-18. 

For isothermal compression n = 1.0 and for adiabatic, n = γ. The value of n is found by measuring
the pressure p1 and density ρ1 at the inlet and p2 and ρ2 at the discharge and substituting these
values into Eq. (3.3-18).

Multistage compression ratios

Water cooling is used between each stage in multistage compressors to reduce the outlet temper-
ature to near the inlet temperature for minimum power requirement. The compression ratios should
be the same for each stage so that the total power is a minimum. This gives the same power in each
stage. Hence, for n stages, the compression ratio (pb/pa) for each stage is

Equation 3.3-19. 
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where p1 is the inlet pressure and pn the outlet pressure from n stages. For two stages, the com-

pression ratio is .

AGITATION AND MIXING OF FLUIDS AND POWER
REQUIREMENTS

Purposes of Agitation

In the chemical and other processing industries, many operations are dependent to a great extent
on effective agitation and mixing of fluids. Generally, agitation refers to forcing a fluid by mechanical
means to flow in a circulatory or other pattern inside a vessel. Mixing usually implies the taking of
two or more separate phases, such as a fluid and a powdered solid or two fluids, and causing them
to be randomly distributed through one another.
There are a number of purposes for agitating fluids, some of which are briefly summarized:

1. Blending of two miscible liquids, such as ethyl alcohol and water.
2. Dissolving solids in liquids, such as salt in water.
3. Dispersing a gas in a liquid as fine bubbles, such as oxygen from air in a suspension of mi-

croorganisms for fermentation or for the activated sludge process in waste treatment.
4. Suspending of fine solid particles in a liquid, as in the catalytic hydrogenation of a liquid, where

solid catalyst particles and hydrogen bubbles are dispersed in the liquid.
5. Agitation of the fluid to increase heat transfer between the fluid and a coil or jacket in the vessel

wall.

Equipment for Agitation

Generally, liquids are agitated in a cylindrical vessel which can be closed or open to the air. The
height of liquid is approximately equal to the tank diameter. An impeller mounted on a shaft is driven
by an electric motor. A typical agitator assembly is shown in Fig. 3.4-1.

Figure 3.4-1. Baffled tank and three-blade propeller agitator with axial-flow pattern: (a) side view, (b) bottom view.
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Three-blade propeller agitator

There are several types of agitators that are widely used. A common type, shown in Fig. 3.4-1, is a
three-bladed marine-type propeller similar to the propeller blade used in driving boats. The propeller
can be a side-entering type in a tank or be clamped on the side of an open vessel in an off-center
position. These propellers turn at high speeds of 400 to 1750 rpm (revolutions per minute) and are
used for liquids of low viscosity. The flow pattern in a baffled tank with a propeller positioned on the
center of the tank is shown in Fig. 3.4-1. This type of flow pattern is called axial flow since the fluid
flows axially down the center axis or propeller shaft and up on the sides of the tank as shown.

Paddle agitators

Various types of paddle agitators are often used at low speeds, between about 20 and 200 rpm.
Two-bladed and four-bladed flat paddles are often used, as shown in Fig. 3.4-2a. The total length

of the paddle impeller is usually 60–80% of the tank diameter and the width of the blade  to  of
its length. At low speeds mild agitation is obtained in an unbaffled vessel. At higher speeds baffles
are used, since, without baffles, the liquid is simply swirled around with little actual mixing. The
paddle agitator is ineffective for suspending solids, since good radial flow is present but little vertical
or axial flow. An anchor or gate paddle, shown in Fig. 3.4-2b, is often used. It sweeps or scrapes
the tank walls and sometimes the tank bottom. It is used with viscous liquids where deposits on
walls can occur and to improve heat transfer to the walls. However, it is a poor mixer. Paddle agi-
tators are often used to process starch pastes, paints, adhesives, and cosmetics.

Figure 3.4-2. Various types of agitators: (a) four-blade paddle, (b) gate or anchor paddle, (c) six-blade open turbine, (d)
pitched-blade (45°) turbine.

Turbine agitators

Turbines that resemble multibladed paddle agitators with shorter blades are used at high speeds
for liquids with a very wide range of viscosities. The diameter of a turbine is normally between 30
and 50% of the tank diameter. The turbines usually have four or six blades. Figure 3.4-3 shows a
flat six-blade turbine agitator with disk. In Fig. 3.4-2c a flat six-blade open turbine is shown. The
turbines with flat blades give radial flow, as shown in Fig. 3.4-3. They are also useful for good gas
dispersion; the gas is introduced just below the impeller at its axis and is drawn up to the blades
and chopped into fine bubbles. In the pitched-blade turbine shown in Fig. 3.4-2d, with the blades at
45°, some axial flow is imparted so that a combination of axial and radial flow is present. This type
is useful in suspending solids since the currents flow downward and then sweep up the solids.
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Figure 3.4-3. Baffled tank with six-blade turbine agitator with disk showing flow patterns: (a) side view, (b) bottom view, (c)
dimensions of turbine and tank.

Often a pitched-blade turbine with only four blades is used in suspension of solids. A high-efficiency,
three-blade impeller (B6, F2) shown in Fig. 3.4-4a is similar to a four-blade pitched turbine; however,
it features a larger pitch angle of 30–60° at the hub and a smaller angle of 10–30° at the tip. This
axial-flow impeller produces more fluid motion and mixing per unit of power and is very useful in
suspension of solids.

Figure 3.4-4. Other types of agitators: (a) high-efficiency, three-blade impeller, (b) double-helical-ribbon, (c) helical-screw.
[Reprinted with permission from André Bakker and Lewis E. Gates, Chem. Eng. Progr., 91 (Dec.), 25 (1995). Copyright by

the American Institute of Chemical Engineers.]

Helical-ribbon agitators

This type of agitator is used in highly viscous solutions and operates at a low RPM in the laminar
region. The ribbon is formed in a helical path and is attached to a central shaft. The liquid moves in
a tortuous flow path down the center and up along the sides in a twisting motion. Similar types are
the double-helical-ribbon agitator shown in Fig. 3.4-4b and the helical-screw impeller shown in Fig.
3.4-4c.

Agitator selection and viscosity ranges

The viscosity of the fluid is one of several factors affecting the selection of the type of agitator.
Indications of the viscosity ranges of these agitators are as follows. Propellers are used for fluid
viscosities below about 3 Pa · s (3000 cp); turbines can be used below about 100 Pa · s (100 000
cp); modified paddles such as anchor agitators can be used above 50 Pa · s to about 500 Pa · s
(500 000 cp); helical and ribbon-type agitators are often used above this range to about 1000 Pa ·
s and have been used up to 25 000 Pa · s. For viscosities greater than about 2.5 to 5 Pa · s (5000
cp) and above, baffles are not needed since little swirling is present above these viscosities.
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Flow Patterns in Agitation

The flow patterns in an agitated tank depend upon the fluid properties, the geometry of the tank, the
types of baffles in the tank, and the agitator itself. If a propeller or other agitator is mounted vertically
in the center of a tank with no baffles, a swirling flow pattern usually develops. Generally, this is
undesirable, because of excessive air entrainment, development of a large vortex, surging, and the
like, especially at high speeds. To prevent this, an angular off-center position can be used with
propellors with small horsepower. However, for vigorous agitation at higher power, unbalanced
forces can become severe and limit the use of higher power.
For vigorous agitation with vertical agitators, baffles are generally used to reduce swirling and still
promote good mixing. Baffles installed vertically on the walls of the tank are shown in Fig. 3.4-3.

Usually four baffles are sufficient, with their width being about  of the tank diameter for turbines
and propellers. The turbine impeller drives the liquid radially against the wall, where it divides with
one portion flowing upward near the surface and back to the impeller from above and the other
flowing downward. Sometimes, in tanks with large liquid depths much greater than the tank diam-
eter, two or three impellers are mounted on the same shaft, each acting as a separate mixer. The
bottom impeller is about 1.0 impeller diameter above the tank bottom.
In an agitation system, the volume flow rate of fluid moved by the impeller, or circulation rate, is
important in sweeping out the whole volume of the mixer in a reasonable time. Also, turbulence in
the moving stream is important for mixing, since it entrains the material from the bulk liquid in the
tank into the flowing stream. Some agitation systems require high turbulence with low circulation
rates, others low turbulence with high circulation rates. This often depends on the types of fluids
being mixed and on the amount of mixing needed.

Typical "Standard" Design of Turbine

The turbine agitator shown in Fig. 3.4-3 is the most commonly used agitator in the process industries.
For design of an ordinary agitation system, this type of agitator is often used in the initial design.
The geometric proportions of the agitation system which are considered as a typical "standard"
design are given in Table 3.4-1. These relative proportions are the basis for the major correlations
of agitator performance in numerous publications. (See Fig. 3.4-3c for nomenclature.)

Table 3.4-1. Geometric Proportions for a "Standard" Agitation System

 

In some cases W/Da =  for agitator correlations. The number of baffles is four in most uses. The
clearance or gap between the baffles and the wall is usually 0.10–0.15 J to ensure that liquid does
not form stagnant pockets next to the baffle and wall. In a few correlations the ratio of baffle to tank

diameter is J/Dt =  instead of .
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Power Used in Agitated Vessels

In the design of an agitated vessel, an important factor is the power required to drive the impeller.
Since the power required for a given system cannot be predicted theoretically, empirical correlations
have been developed to predict the power required. The presence or absence of turbulence can be
correlated with the impeller Reynolds number , defined as

Equation 3.4-1. 

where Da is the impeller (agitator) diameter in m, N is rotational speed in rev/s, ρ is fluid density in
kg/m3, and μ is viscosity in kg/m · s. The flow is laminar in the tank for  < 10, turbulent for

 > 104, and for a range between 10 and 104, the flow is transitional, being turbulent at the
impeller and laminar in remote parts of the vessel.
Power consumption is related to fluid density ρ, fluid viscosity μ, rotational speed N, and impeller
diameter Da by plots of power number Np versus . The power number is

Equation 3.4-2. 

where P = power in J/s or W. In English units, P = ft · lbf/s.
Figure 3.4-5 is a correlation (B3, R1) for frequently used impellers with Newtonian liquids contained
in baffled, cylindrical vessels. Dimensional measurements of baffle, tank, and impeller sizes are
given in Fig. 3.4-3c. These curves may also be used for the same impellers in unbaffled tanks when

 is 300 or less (B3, R1). When  is above 300, the power consumption for an unbaffled
vessel is considerably less than for a baffled vessel. Curves for other impellers are also available
(B3, R1).

Principles of Momentum Transfer and Applications 171

Chapter 3. Principles of Momentum Transfer and Applications. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



Curve 1. Flat six-blade turbine with disk (like Fig. 3.4-3 but six blades); Da/W = 5; four baffles each
Dt/J = 12.

Curve 2. Flat six-blade open turbine (like Fig. 3.4-2c); Da/W = 8; four baffles each Dt/J = 12.
Curve 3. Six-blade open turbine (pitched-blade) but blades at 45° (like Fig. 3.4-2d); Da/W = 8; four

baffles each Dt/J = 12.
Curve 4. Propeller (like Fig. 3.4-1); pitch = 2Da; four baffles each Dt/J = 10; also holds for same

propeller in angular off-center position with no baffles.
Curve 5. Propeller; pitch = Da; four baffles each Dt/J = 10; also holds for same propeller in angular

off-center position with no baffles.
Curve 6. High-efficiency impeller (like Fig. 3-4-4a); four baffles each Dt/J = 12.

[Curves 1, 2, and 3 reprinted with permission from R. L. Bates. P. L. Fondy, and R. R. Corpstein,
Ind. Eng. Chem. Proc. Des. Dev., 2, 310 (1963). Copyright by the American Chemical Society.

Curves 4 and 5 from J. H. Rushton, E. W. Costich, and H. J. Everett, Chem. Eng. Progr., 46, 395,
467 (1950). With permission.]

Figure 3.4-5. Power correlations for various impellers and baffles (see Fig. 3.4-3c for dimension Da, Dt, J, and W).

The power-number curve for Np for the high-efficiency, three-blade impeller is shown as curve 6 in
Fig. 3-4-5.

EXAMPLE 3.4-1. Power Consumption in an Agitator
A flat-blade turbine agitator with disk having six blades is installed in a tank similar to Fig. 3.4-3. The tank
diameter Dt is 1.83 m, the turbine diameter Da is 0.61 m, Dt = H, and the width W is 0.122 m. The tank contains
four baffles, each having a width J of 0.15 m. The turbine is operated at 90 rpm and the liquid in the tank has
a viscosity of 10 cp and a density of 929 kg/m3.

a. Calculate the required kW of the mixer.
b. For the same conditions, except for the solution having a viscosity of 100 000 cp, calculate the required

kW.

Solution: 
For part (a) the following data are given: Da = 0.61 m, W = 0.122 m, Dt = 1.83 m, J = 0.15 m, N = 90/60 = 1.50
rev/s, ρ = 929 kg/m3, and
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Using Eq. (3.4-1), the Reynolds number is

Using curve 1 in Fig. 3.4-5, since Da/W = 5 and Dt/J = 12, NP = 5 for  = 5.185 × 104. Solving for P in Eq.
(3.4-2) and substituting known values,

For part (b),

This is in the laminar flow region. From Fig. 3.4-5, NP = 14.

Hence, a 10 000-fold increase in viscosity only increases the power from 1.324 to 3.71 kW.

Variations of various geometric ratios from the "standard" design can have different effects on the
power number NP in the turbulent region of the various turbine agitators as follows (B3):

1. For the flat six-blade open turbine, NP ∝ (W/Da)1.0.
2. For the flat six-blade open turbine, varying Da/Dt from 0.25 to 0.50 has practically no effect on

NP.
3. With two six-blade open turbines installed on the same shaft and the spacing between the two

impellers (vertical distance between the bottom edges of the two turbines) being at least equal
to Da, the total power is 1.9 times a single flat-blade impeller. For two six-blade pitched-blade
(45°) turbines, the power is also about 1.9 times that of a single pitched-blade impeller.

4. A baffled, vertical square tank or a horizontal cylindrical tank has the same power number as
a vertical cylindrical tank. However, marked changes in the flow patterns occur.

The power number for a plain anchor-type agitator similar to Fig. 3.4-2b but without the two hori-
zontal crossbars is as follows for  < 100 (H2):
Equation 3.4-3. 

where Da/Dt = 0.90, W/Dt = 0.10, and C/Dt = 0.05.

The power number for a helical-ribbon agitator for very viscous liquids for  < 20 is as follows
(H2, P3):
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Equation 3.4-4. 

Equation 3.4-5. 

The typical dimensional ratios used are Da/Dt = 0.95, with some ratios as low as 0.75, and W/Dt =
0.095. The agitator pitch is the vertical distance of a single flight of the helix in a 360° rotation (B6).

Agitator Scale-Up

Introduction

In the process industries, experimental data are often available for a laboratory-size or pilot-unit-
size agitation system, and it is desired to scale up the results to design a full-scale unit. Since the
processes to be scaled up are very diverse, no single method can handle all types of scale-up
problems, and many approaches to scale-up exist. Geometric similarity is, of course, important and
simplest to achieve. Kinematic similarity can be defined in terms of ratios of velocities or of times
(R2). Dynamic similarity requires fixed ratios of viscous, inertial, or gravitational forces. Even if geo-
metric similarity is achieved, dynamic and kinematic similarity often cannot be obtained at the same
time. Hence, it is frequently up to the designer to rely on judgment and experience in the scale-up.
In many cases, the main objectives usually present in an agitation process are as follows: equal
liquid motion, such as in liquid blending, where the liquid motion or corresponding velocities are
approximately the same in both cases; equal suspension of solids, where the levels of suspension
are the same; and equal rates of mass transfer, where mass transfer is occurring between a liquid
and a solid phase, liquid-liquid phases, and so on, and the rates are the same.

Scale-up procedure

A suggested step-by-step procedure to follow in the scale-up is detailed as follows for scaling up
from the initial conditions, where the geometric sizes given in Table 3.4-1 are Da1, DT1, H1, W1, and
so on, to the final conditions of Da2, DT2, and so on.

1. Calculate the scale-up ratio R. Assuming that the original vessel is a standard cylinder with
DT1 = H1, the volume V1 is

Equation 3.4-6. 

Then the ratio of the volumes is

Equation 3.4-7. 

The scale-up ratio is then

Equation 3.4-8. 
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2. Using this value of R, apply it to all of the dimensions in Table 3.4-1 to calculate the new
dimensions. For example,

Equation 3.4-9. 

3. Then a scale-up rule must be selected and applied to determine the agitator speed N2 to be
used to duplicate the small-scale results using N1. This equation is as follows (R2):

Equation 3.4-10. 

where n = 1 for equal liquid motion, n =  for equal suspension of solids, and n =  for equal
rates of mass transfer (which is equivalent to equal power per unit volume). This value of n is
based on empirical and theoretical considerations.

4. Knowing N2, the power required can be determined using Eq. (3.4-2) and Fig. 3.4-5.

EXAMPLE 3.4-2. Derivation of Scale-Up Rule Exponent
For the scale-up-rule exponent n in Eq. (3.4-10), show the following for turbulent agitation:

a.
That when n = , the power per unit volume is constant in the scale-up.

b. That when n = 1.0, the tip speed is constant in the scale-up.

Solution: For part (a), from Fig. 3.4-5, NP is constant for the turbulent region. From Eq. (3.4-2),

Equation 3.4-11. 

Then for equal power per unit volume, P1/V1 = P2/V2, or, using Eq. (3.4-6),

Equation 3.4-12. 

Substituting Pl from Eq. (3.4-11) together with a similar equation for P2 into Eq. (3.4-12) and combining with
Eq. (3.4-8).

Equation 3.4-13. 

For part (b), using Eq. (3.4-10) with n = 1.0, rearranging, and multiplying by π,

Equation 3.4-14. 

Equation 3.4-15. 
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where πDT2 N2 is the tip speed in m/s.

To aid the designer of new agitation systems as well as serve as a guide for evaluating existing
systems, some approximate guidelines are given as follows for liquids of normal viscosities (M2):
for mild agitation and blending, 0.1 to 0.2 kW/m3 of fluid (0.0005 to 0.001 hp/gal); for vigorous
agitation, 0.4 to 0.6 kW/m3 (0.002 to 0.003 hp/gal); for intense agitation or where mass transfer is
important, 0.8 to 2.0 kW/m3 (0.004 to 0.010 hp/gal). This power in kW is the actual power delivered
to the fluid as given in Fig. 3.4-5 and Eq. (3.4-2). This does not include the power used in the gear
boxes and bearings. Typical efficiencies of electric motors are given in Section 3.3B. As an approx-
imation, the power lost in the gear boxes and bearings and in inefficiency of the electric motor is
about 30 to 40% of P, the actual power input to the fluid.

EXAMPLE 3.4-3. Scale-Up of Turbine Agitation System
An existing agitation system is the same as given in Example 3.4-1a for a flat-blade turbine with a disk and six
blades. The given conditions and sizes are DT1 = 1.83 m, Da1 = 0.61 m, W1 = 0.122 m, J1 = 0.15 m, N1 = 90/60
= 1.50 rev/s, ρ = 929 kg/m3, and μ = 0.01 Pa · s. It is desired to scale up these results for a vessel whose
volume is 3.0 times as large. Do this for the following two process objectives:

a. Where equal rate of mass transfer is desired.
b. Where equal liquid motion is needed.

Solution: Since H1 = DT1 = 1.83 m, the original tank volume V1 = (π /4)(H1) = π(1.83)3/4 = 4.813 m3.
Volume V2 = 3.0(4.813) = 14.44 m3. Following the steps in the scale-up procedure, and using Eq. (3.4-8),

The dimensions of the larger agitation system are as follows: DT2 = RDT1 = 1.442(1.83) = 2.64 m, Da2 =
1.442(0.61) = 0.880 m, W2 = 1.442(0.122) = 0.176 m, and J2 = 1.442(0.15) = 0.216 m.

For part (a), for equal mass transfer, n =  in Eq. (3.4-10).

Using Eq. (3.4-1),

Using NP = 5.0 in Eq. (3.4-2),

The power per unit volume is

The value of 0.2752 kW/m3 is somewhat lower than the approximate guidelines of 0.8 to 2.0 for mass transfer.
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For part (b), for equal liquid motion, n = 1.0.

Mixing Times of Miscible Liquids

In one method used to study the blending or mixing time for two miscible liquids, an amount of HCl
acid is added to an equivalent of NaOH and the time required for the indicator to change color is
noted. This is a measure of molecule-molecule mixing. Other experimental methods are also used.
Rapid mixing takes place near the impeller, with slower mixing, which depends on the pumping
circulation rate, in the outer zones.
In Fig. 3.4-6, a correlation of mixing time is given for a turbine agitator (B5, M5, N1). The dimen-
sionless mixing factor ft is defined as

Equation 3.4-16. 

Figure 3.4-6. Correlation of mixing time for miscible liquids using a turbine in a baffled tank (for a plain turbine, turbine with
disk, and pitched-blade turbine). [From "Flow Patterns and Mixing Rates in Agitated Vessels" by K. W. Norwood and A. B.
Metzner, A.I.Ch.E.J., 6, 432 (1960). Reproduced by permission of the American Institute of Chemical Engineers, 1960.]

where tT is the mixing time in seconds. For  > 1000, since ft is approximately constant, then
tTN2/3 is constant. For some other mixers it has been shown that tTN is approximately constant. For
scaling up from vessel 1 to another size vessel 2 with similar geometry and with the same power/
unit volume in the turbulent region, the mixing times are related by
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Equation 3.4-17. 

Hence, the mixing time increases for the larger vessel. For scaling up while keeping the same mixing
time, the power/unit volume P/V increases markedly:

Equation 3.4-18. 

Usually, in scaling up to large-size vessels, a somewhat larger mixing time is used so that the power/
unit volume does not increase markedly.

The mixing time for a helical-ribbon agitator is as follows for  < 20 (H2):

Equation 3.4-19. 

Equation 3.4-20. 

For very viscous liquids the helical-ribbon mixer gives a much smaller mixing time than a turbine for
the same power/unit volume (M5). For nonviscous liquids, however, it gives longer times.
For a propellor agitator in a baffled tank, a mixing-time correlation is given by Biggs (B5), and that
for an unbaffled tank by Fox and Gex (F1).
For a high-efficiency impeller in a baffled tank, mixing-time correlations are given by reference
(F2), which shows that mixing times are lower than for pitched-blade agitators.

EXAMPLE 3.4-4. Scale-Up of Mixing Time in a Turbine Agitation System.
Using the existing conditions for the turbine with a disk as in Example 3.4-1, part (a), do as follows:

a. Calculate the mixing time.
b. Calculate the mixing time for a smaller vessel with a similar geometric ratio, where Dt is 0.30 m instead

of 1.83 m. Do this for the same power per unit volume as used in part (a).
c. Using the same mixing time calculated for the smaller vessel in part (b), calculate the new power per unit

volume for the larger vessel in part (a).

Solution: In part (a), Dt = 1.83 m, Da = 0.61 m, Dt = H, N = 90/60 = 1.50 rev/s, ρ = 929 kg/m3, μ = 10 cp = 0.01

Pa · s. From Example 3.4-1,  = 5.185 × 104, Np = 5, P1 = 1.324 kW. For the tank volume,

The power per unit volume is
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From Fig. 3.4-6 for  = 5.185 × 104, ft = 4.0. Substituting into Eq. (3.4-16),

For part (b), the scale-down ratio R from Eq. (3.4-8) is

Also, H2 = DT2 = 0.300 m. Using the same Pl/V1 = P2/V2 = 0.2751 kW/m3 in the turbulent region, and Eq.
(3.4-17),

Hence, tT2 = 5.73 s. This shows that the larger vessel has a marked increase in mixing time from 5.73 to 17.30
s for equal power per unit volume.

For part (c), using the same mixing time of 5.73 s for the smaller vessel, the power per unit volume of the larger
vessel is calculated from Eq. (3.4-18) for equal mixing times:

Solving, P1/V1 = 39.73 kW/m3. This, of course, is a very large and impractical increase.

Flow Number and Circulation Rate in Agitation

An agitator acts like a centrifugal pump impeller without a casing and gives a flow at a certain
pressure head. This circulation rate Q in m3/s from the edge of the impeller is the flow rate perpen-
dicular to the impeller discharge area. Fluid velocities have been measured in mixers and have been
used to calculate the circulation rates. Data for baffled vessels have been correlated using the
dimensionless flow number NQ (U1):
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Equation 3.4-21. 

Special Agitation Systems

Suspension of solids

In some agitation systems a solid is suspended in the agitated liquid. Examples are when a finely
dispersed solid is to be dissolved in the liquid, microorganisms are suspended in fermentation, a
homogeneous liquid-solid mixture is to be produced for feed to a process, and a suspended solid
is used as a catalyst to speed up a reaction. The suspension of solids is somewhat similar to a
fluidized bed. In the agitated system, circulation currents of the liquid keep the particles in suspen-
sion. The amount and type of agitation needed depend mainly on the terminal settling velocity of
the particles, which can be calculated using the equations in Section 14.3. Empirical equations for
predicting the power required to suspend particles are given in references (M2, W1). Equations for
pitched-blade turbines and high-efficiency impellers are given by Corpstein et al. (C4).

Dispersion of gases and liquids in liquids

In gas-liquid dispersion processes, the gas is introduced below the impeller, which chops the gas
into very fine bubbles. The type and degree of agitation affect the size of the bubbles and the total
interfacial area. Typical of such processes are aeration in sewage treatment plants, hydrogenation
of liquids by hydrogen gas in the presence of a catalyst, absorption of a solute from the gas by the
liquid, and fermentation. Correlations are available for predicting the bubble size, holdup, and kW
power needed (C3, L1, Z1). For liquids dispersed in immiscible liquids, see reference (T1). The
power required for the agitator in gas-liquid dispersion systems can be as much as 10 to 50% less
than that required when no gas is present (C3, T2).

Motionless mixers

Mixing of two fluids can be accomplished in motionless mixers in a pipe with no moving parts. In
such commercial devices, stationary elements inside a pipe successively divide portions of the
stream and then recombine these portions.
Laminar-flow mixers are used to mix highly viscous mixtures. One type of static mixer has a series
of fixed helical elements as shown in Fig. 3.4-7. (Note that most mixers have from six to 20 ele-
ments.) In the first element, the flow is split into two semicircular channels and the helical shape
gives the streams a 180° twist. The next and successive elements are placed at 90° relative to each
other and split the flows into two for each element. Each split in flow creates more interfacial area
between layers. When these layers become sufficiently thin, molecular diffusion will eliminate con-
centration differences remaining. When each element divides the flow into two flow channels (M6),
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Equation 3.4-22. 

Figure 3.4-7. Two-element helical motionless mixer with element length L and pipe diameter D (M2, M6).

where n is the number of elements in series, d is the maximum striation thickness, and D is pipe
diameter. When n = 20, then about 106 divisions occur and d is a very small thickness, which en-
hances the rate of diffusion.
In another commercial type of static mixer (K3), the stream is divided four times for each element.
Each element has interacting bars or corrugated sheets placed lengthwise in the pipe and at a 45°
angle to the pipe axis. The lengths L of the various types of elements vary from about 1.0 to 1.5
times the pipe diameter. These mixers are also used in turbulent-flow mixing.
In laminar flow with helical mixers the pressure drop (and, hence, power required) is approximately
six times as large as that in the empty pipe. In turbulent flow, because of energy losses due to
changes of direction, the pressure drop can be up to several hundred times as large (M6, P1). The
power loss is typically about 10% of the power of a dynamic mixer (K3). Motionless mixers are also
used for heat transfer, chemical reactions, and dispersion of gases in liquids.

Mixing of Powders, Viscous Materials, and Pastes

Powders

In mixing of solid particles or powders it is necessary to displace parts of the powder mixture with
respect to other parts. The simplest class of devices suitable for gentle blending is the tumbler.
However, it is not usually used for breaking up agglomerates. A common type of tumbler is the
double-cone blender, in which two cones are mounted with their open ends fastened together and
rotated, as shown in Fig. 3.4-8a. Baffles can also be used internally. If an internal rotating device is
also used in the double cone, agglomerates can also be broken up. Other geometries used are a
cylindrical drum with internal baffles or twin-shell V type. Tumblers used specifically for breaking up
agglomerates are rotating cylindrical or conical shells charged with metal or porcelain steel balls or
rods.
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Figure 3.4-8. Mixers for powders and pastes: (a) double-cone powder mixer, (b) ribbon powder mixer with two ribbons, (c)
kneader mixer for pastes.

Another class of devices for blending solids is the stationary shell device, in which the container is
stationary and the material displacement is accomplished by single or multiple rotating inner devi-
ces. In the ribbon mixer in Fig. 3.4-8b, a shaft with two open helical screws numbers 1 and 2 attached
to it rotates. One screw is left-handed and one right-handed. As the shaft rotates, sections of powder
move in opposite directions and mixing occurs. Other types of internal rotating devices are available
for special situations (P1). Also, in some devices both the shell and the internal device rotate.

Dough, pastes, and viscous materials

In the mixing of dough, pastes, and viscous materials, large amounts of powder are required as the
material is divided, folded, or recombined, and as different parts of the material are displaced relative
to each other so that fresh surfaces recombine as often as possible. Some machines may require
jacketed cooling to remove the heat generated.
The first type of device for this purpose is somewhat similar to those for agitating fluids, with an
impeller slowly rotating in a tank. The impeller can be a close-fitting anchor agitator as in Fig.
3.4-2b, where the outer sweep assembly may have scraper blades. A gate impeller can also be
used which has horizontal and vertical bars that cut the paste at various levels and at the wall, which
may have stationary bars. A modified gate mixer is the shear-bar mixer, which contains vertical
rotating bars or paddles passing between vertical stationary fingers. Other modifications of these
types are those where the can or container will rotate as well as the bars and scrapers. These are
called change-can mixers.
The most commonly used mixer for heavy pastes and dough is the double-arm kneader mixer. The
mixing action is bulk movement, smearing, stretching, dividing, folding, and re-combining. The most
widely used design employs two contrarotating arms of sigmoid shape which may rotate at different
speeds, as shown in Fig. 3.4-8c.
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NON-NEWTONIAN FLUIDS

Types of Non-Newtonian Fluids

As discussed in Section 2.4, Newtonian fluids are those which follow Newton's law, Eq. (3.5-1):

Equation 3.5-1. 

where μ is the viscosity and is a constant independent of shear rate. In Fig. 3.5-1 a plot is shown of
shear stress τ versus shear rate −dv/dr. The line for a Newtonian fluid is straight, the slope being μ.

Figure 3.5-1. Shear diagram for Newtonian and time-independent non-Newtonian fluids.

If a fluid does not follow Eq. (3.5-1), it is a non-Newtonian fluid. Then a plot of τ versus −dν/dr is not
linear through the origin for these fluids. Non-Newtonian fluids can be divided into two broad cate-
gories on the basis of their shear-stress/shear-rate behavior: those whose shear stress is inde-
pendent of time or duration of shear (time-independent) and those whose shear stress is dependent
on time or duration of shear (time-dependent). In addition to unusual shear-stress behavior, some
non-Newtonian fluids also exhibit elastic (rubberlike) behavior, which is a function of time and results
in their being called viscoelastic fluids. These fluids exhibit normal stresses perpendicular to the
direction of flow in addition to the usual tangential stresses. Most of the emphasis here will be put
on the time-independent class, which includes the majority of non-Newtonian fluids.
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Time-Independent Fluids

Bingham plastic fluids

These are the simplest because, as shown in Fig. 3.5-1, they differ from Newtonian only in that the
linear relationship does not go through the origin. A finite shear stress τC (called yield stress) in N/
m2 is needed to initiate flow. Some fluids have a finite yield (shear) stress τO, but the plot of τ versus -
dvldr is curved upward or downward. However, this departure from exact Bingham plasticity is often
small. Examples of fluids with a yield stress are drilling muds, peat slurries, margarine, chocolate
mixtures, greases, soap, grain-water suspensions, toothpaste, paper pulp, and sewage sludge.

Pseudoplastic fluids

The majority of non-Newtonian fluids are in this category and include polymer solutions or melts,
greases, starch suspensions, mayonnaise, biological fluids, detergent slurries, dispersion media in
certain pharmaceuticals, and paints. The shape of the flow curve is shown in Fig. 3.5-1, and it
generally can be represented by a power-law equation (sometimes called the Ostwald-de Waele
equation):

Equation 3.5-2. 

where K is consistency index in N · sn/m2 or lbf · snft2, and n is the flow behavior index, dimensionless.
The apparent viscosity μa in Eq. (3.5-3) is obtained from Eqs. (3.5-1) and (3.5-2) and decreases
with increasing shear rate:

Equation 3.5-3. 

Dilatant fluids

These fluids are far less common than pseudoplastic fluids, and their flow behavior (Fig. 3.5-1)
shows an increase in apparent viscosity with increasing shear rate. The power-law equation
(3.5-2) is often applicable, but with n > 1:

Equation 3.5-4. 

For a Newtonian fluid, n = 1. Solutions showing dilatancy are some corn flour-sugar solutions, wet
beach sand, starch in water, potassium silicate in water, and some solutions containing high con-
centrations of powder in water.
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Time-Dependent Fluids

Thixotropic fluids

These fluids exhibit a reversible decrease in shear stress with time at a constant rate of shear. This
shear stress approaches a limiting value that depends on the shear rate. Examples include some
polymer solutions, shortening, some food materials, and paints. At present the theory for time-de-
pendent fluids is still not completely developed.

Rheopectic fluids

These fluids are quite rare in occurrence and exhibit a reversible increase in shear stress with time
at a constant rate of shear. Examples are bentonite clay suspensions, certain sols, and gypsum
suspensions. In design procedures for thixotropic and rheopectic fluids for steady flow in pipes, the
limiting flow-property values at a constant rate of shear are sometimes used (S2, W3).

Viscoelastic Fluids

Viscoelastic fluids exhibit elastic recovery from the deformations that occur during flow. They show
both viscous and elastic properties. Part of the deformation is recovered upon removal of the stress.
Examples are flour dough, napalm, polymer melts, and bitumens.

Laminar Flow of Time-Independent Non-Newtonian Fluids

Flow properties of a fluid

In determining the flow properties of a time-independent non-Newtonian fluid, a capillary-tube visc-
ometer is often used. The pressure drop ΔP N/m2 for a given flow rate q m3/s is measured in a
straight tube of length L m and diameter D m. This is repeated for different flow rates or average
velocities V m/s. If the fluid is time-independent, these flow data can be used to predict the flow in
any other pipe size.
A plot of D Δp/4L, which is τw, the shear stress at the wall in N/m2, versus 8V/D, which is proportional
to the shear rate at the wall, is shown in Fig. 3.5-2 for a power-law fluid following Eq. (3.5-5):

Equation 3.5-5. 
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Figure 3.5-2. General flow curve for a power-law fluid in laminar flow in a tube.

where n' is the slope of the line when the data are plotted on logarithmic coordinates and K' has
units of N · sn'/m2. For n' = 1, the fluid is Newtonian; for n' < 1, pseudoplastic, or Bingham plastic if
the curve does not go through the origin; and for n' > 1, dilatant. The K', the consistency index in
Eq. (3.5-5), is the value of D Δp/4L for 8V/D = 1. The shear rate at the wall, (-dv/dr)w, is

Equation 3.5-6. 

Also, K' = μ for Newtonian fluids.
Equation (3.5-5) is simply another statement of the power-law model of Eq. (3.5-2) applied to flow
in round tubes, and is more convenient to use for pipe-flow situations (D2). Hence, Eq. (3.5-5)
defines the flow characteristics just as completely as Eq. (3.5-2). It has been found experimentally
(M3) that for most fluids K' and n' are constant over wide ranges of 8V/D or D Δp/4L. For some fluids
this is not the case, and K' and n' vary. Then the particular values of K' and n' used must be valid
for the actual 8V/D or D Δp/4L with which one is dealing in a design problem. This method using
flow in a pipe or tube is often used to determine the flow properties of a non-Newtonian fluid.
In many cases the flow properties of a fluid are determined using a rotational viscometer. The flow
properties K and n in Eq. (3.5-2) are determined in this manner. A discussion of the rotational visc-
ometer is given in Section 3.5I.
When the flow properties are constant over a range of shear stresses that occurs for many fluids,
the following equations hold (M3):

Equation 3.5-7. 

Equation 3.5-8. 

Often a generalized viscosity coefficient γ is defined as
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Equation 3.5-9. 

where γ has units of N · sn'/m2 or lbm/ft · s2-n'

Typical flow-property constants (rheological constants) for some fluids are given in Table 3.5-1.
Some data give γ values instead of K' values, but Eq. (3.5-9) can be used to convert these values
if necessary. In some cases in the literature, K or K' values are given as dyn · sn'/cm2 or lbf · sn'/ft2.
From Appendix A.1, the conversion factors are

Table 3.5-1. Flow-Property Constants for Non-Newtonian Fluids

 Flow-Property Constants

Fluid n' Ref.

1.5% carboxymethylcellulose in water 0.554 1.369  (S1)

3.0% CMC in water 0.566 4.17  (S1)

4% paper pulp in water 0.575 9.12  (A1)

14.3% clay in water 0.350 0.0512  (W2)

10% napalm in kerosene 0.520 1.756  (S1)

25% clay in water 0.185 0.3036  (W2)

Applesauce, brand A (297 K), density = 1.10 g/cm3 0.645  0.500 (C1)

Banana purée, brand A (297 K), density = 0.977 g/
cm3

0.458  6.51 (C1)

Honey (297 K) 1.00  5.61 (C1)

Cream, 30% fat (276 K) 1.0  0.01379 (M4)

Tomato concentrate, 5.8% total solids (305 K) 0.59  0.2226 (H1)

Equations for flow in a tube

In order to predict the frictional pressure drop Δp in laminar flow in a tube, Eq. (3.5-5) is solved for
Δp (p0 - pL):

Equation 3.5-10. 

If the average velocity is desired, Eq. (3.5-5) can be rearranged to give

Equation 3.5-11. 
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If the equations are desired in terms of K instead of K', Eqs. (3.5-7) and (3.5-8) can be substituted
into (3.5-10) and (3.5-11). Substituting Eqs. (3.5-7) and (3.5-8) into Eq. (3.5-11) and noting that V
= vx av,

Equation 3.5-12. 

The flow must be laminar. The generalized Reynolds number has been defined as

Equation 3.5-13. 

Friction factor method

Alternatively, using the Fanning friction factor method given in Eqs. (2.10-5)–(2.10-7) for Newtonian
fluids, but using the generalized Reynolds numbers,

Equation 3.5-14. 

Equation 3.5-15. 

EXAMPLE 3.5-1. Pressure Drop of Power-Law Fluid in Laminar Flow
A power-law fluid having a density of 1041 kg/m3 is flowing through 14.9 m of a tubing having an inside diameter
of 0.0524 m at an average velocity of 0.0728 m/s. The rheological or flow properties of the fluid are K' = 15.23
N · sn'/m2 (0.318 lbf · sn'/ft2) and n' = 0.40.

a. Calculate the pressure drop and friction loss using Eq. (3.5-10) for laminar flow. Check the generalized
Reynolds number to make sure that the flow is laminar.

b. Repeat part (a) but use the friction factor method.

Solution: The known data are as follows: K' = 15.23, n' = 0.40, D = 0.0524 m, V = 0.0728 m/s, L = 14.9 m, and
ρ = 1041 kg/m3. For part (a), using Eq. (3.5-10),

Also, to calculate the friction loss,
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Using Eq. (3.5-13),

Hence, the flow is laminar.

For part (b), using Eq. (3.5-14)

Substituting into Eq. (3.5-15),

Friction Losses in Contractions, Expansions, and Fittings in Laminar Flow

Since non-Newtonian power-law fluids flowing in conduits are often in laminar flow because of their
usually high effective viscosity, losses in sudden changes of velocity and fittings are important in
laminar flow.

Kinetic energy in laminar flow

In application of the total mechanical-energy balance in Eq. (2.7-28), the average kinetic energy per
unit mass of fluid is needed. For fluids, this is (S2)

Equation 3.5-16. 

For Newtonian fluids, α =  for laminar flow. For power-law non-Newtonian fluids,

Equation 3.5-17. 

For example, if n = 0.50, α = 0.585. If n = 1.00, α = . For turbulent flow for Newtonian and non-
Newtonian flow, α = 1.0(D1).
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Losses in contractions and fittings

Skelland (S2) and Dodge and Metzner (D2) state that when a fluid leaves a tank and flows through
a sudden contraction to a pipe of diameter D2 or flows from a pipe of diameter D1 through a sudden
contraction to a pipe of D2, a vena contracta is usually formed downstream from the contraction.
General indications are that the frictional pressure losses for pseudoplastic and Bingham plastic
fluids are very similar to those for Newtonian fluids at the same generalized Reynolds numbers in
laminar and turbulent flow for contractions as well as for fittings and valves.
For contraction losses, Eq. (2.10-16) can be used, where α = 1.0 for turbulent flow; and for laminar
flow Eq. (3.5-17) can be used to determine α, since n is not 1.00.
For fittings and valves, friction losses should be determined using Eq. (2.10-17) and values from
Table 2.10-1.

Losses in sudden expansion

For the friction loss for a non-Newtonian fluid in laminar flow through a sudden expansion from D1
to D2 diameter, Skelland (S2) gives

Equation 3.5-18. 

where hex is the friction loss in J/kg. In English units Eq. (3.5-18) is divided by gc and hex is in ft ·
lbf/lbm.

Equation (2.10-15) for laminar flow with α =  for a Newtonian fluid gives values reasonably close
to those of Eq. (3.5-18) for n = 1 (Newtonian fluid). For turbulent flow the friction loss can be ap-
proximated by Eq. (2.10-15), with α = 1.0 for non-Newtonian fluids (S2).

Turbulent Flow and Generalized Friction Factors

In turbulent flow of time-independent fluids the Reynolds number at which turbulent flow occurs
varies with the flow properties of the non-Newtonian fluid. In a comprehensive study Dodge and
Metzner (D2) derived a theoretical equation for turbulent flow of non-Newtonian fluids through
smooth, round tubes. The final equation is plotted in Fig. 3.5-3, where the Fanning friction factor is
plotted versus the generalized Reynolds number, NRe,gen, given in Eq. (3.5-13). Power-law fluids
with flow-behavior indexes n' between 0.36 and 1.0 were experimentally studied at Reynolds num-
bers up to 3.5 × 104 and the derivation was confirmed.
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Figure 3.5-3. Fanning friction factor versus generalized Reynolds number for time-independent non-Newtonian and
Newtonian fluids flowing in smooth tubes. [From D. W. Dodge and A. B. Metzner, A.I.Ch.E. J., 5, 189 (1959). With permission.]

The curves for different n' values break off from the laminar line at different Reynolds numbers to
enter the transition region. For n' = 1.0 (Newtonian), the transition region starts at NRe,gen = 2100.
Since many non-Newtonian power-law fluids have high effective viscosities, they are often in laminar
flow. The correlation for a smooth tube also holds for a rough pipe in laminar flow.
For rough commercial pipes with various values of roughness ε/D, Fig. 3.5-3 cannot be used for
turbulent flow, since it is derived for smooth tubes. The functional dependence of the roughness
values ε/D on n' requires experimental data which are not yet available. Metzner and Reed (M3,
S3) recommend use of the existing relationship, Fig. 2.10-3, for Newtonian fluids in rough tubes
using the generalized Reynolds number NRe,gen. This is somewhat conservative, since preliminary
data indicate that friction factors for pseudoplastic fluids may be slightly smaller than for Newtonian
fluids. This is also consistent with Fig. 3.5-3 for smooth tubes, which indicates lower f values for
fluids with n' below 1.0 (S2).

EXAMPLE 3.5-2. Turbulent Flow of Power-Law Fluid
A pseudoplastic fluid that follows the power law, having a density of 961 kg/m3, is flowing through a smooth,
circular tube having an inside diameter of 0.0508 m at an average velocity of 6.10 m/s. The flow properties of
the fluid are n' = 0.30 and K' = 2.744 N · sn'/m2. Calculate the frictional pressure drop for a tubing 30.5 m long.

Solution: The data are as follows: K' = 2.744, n' = 0.30, D = 0.0508 m, V = 6.10 m/s, ρ = 961 kg/m3, and L =
30.5 m. Using the general Reynolds-number equation (3.5-13),

Hence, the flow is turbulent. Using Fig. 3.5-3 for NRe,gen = 1.328 × 104 and n' = 0.30, f = 0.0032.

Substituting into Eq. (3.5-15),
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Velocity Profiles for Non-Newtonian Fluids

Pseudoplastic and dilatant fluids

For pipe flow, Eq. (3.5-2) can be written as

Equation 3.5-19. 

Equation (2.9-6) holds for all fluids:

Equation 2.9-6. 

which relates τrx with the radial distance r from the center. Equating the above two equations and
integrating between r = r and r = R0 where vx = 0,

Equation 3.5-20. 

At r = 0, vx = vx max and Eq. (3.5-20) becomes

Equation 3.5-21. 

The average velocity vx av is given by Eq. (3.5-12):

Equation 3.5-12. 

Dividing Eq. (3.5-20) by (3.5-12),

Equation 3.5-22. 
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Using Eq. (3.5-22), the velocity profile can be calculated for laminar flow of a Newtonian fluid for n
= 1 to show the parabolic profile in Fig. 3.5-4. The velocity profiles for pseudoplastic fluids (n < 1)
show a flatter profile compared to the velocity profile for a Newtonian fluid. For extreme pseudo-
plastic behavior for n = 0, plug flow is obtained across the entire pipe. For dilatant behavior (n > 1)
the velocity profile is more pointed and narrower. For extreme dilatant fluids (n = ∞) the velocity
profile is a linear function of the radius.

Figure 3.5-4. Dimensionless velocity profile vx/vx av for power-law non-Newtonian fluids.

Bingham plastic fluids

For Bingham plastic fluids a finite yield stress τ0 in N/m2 is needed to initiate flow, as given in Eq.
(3.5-23):

Equation 3.5-23. 

The velocity profile for this fluid is more complex than that for non-Newtonian fluids. This velocity
profile for Bingham plastic fluids is shown in Fig. 3.5-5. Note the plug-flow region r = 0 to r = r0. In
this region dvx/dr = 0 because the momentum flux or shear stress τrx is less than the yield value τ0.
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Figure 3.5-5. Velocity profile and shear diagram for flow of a Bingham plastic fluid in a pipe.

In Table 3.5-2 some typical values for the rheological constants for Bingham plastic fluids are given.

Table 3.5-2. Rheological Constants for Bingham Plastic Fluids

Fluid τ0, N/m2 μ, Pa · s Ref.

Coal slurry (ρ = 1500 kg/m3) 2.0 0.03 (D4)

Molten chocolate (100°F) 20 2.0 (D4)

Printing pigment in varnish (10% by wt) 0.4 0.25 (C5)

To derive the equation for pipe flow, note that Eq. (2.9-6) holds for all fluids:

Equation 2.9-6. 

Substituting Eq. (2.9-6) into (3.5-23),

Equation 3.5-24. 

Rearranging and integrating, where νx = νx at r = r and νx = 0 at r = R,

Equation 3.5-25. 
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The equation holds for the region where r > r0 and up to r = R. For the plug-flow region r ≤ r0, dvx/
dr = 0. In this region, using Eq. (2.9-6) and setting τrx = τ0 at r0,

Equation 3.5-26. 

Substituting Eq. (3.5-26) into (3.5-25) for r = r0, where plug flow occurs,

Equation 3.5-27. 

To obtain the flow rate Q in m3/s, the following integral must be evaluated:

Equation 3.5-28. 

Substituting Eq. (3.5-27) into the first part of Eq. (3.5-28) and (3.5-25) into the last part and inte-
grating,

Equation 3.5-29. 

where τR = (p0 - pL)R/2L, the momentum flux at the wall. This is the Buckingham-Reiner equation.
When τ0 is zero, Eq. (3.5-29) reduces to the Hagen-Poiseuille Eq. (2.9-11) for Newtonian fluids.

EXAMPLE 3.5-3. Flow Rate of a Bingham Plastic Fluid
A printing-pigment solution with properties similar to those in Table 3.5-2 is flowing in a 1.0-cm-diameter pipe
which is 10.2 m long. A pressure driving force of 4.35 kN/m2 is being used. Calculate the flow rate Q in m3/s.

Solution: From Table 3.5-2, τ0 = 0.4 N/m2 and μ = 0.25 Pa · s. Also, (p0 - p) = 4.35 kN/m2 = 4350 N/m2, L =
10.2 m, R = 1.0/2 cm = 0.005 m. Substituting into Eq. (3.5-26),

Solving,

Substituting into the following for τR,
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Finally, substituting into Eq. (3.5-29),

Determination of Flow Properties of Non-Newtonian Fluids Using Rotational
Viscometer

The flow-property or rheological constants of non-Newtonian fluids can be measured using pipe
flow, as discussed in Section 3.5E. Another, more important method for measuring flow properties
is by using a rotating concentric-cylinder viscometer, first described by Couette in 1890. In this
device a concentric rotating cylinder (spindle) spins at a constant rotational speed inside another
cylinder. Generally, there is a very small gap between the walls. This annulus is filled with the fluid.
The torque needed to maintain this constant rotation rate of the inner spindle is measured by means
of a torsion wire from which the spindle is suspended. A typical commercial instrument of this type
is the Brookfield viscometer. Some types rotate the outer cylinder.
The shear stress at the wall of the bob or spindle is given by

Equation 3.5-30. 

where τw is the shear stress at the wall, N/m2 or kg/s2 · m; T is the measured torque, kg · m2/s2;
Rb is the radius of the spindle, m; and L is the effective length of the spindle, m. Note that Eq.
(3.5-30) holds for Newtonian and non-Newtonian fluids.
The shear rate at the surface of the spindle for non-Newtonian fluids is as follows (M6) for 0.5 < Rb/
Rc < 0.99:

Equation 3.5-31. 

where Rc is the radius of the outer cylinder or container, m; and ω is the angular velocity of the
spindle, rad/s. Also, ω = 2πN/60, when N is the RPM. Results calculated using Eq. (3.5-31) give
values very close to those using the more complicated equation of Krieger and Maron (K2), also
given in (P4, S2).
The power-law equation is given as

Equation 3.5-2. 
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where K = N · sn/m2, kg · sn-2/m. Substituting Eqs. (3.5-30) and (3.5-31) into (3.5-2) gives

Equation 3.5-32. 

or,

Equation 3.5-33. 

where

Equation 3.5-34. 

Experimental data are obtained by measuring the torque T at different values of ω for a given fluid.
The flow-property constants may be evaluated by plotting log T versus log ω. The parameter n is
the slope of the straight line and the intercept is log A. The consistency factor K is now easily
evaluated from Eq. (3.5-34).
Various special cases can be derived for Eq. (3.5-31):

Newtonian fluid. (n = 1)

Equation 3.5-35. 

Very large gap (Rb/Rc < 0.1)

This is the case of a spindle immersed in a large beaker of test fluid. Equation (3.5-31) becomes

Equation 3.5-36. 

Substituting Eqs. (3.5-30) and (3.5-36) into (3.5-2),

Equation 3.5-37. 

Again, as before, the flow-property constants can be evaluated by plotting log T versus log ω.

Very narrow gap (Rb/Rc > 0.99)

This is similar to flow between parallel plates. Taking the shear rate at radius (Rb + Rc)/2,
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Equation 3.5-38. 

This equation, then, is the same as Eq. (3.5-35).

Power Requirements in Agitation and Mixing of Non-Newtonian Fluids

For correlating the power requirements in agitation and mixing of non-Newtonian fluids, the power
number NP is defined by Eq. (3.4-2), which is also the equation used for Newtonian fluids. However,
the definition of the Reynolds number is much more complicated than for Newtonian fluids, since
the apparent viscosity is not constant for non-Newtonian fluids but varies with the shear rates or
velocity gradients in the vessel. Several investigators (G1, M1) have used an average apparent
viscosity μa, which is used in the Reynolds number as follows:

Equation 3.5-39. 

The average apparent viscosity can be related to the average shear rate or average velocity gradient
by the following method. For a power-law fluid,

Equation 3.5-40. 

For a Newtonian fluid,

Equation 3.5-41. 

Combining Eqs. (3.5-40) and (3.5-41),

Equation 3.5-42. 

Metzner and others (G1, M1) found experimentally that the average shear rate (dv/dy)av for pseu-
doplastic liquids (n < 1) varies approximately as follows with the rotational speed:

Equation 3.5-43. 

Hence, combining Eqs. (3.5-42) and (3.5-43),
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Equation 3.5-44. 

Substituting into Eq. (3.5-39),

Equation 3.5-45. 

Equation (3.5-45) has been used to correlate data for a flat six-blade turbine with disk in pseudo-
plastic liquids, and the dashed curve in Fig. 3.5-6 shows the correlation (M1). The solid curve applies
to Newtonian fluids (R1). Both sets of data were obtained for four baffles with Dt/J = 10, Da/W = 5,

and . However, since it has been shown that the difference in results for Dt/J = 10 and
Dt/J = 12 is very slight (R1), this Newtonian line can be considered the same as curve 1 in Fig.
3.4-5. The curves in Fig. 3.5-6 show that the results are identical for the Reynolds number range 1–
2000, except that they differ only in the Reynolds number range 10–100, where the pseudoplastic
fluids use less power than the Newtonian fluids. The flow patterns for the pseudoplastic fluids show
much greater velocity-gradient changes than do the Newtonian fluids in the agitator. The fluid far
from the impeller may be moving in slow laminar flow with a high apparent viscosity. Data for fan
turbines and propellers are also available (M1).

Figure 3.5-6. Power correlation in agitation for a flat, six-blade turbine with disk in pseudoplastic non-Newtonian and
Newtonian fluids (G1, M1, R1): Da/W = 5, L/W = 5/4, Dt/J = 10.
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DIFFERENTIAL EQUATIONS OF CONTINUITY

Introduction

In Sections 2.6, 2.7, and 2.8, overall mass, energy, and momentum balances allowed us to solve
many elementary problems in fluid flow. These balances were done on an arbitrary finite volume
sometimes called a control volume. In these total-energy, mechanical-energy, and momentum bal-
ances, we only needed to know the state of the inlet and outlet streams and the exchanges with the
surroundings.
These overall balances were powerful tools in solving various flow problems because they did not
require knowledge of what goes on inside the finite control volume. Also, in the simple shell-mo-
mentum balances made in Section 2.9, expressions were obtained for the velocity distribution and
pressure drop. However, to advance in our study of these flow systems, we must investigate in
greater detail what goes on inside this finite control volume. To do this, we now use a differential
element for a control volume. The differential balances will be somewhat similar to the overall and
shell balances, but now we shall make the balance in a single phase and integrate to the phase
boundary using the boundary conditions. In the balances done earlier, a balance was made for each
new system studied. It is not necessary to formulate new balances for each new flow problem. It is
often easier to start with the differential equations for the conservation of mass (equation of con-
tinuity) and the conservation of momentum in general form. Then these equations are simplified by
discarding unneeded terms for each particular problem.
For nonisothermal systems, a general differential equation for conservation of energy will be con-
sidered in Chapter 5. Also, in Chapter 7, a general differential equation of continuity for a binary
mixture will be derived. The differential-momentum-balance equation to be derived is based on
Newton's second law and allows us to determine the way velocity varies with position and time as
well as the pressure drop in laminar flow. The equation of momentum balance can be used for
turbulent flow with certain modifications.
Often these conservation equations are called equations of change, since they describe the varia-
tions in the properties of the fluid with respect to position and time. Before we derive these equations,
a brief review of the different types of derivatives with respect to time which occur in these equations
and a brief description of vector notation will be given.

Types of Time Derivatives and Vector Notation

Partial time derivative

Various types of time derivatives are used in the derivations to follow. The most common type of
derivative is the partial time derivative. For example, suppose that we are interested in the mass
concentration or density ρ in kg/m3 in a flowing stream as a function of position x, y, z and time t.
The partial time derivative of ρ is ∂ρ/∂t. This is the local change of density with time at a fixed point
x, y, z.

Total time derivative

Suppose that we want to measure the density in the stream while we are moving about in the stream
with velocities in the x, y, and z directions of dx/dt, dy/dt, and dz/dt, respectively. The total derivative
dρ/dt is

Equation 3.6-1. 
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This means that the density is a function of t and of the velocity components dx/dt, dy/dt, and dz/
dt at which the observer is moving.

Substantial time derivative

Another useful type of time derivative is obtained if the observer floats along with the velocity ν of
the flowing stream and notes the change in density with respect to time. This is called the derivative
that follows the motion, or the substantial time derivative, Dρ/Dt:

Equation 3.6-2. 

where νx, νy, and νz are the velocity components of the stream velocity ν, which is a vector. This
substantial derivative is applied to both scalar and vector variables. The term (ν · ∇ρ) will be dis-
cussed in part 6 of Section 3.6B.

Scalars

The physical properties encountered in momentum, heat, and mass transfer can be placed in sev-
eral categories: scalars, vectors, and tensors. Scalars are quantities such as concentration, tem-
perature, length, volume, time, and energy. They have magnitude but no direction and are consid-
ered to be zero-order tensors. The common mathematical algebraic laws hold for the algebra of
scalars. For example, bc = cd, b(cd) = (bc)d, and so on.

Vectors

Velocity, force, momentum, and acceleration are considered vectors since they have magnitude
and direction. They are regarded as first-order tensors and are written in boldface letters in this text,
such as ν for velocity. The addition of two vectors B + C by parallelogram construction and the
subtraction of two vectors B - C are shown in Fig. 3.6-1. The vector B is represented by its three
projections Bx, By, and Bz on the x, y, and z axes, and

Equation 3.6-3. 

Figure 3.6-1. Addition and subtraction of vectors: (a) addition of vectors, B + C; (b) subtraction of vectors, B - C.

where i, j, and k are unit vectors along the axes x, y, and z, respectively.
In multiplying a scalar quantity r or s by a vector B, the following hold:

Equation 3.6-4. 

Equation 3.6-5. 
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Equation 3.6-6. 

The following also hold:

Equation 3.6-7. 

Equation 3.6-8. 

Equation 3.6-9. 

Equation 3.6-10. 

where ϕBC is the angle between two vectors and is <180°.
Second-order tensors τ arise primarily in momentum transfer and have nine components. They are
discussed elsewhere (B2).

Differential operations with scalars and vectors

The gradient or "grad" of a scalar field is

Equation 3.6-11. 

where ρ is a scalar such as density.
The divergence or "div" of a vector ν is

Equation 3.6-12. 

where ν is a function of νx, νy, and νz.
The Laplacian of a scalar field is

Equation 3.6-13. 

Other operations that may be useful are

Equation 3.6-14. 

Equation 3.6-15. 
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Equation 3.6-16. 

Differential Equation of Continuity

Derivation of equation of continuity

A mass balance will be made for a pure fluid flowing through a stationary volume element Δx Δy
Δz which is fixed in space as in Fig. 3.6-2. The mass balance for the fluid with a concentration of
ρ kg/m3 is

Equation 3.6-17. 

Figure 3.6-2. Mass balance for a pure fluid flowing through a fixed volume Δx Δy Δz in space.

In the x direction the rate of mass entering the face at x having an area of Δy Δz m2 is (ρvx)x Δy
Δz kg/s and that leaving at x + Δx is (ρνx)x+Δx Δy Δz. The term (ρνx) is a mass flux in kg/s · m2. Mass
entering and mass leaving in the y and z directions are also shown in Fig. 3.6-2.
The rate of mass accumulation in the volume Δx Δy Δz is

Equation 3.6-18. 

Substituting all these expressions into Eq. (3.6-17) and dividing both sides by Δx Δy Δz,

Equation 3.6-19. 

Taking the limit as Δx, Δy, and Δz approach zero, we obtain the equation of continuity or conser-
vation of mass for a pure fluid:
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Equation 3.6-20. 

The vector notation on the right side of Eq. (3.6-20) comes from the fact that ν is a vector. Equation
(3.6-20) tells us how density ρ changes with time at a fixed point resulting from the changes in the
mass velocity vector ρν.
We can convert Eq. (3.6-20) into another form by carrying out the actual partial differentiation:

Equation 3.6-21. 

Rearranging Eq. (3.6-21),

Equation 3.6-22. 

The left-hand side of Eq. (3.6-22) is the same as the substantial derivative in Eq. (3.6-2). Hence,
Eq. (3.6-22) becomes

Equation 3.6-23. 

Equation of continuity for constant density

Often in engineering with liquids that are relatively incompressible, the density ρ is essentially con-
stant. Then ρ remains constant for a fluid element as it moves along a path following the fluid motion,
or Dρ/Dt = 0. Hence, Eq. (3.6-23) becomes, for a fluid of constant density at steady or unsteady state,

Equation 3.6-24. 

At steady state, ∂p/∂t = 0 in Eq. (3.6-22).

EXAMPLE 3.6-1. Flow over a Flat Plate
An incompressible fluid flows past one side of a flat plate. The flow in the x direction is parallel to the flat plate.
At the leading edge of the plate the flow is uniform at the free stream velocity νx0. There is no velocity in the z
direction. The y direction is the perpendicular distance from the plate. Analyze this case using the equation of
continuity.

Solution: For this case where ρ is constant, Eq. (3.6-24) holds:

Equation 3.6-24. 
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Since there is no velocity in the z direction, we obtain

Equation 3.6-25. 

At a given small value of y close to the plate, the value of νx must decrease from its free stream velocity vx0 as
it passes the leading edge in the x direction because of fluid friction. Hence, ∂νx/∂x is negative. Then from Eq.
(3.6-25), ∂νy/∂y is positive and there is a component of velocity away from the plate.

Continuity equation in cylindrical and spherical coordinates

It is often convenient to use cylindrical coordinates to solve the equation of continuity if fluid is flowing
in a cylinder. The coordinate system as related to rectangular coordinates is shown in Fig. 3.6-3a.
The relations between rectangular x, y, z and cylindrical r, θ, z coordinates are
Equation 3.6-26. 

Figure 3.6-3. Curvilinear coordinate systems: (a) cylindrical coordinates, (b) spherical coordinates.

Using the relations from Eq. (3.6-26) with Eq. (3.6-20), the equation of continuity in cylindrical co-
ordinates is
Equation 3.6-27. 

For spherical coordinates the variables r, θ, and ϕ are related to x, y, z by the following, as shown
in Fig. 3.6-3b:
Equation 3.6-28. 
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The equation of continuity in spherical coordinates becomes

Equation 3.6-29. 

DIFFERENTIAL EQUATIONS OF MOMENTUM TRANSFER
OR MOTION

Derivation of Equations of Momentum Transfer

The equation of motion is really the conservation-of-momentum equation (2.8-3), which we can write
as

Equation 3.7-1. 

We will make a balance on an element as in Fig. 3.6-2. First we shall consider only the x component
of each term in Eq. (3.6-30). The y and z components can be described in an analogous manner.
The rate at which the x component of momentum enters the face at x in the x direction by convection
is (ρνxνx)x Δy Δz, and the rate at which it leaves at x + Δx is (ρνxνx)x+Δx Δy Δz. The quantity (ρvx) is
the concentration in momentum/m3 or (kg · m/s)/m3, and it is multiplied by νx to give the momentum
flux as momentum/s · m2.
The x component of momentum entering the face at y is (ρνyνx)y Δx Δz, and leaving at y + Δy it is
(ρνyνx)y+Δy Δx Δz. For the face at z we have (ρνzνx)z Δx Δy entering, and at z + Δz we have
(ρνzνx)z+Δz Δx Δy leaving. Hence, the net convective x momentum flow into the volume element
Δx Δy Δz is

Equation 3.7-2. 

Momentum flows in and out of the volume element by the mechanisms of convection or bulk flow
as given in Eq. (3.7-2) and also by molecular transfer (by virtue of the velocity gradients in laminar
flow). The rate at which the x component of momentum enters the face at x by molecular transfer
is (τxx)x Δy Δz, and the rate at which it leaves the surface at x + Ax is (τxx)x+Δx Δy Δz. The rate at
which it enters the face at y is (τyx)y Δx Δz, and it leaves at y + Δy at a rate of (τyx)y+Δy Δx Δz. Note
that τyx is the flux of x momentum through the face perpendicular to the y axis. Writing a similar
equation for the remaining faces, the net x component of momentum by molecular transfer is

Equation 3.7-3. 
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These molecular fluxes of momentum may be considered as shear stresses and normal stresses.
Hence, τyx is the x-direction shear stress on the y face and τzx the shear stress on the z face. Also,
τxx is the normal stress on the x face.
The net fluid-pressure force acting on the element in the x direction is the difference between the
forces acting at x and x + Δx:

Equation 3.7-4. 

The gravitational force gx acting on a unit mass in the x direction is multiplied by the mass of the
element to give

Equation 3.7-5. 

where gx is the x component of the gravitational vector g.
The rate of accumulation of x momentum in the element is

Equation 3.7-6. 

Substituting Eqs. (3.7-2)-(3.7-6) into (3.7-1), dividing by Δx Δy Δz, and taking the limit as Δx, Δy,
and Δz approach zero, we obtain the x component of the differential equation of motion:

Equation 3.7-7. 

The y and z components of the differential equation of motion are, respectively,

Equation 3.7-8. 

Equation 3.7-9. 
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We can use Eq. (3.6-20), which is the continuity equation, and Eq. (3.7-7) to obtain an equation of
motion for the x component and also do the same for the y and z components as follows:

Equation 3.7-10. 

Equation 3.7-11. 

Equation 3.7-12. 

Adding vectorially, we obtain an equation of motion for a pure fluid:

Equation 3.7-13. 

We should note that Eqs. (3.7-7)-(3.7-13) are valid for any continuous medium.

Equations of Motion for Newtonian Fluids with Varying Density and Viscosity

In order to use Eqs. (3.7-7)-(3.7-13) to determine velocity distributions, expressions must be used
for the various stresses in terms of velocity gradients and fluid properties. For Newtonian fluids the
expressions for the stresses τxx, τyx, τzx, and so on, have been related to the velocity gradients and
the fluid viscosity μ (B1, B2, D1) and are as follows:

Shear-stress components for Newtonian fluids in rectangular coordinates

Equation 3.7-14. 

Equation 3.7-15. 

Equation 3.7-16. 

Equation 3.7-17. 

Principles of Momentum Transfer and Applications 208

Chapter 3. Principles of Momentum Transfer and Applications. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



Equation 3.7-18. 

Equation 3.7-19. 

Equation 3.7-20. 

Shear-stress components for Newtonian fluids in cylindrical coordinates

Equation 3.7-21. 

Equation 3.7-22. 

Equation 3.7-23. 

Equation 3.7-24. 

Equation 3.7-25. 

Equation 3.7-26. 

Equation 3.7-27. 
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Shear-stress components for Newtonian fluids in spherical coordinates

Equation 3.7-28. 

Equation 3.7-29. 

Equation 3.7-30. 

Equation 3.7-31. 

Equation 3.7-32. 

Equation 3.7-33. 

Equation 3.7-34. 

Equation of motion for Newtonian fluids with varying density and viscosity

After Eqs. (3.7-14)-(3.7-20) for shear-stress components are substituted into Eq. (3.7-10) for the x
component of momentum, we obtain the general equation of motion for a Newtonian fluid with vary-
ing density and viscosity:

Equation 3.7-35. 

Similar equations are obtained for the y and z components of momentum.
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Equations of Motion for Newtonian Fluids with Constant Density and Viscosity

The equations above are seldom used in their complete forms. When the density ρ and the viscosity
μ are constant where (∇ · ν) = 0, the equations are simplified and we obtain the equations of motion
for Newtonian fluids. These equations are also called the Navier-Stokes equations.

Equation of motion in rectangular coordinates

For Newtonian fluids for constant ρ and μ for the x component, y component, and z component we
obtain, respectively,

Equation 3.7-36. 

Equation 3.7-37. 

Equation 3.7-38. 

Combining the three equations for the three components, we obtain

Equation 3.7-39. 

Equation of motion in cylindrical coordinates

These equations are as follows for Newtonian fluids for constant ρ and μ for the r, θ, and z compo-
nents, respectively:

Equation 3.7-40. 

Equation 3.7-41. 
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Equation 3.7-42. 

Equation of motion in spherical coordinates

The equations for Newtonian fluids are given below for constant ρ and μ for the r, θ, and ϕ compo-
nents, respectively:

Equation 3.7-43. 

Equation 3.7-44. 

Equation 3.7-45. 

where in the three equations above,

Equation 3.7-46. 

Significant advantages and uses arise in the transformation from rectangular coordinates to cylin-
drical coordinates. For example, in Eq. (3.7-40) the term  is the centrifugal force. This gives
the force in the r direction (radial) resulting from the motion of the fluid in the θ direction. Note that
this term is obtained automatically from the transformation from rectangular to cylindrical coordi-
nates. It does not have to be added to the equation on physical grounds.
The Coriolis force ρνrνθ/r also arises automatically in the transformation of coordinates in Eq.
(3.7-41). It is the effective force in the θ direction when there is flow in both the r and the θ directions,
as in the case of flow near a rotating disk.
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USE OF DIFFERENTIAL EQUATIONS OF CONTINUITY AND
MOTION

Introduction

The purpose and uses of the differential equations of motion and continuity, as mentioned previ-
ously, are to apply these equations to any viscous-flow problem. For a given specific problem, the
terms that are zero or near zero are simply discarded and the remaining equations used to solve
for the velocity, density, and pressure distributions. Of course, it is necessary to know the initial
conditions and the boundary conditions to solve the equations. Several examples will be given to
illustrate the general methods used.
We will consider cases for flow in specific geometries that can easily be described mathematically,
such as flow between parallel plates and in cylinders.

Differential Equations of Continuity and Motion for Flow between Parallel Plates

Two examples will be considered, one for horizontal plates and one for vertical plates.

EXAMPLE 3.8-1. Laminar Flow Between Horizontal Parallel Plates
Derive the equation giving the velocity distribution at steady state for laminar flow of a constant-density fluid
with constant viscosity flowing between two flat and parallel plates. The velocity profile desired is at a point far
from the inlet or outlet of the channel. The two plates will be considered to be fixed and of infinite width, with
the flow driven by the pressure gradient in the x direction.

Solution: Assuming that the channel is horizontal, Fig. 3.8-1 shows the axes selected, with flow in the x di-
rection and the width in the z direction. The velocities νy and νz are then zero. The plates are a distance 2y0
apart.

Figure 3.8-1. Flow between two parallel plates in Example 3.8-1.

The continuity equation (3.6-24) for constant density is

Equation 3.6-24. 

Since νy and νz are zero, Eq. (3.6-24) becomes
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Equation 3.8-1. 

The Navier-Stokes equation for the x component is

Equation 3.7-36. 

Also, ∂νx/∂t = 0 for steady state, νy = 0, νz = 0, ∂ νx/∂x = 0, ∂2νx/∂x2 = 0. We can see that ∂νx/∂z = 0, since there
is no change of νx with z. Then ∂2νx/∂z2 = 0. Making these substitutions into Eq. (3.7-36), we obtain

Equation 3.8-2. 

In fluid-flow problems we will be concerned with gravitational force only in the vertical direction for gx, which is
g, the gravitational force, in m/s2. We shall combine the static pressure p and the gravitational force and call
them simply p, as follows (note that gx = 0 for the present case of a horizontal pipe but is not zero for the general
case of a nonhorizontal pipe):

Equation 3.8-3. 

where h is the distance upward from any chosen reference plane (h is in the direction opposed to gravity).
Then Eq. (3.8-2) becomes

Equation 3.8-4. 

We can see that p is not a function of z. Also, assuming that 2y0 is small, p is not a function of y. (Some
references avoid this problem and simply use p as a dynamic pressure, which is rigorously correct since dy-
namic pressure gradients cause flow. In a fluid at rest, the total pressure gradient is the hydrostatic pressure
gradient, and the dynamic pressure gradient is zero.) Also, ∂p/∂x is a constant in this problem, since νx is not
a function of x. Then Eq. (3.8-4) becomes an ordinary differential equation:

Equation 3.8-5. 

Integrating Eq. (3.8-5) once, using the condition dνx/dy = 0 at y = 0 for symmetry,

Equation 3.8-6. 

Integrating again, using νx = 0 at y = y0,

Equation 3.8-7. 
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The maximum velocity in Eq. (3.8-7) occurs when y = 0, giving

Equation 3.8-8. 

Combining Eqs. (3.8-7) and (3.8-8),

Equation 3.8-9. 

Hence, a parabolic velocity profile is obtained. This result was also obtained in Eq. (2.9-9) when using a shell-
momentum balance.

The results obtained in Example 3.8-1 could also have been obtained by making a force balance
on a differential element of fluid and using the symmetry of the system to omit certain terms.

EXAMPLE 3.8-2. Laminar Flow Between Vertical Plates with One Plate Moving
A Newtonian fluid is confined between two parallel and vertical plates as shown in Fig. 3.8-2 (W6). The surface
on the left is stationary and the other is moving vertically at a constant velocity ν0. Assuming that the flow is
laminar, solve for the velocity profile.

Figure 3.8-2. Flow between vertical parallel plates in Example 3.8-2.

Solution: The equation to use is the Navier-Stokes equation for the y coordinate, Eq. (3.7-37):

Equation 3.7-37. 

At steady state, ∂νy/∂t = 0. The velocities νx and νz = 0. Also, ∂νy/∂y = 0 from the continuity equation, ∂νy/∂z =
0, and ρgy = -ρg. The partial derivatives become derivatives and Eq. (3.7-37) becomes
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Equation 3.8-10. 

This is similar to Eq. (3.8-2) in Example 3.8-1. The pressure gradient dp/dy is constant. Integrating Eq.
(3.8-10) once yields

Equation 3.8-11. 

Integrating again gives

Equation 3.8-12. 

The boundary conditions are at x = 0, νy = 0 and at x = H, νy = ν0. Solving for the constants, C1 = ν0/H - (H/
2μ)(dp/dy + ρg) and C2 = 0. Hence, Eq. (3.8-12) becomes

Equation 3.8-13. 

Differential Equations of Continuity and Motion for Flow in Stationary and Rotating
Cylinders

Several examples will be given for flow in stationary and rotating cylinders.

EXAMPLE 3.8-3. Laminar Flow in a Circular Tube
Derive the equation for steady-state viscous flow in a horizontal tube of radius r0, where the fluid is far from
the tube inlet. The fluid is incompressible and μ is a constant. The flow is driven in one direction by a constant-
pressure gradient.

Solution: The fluid will be assumed to flow in the z direction in the tube, as shown in Fig. 3.8-3. The y direction
is vertical and the x direction horizontal. Since νx and νy are zero, the continuity equation becomes ∂vz/∂z = 0.
For steady state ∂vz/∂t = 0. Then substituting into Eq. (3.7-38) for the z component, we obtain

Equation 3.8-14. 
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Figure 3.8-3. Horizontal flow in a tube in Example 3.8-3.

To solve Eq. (3.8-14), we can use cylindrical coordinates from Eq. (3.6-26), giving

Equation 3.6-26. 

Substituting these into Eq. (3.8-14),

Equation 3.8-15. 

The flow is symmetrical about the z axis, so ∂2νz/∂θ2 is zero in Eq. (3.8-15). As before, dp/dz is a constant, and
Eq. (3.8-15) becomes

Equation 3.8-16. 

Alternatively, Eq. (3.7-42) in cylindrical coordinates can be used for the z component and the terms that are
zero discarded:

Equation 3.7-42. 

As before, ∂νz/∂t = 0, ∂2νz/∂θ2 = 0, νr = 0, ∂vz/∂θ = 0, ∂νz/∂z = 0. Then Eq. (3.7-42) becomes identical to Eq.
(3.8-16).

The boundary conditions for the first integration are dνz/dr = 0 at r = 0. For the second integration, νz = 0 at r
= r0 (tube radius). The result is

Equation 3.8-17. 
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Converting to the maximum velocity as before,

Equation 3.8-18. 

If Eq. (3.8-17) is integrated over the pipe cross section using Eq. (2.9-10) to give the average velocity νz av,

Equation 3.8-19. 

Integrating to obtain the pressure drop from z = 0 for p = p1 to z = L for p = p2, we obtain

Equation 3.8-20. 

where D = 2r0. This is the Hagen-Poiseuille equation, derived previously as Eq. (2.9-11).

EXAMPLE 3.8-4. Laminar Flow in a Cylindrical Annulus
Derive the equation for steady-state laminar flow inside the annulus between two concentric horizontal pipes.
This type of flow occurs often in concentric-pipe heat exchangers.

Solution: In this case Eq. (3.8-16) also still holds. However, the velocity in the annulus will reach a maximum
at some radius r = rmax which is between r1 and r2, as shown in Fig. 3.8-4. For the first integration of Eq.
(3.8-16), the boundary conditions are dνz/dr = 0 at r = rmax, which gives

Equation 3.8-21. 

Figure 3.8-4. Flow through a cylindrical annulus.

Also, for the second integration of Eq. (3.8-21), νz = 0 at the inner wall where r = r1, giving

Equation 3.8-22. 

Repeating the second integration but for νz = 0 at the outer wall where r = r2, we obtain
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Equation 3.8-23. 

Combining Eqs. (3.8-22) and (3.8-23) and solving for rmax,

Equation 3.8-24. 

In Fig. 3.8-4 the velocity profile predicted by Eq. (3.8-23) is plotted. For the case where r1 = 0, rmax in Eq.
(3.8-24) becomes zero and Eq. (3.8-23) reduces to Eq. (3.8-17) for a single circular pipe.

EXAMPLE 3.8-5. Velocity Distribution for Flow Between Coaxial Cylinders
Tangential laminar flow of a Newtonian fluid with constant density is occurring between two vertical coaxial
cylinders in which the outer one is rotating (S4) with an angular velocity of ω, as shown in Fig. 3.8-5. It can be
assumed that end effects can be neglected. Determine the velocity and the shear-stress distributions for this
flow.

Figure 3.8-5. Laminar flow in the region between two coaxial cylinders in Example 3.8-5.

Solution: On physical grounds the fluid moves in a circular motion; the velocity νr in the radial direction is zero
and νz in the axial direction is zero. Also, ∂ρ/∂t = 0 at steady state. There is no pressure gradient in the θ
direction. The equation of continuity in cylindrical coordinates as derived before is

Equation 3.6-27. 

All terms in this equation are zero.

The equations of motion in cylindrical coordinates, Eqs. (3.7-40), (3.7-41), and (3.7-42), reduce to the following,
respectively:

Equation 3.8-25. 

Equation 3.8-26. 

Principles of Momentum Transfer and Applications 219

Chapter 3. Principles of Momentum Transfer and Applications. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



Equation 3.8-27. 

Integrating Eq. (3.8-26),

Equation 3.8-28. 

To solve for the integration constants C1 and C2, the following boundary conditions are used: at r = R1, νθ = 0;
at r = R2, νθ = ωR2. The final equation is

Equation 3.8-29. 

Using the shear-stress component for Newtonian fluids in cylindrical coordinates,

Equation 3.7-31. 

The last term in Eq. (3.7-31) is zero. Substituting Eq. (3.8-29) into (3.7-31) and differentiating gives

Equation 3.8-30. 

The torque T that is necessary to rotate the outer cylinder is the product of the force times the lever arm:

Equation 3.8-31. 

where H is the length of the cylinder. This type of device has been used to measure fluid viscosities from
observations of angular velocities and torque and has also been used as a model for some friction bearings.

EXAMPLE 3.8-6. Rotating Liquid in a Cylindrical Container
A Newtonian fluid of constant density is in a vertical cylinder of radius R (Fig. 3.8-6) with the cylinder rotating
about its axis at angular velocity ω (B2). Find the shape of the free surface at steady state.
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Figure 3.8-6. Liquid being rotated in a container with a free surface in Example 3.8-6.

Solution: The system can be described in cylindrical coordinates. As in Example 3.8-5, at steady state, νr =
νz = 0 and gr = gθ = 0. The final equations in cylindrical coordinates given below are the same as Eqs.
(3.8-25)-(3.8-27) for Example 3.8-5, except that gz = -g in Eq. (3.8-27):

Equation 3.8-32. 

Equation 3.8-33. 

Equation 3.8-34. 

Integration of Eq. (3.8-33) gives the same equation as in Example 3.8-5:

Equation 3.8-28. 

The constant C2 must be zero since νθ cannot be infinite at r = 0. At r = R, the velocity νθ = Rω. Hence, C1 =
ω and we obtain

Equation 3.8-35. 

Combining Eqs. (3.8-35) and (3.8-32),

Equation 3.8-36. 

Hence, we see that Eqs. (3.8-36) and (3.8-34) show that pressure depends upon r because of the centrifugal
force and upon z because of the gravitational force:

Principles of Momentum Transfer and Applications 221

Chapter 3. Principles of Momentum Transfer and Applications. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



Equation 3.8-34. 

Since the term p is a function of position, we can write the total differential of pressure as

Equation 3.8-37. 

Combining Eqs. (3.8-34) and (3.8-36) with (3.8-37) and integrating,

Equation 3.8-38. 

The constant of integration can be determined, since p = p0 at r = 0 and z = z0. The equation becomes

Equation 3.8-39. 

The free surface consists of all points on this surface at p = p0. Hence,

Equation 3.8-40. 

This shows that the free surface is in the shape of a parabola.

OTHER METHODS FOR SOLUTION OF DIFFERENTIAL
EQUATIONS OF MOTION

Introduction

In Section 3.8 we considered examples where the Navier-Stokes differential equations of motion
could be solved analytically. These cases were used where there was only one non-vanishing com-
ponent of the velocity. To solve these equations for flows in two and three directions is quite complex.
In this section we will consider some approximations that simplify the differential equations to allow
us to obtain analytical solutions. Terms will be omitted which are quite small compared to the terms
retained.
Three cases will be considered in this section: inviscid flow, potential flow, and creeping flow. The
fourth case, for boundary-layer flow, will be considered in Section 3.10. The solution of these equa-
tions may be simplified by using a stream function ψ(x, y) and/or a velocity potential φ(x, y) rather
than the terms of the velocity components νx, νy, and vz.
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Stream Function

The stream function ψ(x, y) is a convenient parameter by which we can represent two-dimensional,
steady, incompressible flow. This stream function ψ in m2/s is related to the velocity components
νx and νy by

Equation 3.9-1. 

These definitions of νx and νy can then be used in the x and y components of the differential equation
of motion, Eqs. (3.7-36) and (3.7-37), together with νz = 0, to obtain a differential equation for ψ that
is equivalent to the Navier-Stokes equation. Details are given elsewhere (B2).
The stream function is very useful because of its physical significance, that is, that in steady flow,
lines defined by ψ = constant are streamlines, which are the actual curves traced out by the particles
of fluid. A stream function exists for all two-dimensional, steady, incompressible flow whether vis-
cous or inviscid and whether rotational or irrotational.

EXAMPLE 3.9-1. Stream Function and Streamlines
The stream function relationship is given as ψ = xy. Find the equations for the components of velocity. Also
plot the streamlines for a constant ψ = 4 and ψ = 1.

Solution: Using Eq. (3.9-1),

To determine the streamline for ψ = constant = 1 = xy, assume that y = 0.5 and solve for x:

Hence, x = 2. Repeating, for y = 1, x = 1; for y = 2, x = 0.5; for y = 5, x = 0.2, and so on. Doing the same for
ψ = constant = 4, the streamlines for ψ = 1 and ψ = 4 are plotted in Fig. 3.9-1. A possible flow model is flow
around a corner.
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Figure 3.9-1. Plot of streamlines for ψ = xy for Example 3.9-1.

Differential Equations of Motion for Ideal Fluids (Inviscid Flow)

Special equations for ideal or inviscid fluids can be obtained for a fluid having a constant density
and zero viscosity. These are called the Euler equations. Equations (3.7-36)-(3.7-38) for the x, y,
and z components of momentum become

Equation 3.9-2. 

Equation 3.9-3. 

Equation 3.9-4. 

At very high Reynolds numbers the viscous forces are quite small compared to the inertia forces
and the viscosity can be assumed as zero. These equations are useful in calculating pressure dis-
tribution at the outer edge of the thin boundary layer in flow past immersed bodies. Away from the
surface outside the boundary layer this assumption of an ideal fluid is often valid.

Potential Flow and Velocity Potential

The velocity potential or potential function ϕ(x, y) in m2/s is useful in inviscid flow problems and is
defined as
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Equation 3.9-5. 

This potential exists only for a flow with zero angular velocity, or irrotationality. This type of flow of
an ideal or inviscid fluid (ρ = constant, μ = 0) is called potential flow. Additionally, the velocity potential
ϕ exists for three-dimensional flows, whereas the stream function does not. The vorticity of a fluid
is defined as follows:

Equation 3.9-6. 

or,

Equation 3.9-7. 

where 2ωz is the vorticity and ωz in s-1 is angular velocity about the z axis. If 2ωz = 0, the flow is
irrotational and a potential function exists.
Using Eq. (3.6-24), the conservation-of-mass equation for flows in the x and y directions is as follows
for constant density:

Equation 3.9-8. 

Differentiating νx in Eq. (3.9-5) with respect to x and νy with respect to y and substituting into Eq.
(3.9-8),

Equation 3.9-9. 

This is Laplace's equation in rectangular coordinates. If suitable boundary conditions exist or are
known, Eq. (3.9-9) can be solved to give ϕ(x, y). Then the velocity at any point can be obtained
using Eq. (3.9-5). Techniques for solving this equation include using numerical analysis, conformal
mapping, and functions of a complex variable, and are given elsewhere (B2, S3). Euler's equations
can then be used to find the pressure distribution.
When the flow is inviscid and irrotational, a similar type of Laplace equation is obtained from Eq.
(3.9-7) for the stream function:

Equation 3.9-10. 
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Lines of constant φ are called equal potential lines and for potential flow are everywhere perpen-
dicular (orthogonal) to lines of constant ψ. This can be proved as follows. A line of constant ψ would
be such that the change in ψ is zero:

Equation 3.9-11. 

Then, substituting Eq. (3.9-1) into the above,

Equation 3.9-12. 

Also, for lines of constant φ,

Equation 3.9-13. 

Equation 3.9-14. 

Hence,

Equation 3.9-15. 

An example of the use of the stream function is in obtaining the flow pattern for inviscid, irrotational
flow past a cylinder of infinite length. The fluid approaching the cylinder has a steady and uniform
velocity of v∞ in the x direction. Laplace's equation (3.9-10) can be converted to cylindrical coordi-
nates to give

Equation 3.9-16. 

where the velocity components are given by

Equation 3.9-17. 

Using four boundary conditions which are needed and the method of separation of variables, the
stream function ψ is obtained. Converting to rectangular coordinates,
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Equation 3.9-18. 

where R is the cylinder radius. The streamlines and the constant-velocity-potential lines are plotted
in Fig. 3.9-2 as a flow net.

Figure 3.9-2. Streamlines (ψ = constant) and constant velocity potential lines (ϕ = constant) for the steady and irrotational
flow of an inviscid and incompressible fluid about an infinite circular cylinder.

EXAMPLE 3.9-2. Stream Function for a Flow Field
The velocity components for a flow field are as follows:

Prove that it satisfies the conservation of mass and determine ψ.

Solution: First we determine ∂vx/∂x = 2ax and ∂vy/∂y = -2ax. Substituting these values into Eq. (3.6-24), the
conservation of mass for two-dimensional flow,

Then using Eq. (3.9-1),

Equation 3.9-19. 

Integrating Eq. (3.9-19) for vx,

Equation 3.9-20. 

Integrating Eq. (3.9-19) for vy,
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Equation 3.9-21. 

Equating Eq. (3.9-20) to (3.9-21),

Equation 3.9-22. 

Canceling like terms,

Equation 3.9-23. 

Hence, f(x) = 0 and f(y) = ay3/3. Substituting f(x) = 0 into Eq. (3.9-20),

Equation 3.9-24. 

EXAMPLE 3.9-3. Stream Function and Velocities from Potential Function
The potential function for a two-dimensional, irrotational, incompressible flow field is given as ϕ = x2 − 2y -
y2. Find the stream function ψ and the velocity components vx and vy.

Solution: Using Eqs. (3.9-1) and (3.9-5),

Combining,

Equation 3.9-25. 

Differentiating the potential function with respect to x and equating the result to ∂ψ/∂y from Eq. (3.9-25),

Equation 3.9.26. 

Differentiating the potential function with respect to y and equating the result to -∂ψ/∂x from Eq. (3.9-25),

Equation 3.9-27. 
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Integrating Eq. (3.9-26),

Equation 3.9-28 . 

Integrating Eq. (3.9-27),

Equation 3.9-29 . 

Equating Eq. (3.9-28) to (3.9-29),

Equation 3.9-30 . 

Hence, after canceling 2xy from both sides,

Equation 3.9-31 . 

Therefore, f(x) = 2x and f(y) = 0. Substituting f(x) = 2x into Eq. (3.9-28),

Equation 3.9-32 . 

The velocities are, from Eqs. (3.9-26) and (3.9-27),

Equation 3.9-33. 

In potential flow, the stream function and potential function are used to represent the flow in the main body of
the fluid. These ideal fluid solutions do not satisfy the condition that νx = νy = 0 on the wall surface. Near the
wall we have viscous drag and we use boundary-layer theory, where we obtain approximate solutions for the
velocity profiles in this thin boundary layer taking into account viscosity. This is discussed in Section 3.10. Then
we splice this solution onto the ideal flow solution that describes flow outside the boundary layer.

Differential Equations of Motion for Creeping Flow

At very low Reynolds numbers, below about 1, the term creeping flow is used to describe flow at
very low velocities. This type of flow applies for the fall or settling of small particles through a fluid.
Stokes' law is derived using this type of flow in problems of settling and sedimentation.
In flow around a sphere, for example, the fluid changes velocity and direction in a complex manner.
If the inertia effects in this case were important, it would be necessary to keep all the terms in the
three Navier-Stokes equations. Experiments show that at a Reynolds number below about 1, the
inertia effects are small and can be omitted. Hence, the equations of motion, Eqs. (3.7-36) -
(3.7-38) for creeping flow of an incompressible fluid, become

Equation 3.9-34. 
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Equation 3.9-35. 

Equation 3.9-36. 

For flow past a sphere the stream function ψ can be used in the Navier-Stokes equation in spherical
coordinates to obtain the equation for the stream function and the velocity distribution and pressure
distribution over the sphere. Then by integration over the whole sphere, the form drag, caused by
the pressure distribution, and the skin friction or viscous drag, caused by the shear stress at the
surface, can be summed to give the total drag:

Equation 3.9-37. 

where FD is total drag force in N, Dp is particle diameter in m, ν is free stream velocity of fluid
approaching the sphere in m/s, and μ is viscosity in kg/m · s. This is Stokes' equation for the drag
force on a sphere.
Often Eq. (3.9-37) is rewritten as follows:

Equation 3.9-38. 

where CD is a drag coefficient, equal to 24/NRe for Stokes' law, and A is the projected area of the
sphere, . This is discussed in more detail in Section 3.1 for flow past spheres.

BOUNDARY-LAYER FLOW AND TURBULENCE

Boundary-Layer Flow

In Sections 3.8 and 3.9, the Navier-Stokes equations were used to find relations that described
laminar flow between flat plates and inside circular tubes, flow of ideal fluids, and creeping flow. In
this section the flow of fluids around objects will be considered in more detail, with particular attention
being given to the region close to the solid surface, called the boundary layer.
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In the boundary-layer region near the solid, the fluid motion is greatly affected by this solid surface.
In the bulk of the fluid away from the boundary layer, the flow can often be adequately described by
the theory of ideal fluids with zero viscosity. However, in the thin boundary layer, viscosity is im-
portant. Since the region is thin, simplified solutions can be obtained for the boundary-layer region.
Prandtl originally suggested this division of the problem into two parts, which has been used ex-
tensively in fluid dynamics.
In order to help explain boundary layers, an example of boundary-layer formation in the steady-state
flow of a fluid past a flat plate is given in Fig. 3.10-1. The velocity of the fluid upstream of the leading
edge at x = 0 of the plate is uniform across the entire fluid stream and has the value v∞. The velocity
of the fluid at the interface is zero and the velocity vx in the x direction increases as one goes farther
from the plate. The velocity vx approaches asymptotically the velocity v∞ of the bulk of the stream.

Figure 3.10-1. Boundary layer for flow past a flat plate.

The dashed line L is drawn so that the velocity at that point is 99% of the bulk velocity v∞. The layer
or zone between the plate and the dashed line constitutes the boundary layer. When the flow is
laminar, the thickness δ of the boundary layer increases with  as we move in the x direction.
The Reynolds number is defined as NRe,x = xv∞ρ/μ, where x is the distance downstream from the
leading edge. When the Reynolds number is less than 2 × 105, the flow is laminar, as shown in Fig.
3.10-1.
The transition from laminar to turbulent flow on a smooth plate occurs in the Reynolds-number range
2 × 105 to 3 × 106, as shown in Fig. 3.10-1. When the boundary layer is turbulent, a thin, viscous
sublayer persists next to the plate. The drag caused by the viscous shear in the boundary layers is
called skin friction and is the only drag present for flow past a flat plate.
The type of drag occurring when fluid flows by a bluff or blunt shape such as a sphere or cylinder,
which is mostly caused by a pressure difference, is termed form drag. This drag predominates in
flow past such objects at all except low values of the Reynolds number, and often a wake is present.
Skin friction and form drag both occur in flow past a bluff shape, and the total drag is the sum of the
skin friction and the form drag. (See also Section 3.1A.)

Boundary-Layer Separation and Formation of Wakes

We discussed the growth of the boundary layer at the leading edge of a plate as shown in Fig.
3.10-2. However, some important phenomena also occur at the trailing edge of this plate and other
objects. At the trailing edge or rear edge of the flat plate, the boundary layers are present at the top
and bottom sides of the plate. On leaving the plate, the boundary layers gradually intermingle and
disappear.
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Figure 3.10-2. Flow perpendicular to a flat plate and boundarylayer separation.

If the direction of flow is at right angles to the plate, as shown in Fig. 3.10-2, a boundary layer forms
as before in the fluid that is flowing over the upstream face. Once at the edge of the plate, however,
the momentum in the fluid prevents it from making the abrupt turn around the edge of the plate, and
it separates from the plate. A zone of decelerated fluid is present behind the plate and large eddies
(vortices), called the wake, are formed in this area. The eddies consume large amounts of me-
chanical energy. This separation of boundary layers occurs when the change in velocity of the fluid
flowing past an object is too large in direction or magnitude for the fluid to adhere to the surface.
Since formation of a wake causes large losses in mechanical energy, it is often necessary to mini-
mize or prevent boundary-layer separation by streamlining the objects or by other means. This is
also discussed in Section 3.1A for flow past immersed objects.

Laminar Flow and Boundary-Layer Theory

Boundary-layer equations

When laminar flow is occurring in a boundary layer, certain terms in the Navier-Stokes equations
become negligible and can be neglected. The thickness of the boundary layer δ is arbitrarily taken
as the distance away from the surface where the velocity reaches 99% of the free stream velocity.
The concept of a relatively thin boundary layer leads to some important simplifications of the Navier-
Stokes equations.
For two-dimensional laminar flow in the x and y directions of a fluid having a constant density, Eqs.
(3.7-36) and (3.7-37) become as follows for flow at steady state as shown in Figure 3.10-1 when
we neglect the body forces gx and gy:
Equation 3.10-1. 

Equation 3.10-2. 

The continuity equation for two-dimensional flow becomes
Equation 3.10-3. 
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In Eq. (3.10-1), the term (μ/ρ)(∂2νx/∂x2) is negligible in comparison with the other terms in the equa-
tion. Also, it can be shown that all the terms containing νy and its derivatives are small. Hence, the
final two boundary-layer equations to be solved are Eqs. (3.10-3) and (3.10-4):

Equation 3.10-4. 

Solution for laminar boundary layer on a flat plate

An important case in which an analytical solution has been obtained for the boundary-layer equa-
tions is for the laminar boundary layer on a flat plate in steady flow, as shown in Fig. 3.10-1. A further
simplification can be made in Eq. (3.10-4) in that dp/dx is zero since v∞ is constant.
The final boundary-layer equations reduce to the equation of motion for the x direction and the
continuity equation as follows:

Equation 3.10-5. 

Equation 3.10-3. 

The boundary conditions are νx = νy = 0 at y = 0 (y is distance from plate), and νx = v∞ at y = ∞.
The solution of this problem for laminar flow over a flat plate giving νx and νy as a function of x and
y was first obtained by Blasius and later elaborated by Howarth (B1, B2, S3). The mathematical
details of the solution are quite tedious and complex and will not be given here. The general pro-
cedure will be outlined. Blasius reduced the two equations to a single ordinary differential equation
which is nonlinear. The equation could not be solved to give a closed form, but a series solution
was obtained.
The results of the work by Blasius are given as follows. The boundary-layer thickness δ, where νx
≅ 0.99v∞, is given approximately by

Equation 3.10-6. 

where NRe,x = xν∞ρ/μ. Hence, the thickness δ varies as 
The drag in flow past a flat plate consists only of skin friction and is calculated from the shear stress
at the surface at y = 0 for any x as follows:

Equation 3.10-7. 
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From the relation of νx as a function of x and y obtained from the series solution, Eq. (3.10-7)
becomes

Equation 3.10-8. 

The total drag is given by the following for a plate of length L and width b:

Equation 3.10-9. 

Substituting Eq. (3.10-8) into (3.10-9) and integrating,

Equation 3.10-10. 

The drag coefficient CD related to the total drag on one side of the plate having an area A = bL is
defined as

Equation 3.10-11. 

Substituting the value for A and Eq. (3.10-10) into (3.10-11),

Equation 3.10-12. 

where NRe,L = Lv∞ρ/μ. A form of Eq. (3.10-11) is used in Section 14.3 for particle movement through
a fluid. The definition of CD in Eq. (3.10-12) is similar to the Fanning friction factor f for pipes.
The equation derived for CD applies to the laminar boundary layer only for NRe,L less than about 5
× 105. Also, the results are valid only for positions where x is sufficiently far from the leading edge
so that x or L is much greater than δ. Experimental results on the drag coefficient to a flat plate
confirm the validity of Eq. (3.10-12). Boundary-layer flow past many other shapes has been suc-
cessfully analyzed using similar methods.

Nature and Intensity of Turbulence

Nature of turbulence

Since turbulent flow is important in many areas of engineering, the nature of turbulence has been
extensively investigated. Measurements of the velocity fluctuations of the eddies in turbulent flow
have helped explain turbulence.
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For turbulent flow there are no exact solutions of flow problems as there are in laminar flow, since
the approximate equations used depend on many assumptions. However, useful relations have
been obtained by combining experimental data and theory. Some of these relations will be dis-
cussed.
Turbulence can be generated by contact between two layers of fluid moving at different velocities
or by a flowing stream in contact with a solid boundary, such as a wall or sphere. When a jet of fluid
from an orifice flows into a mass of fluid, turbulence can arise. In turbulent flow at a given place and
time, large eddies are continually being formed which break down into smaller eddies and finally
disappear. Eddies can be as small as about 0.1-1 mm and as large as the smallest dimension of
the turbulent stream. Flow inside an eddy is laminar because of its large size.
In turbulent flow the velocity is fluctuating in all directions. In Fig. 3.10-3 a typical plot of the variation
of the instantaneous velocity νx in the x direction at a given point in turbulent flow is shown. The

velocity  is the deviation of the velocity from the mean velocity  in the x direction of flow of
the stream. Similar relations also hold for the y and z directions:

Equation 3.10-13. 

Equation 3.10-14. 

Figure 3.10-3. Velocity fluctuations in turbulent flow.

where the mean velocity  is the time-averaged velocity for time t, νx the instantaneous total

velocity in the x direction, and  the instantaneous deviating or fluctuating velocity in the x direc-

tion. These fluctuations can also occur in the y and z directions. The value of  fluctuates about

zero as an average and, hence, the time-averaged values . However,

the values of , will not be zero. Similar expressions can also be written for pressure,
which also fluctuates.
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Intensity of turbulence

The time average of the fluctuating components vanishes over a time period of a few seconds.
However, the time average of the mean square of the fluctuating components is a positive value.
Since the fluctuations are random, the data have been analyzed by statistical methods. The level
or intensity of turbulence can be related to the square root of the sum of the mean squares of the
fluctuating components. This intensity of turbulence is an important parameter in the testing of
models and the theory of boundary layers. The intensity of turbulence I can be defined mathemat-
ically as
Equation 3.10-15. 

This parameter I is quite important. Such factors as boundary-layer transition, separation, and heat-
and mass-transfer coefficients depend upon the intensity of turbulence. Simulation of turbulent flows
in testing of models requires that the Reynolds number and the intensity of turbulence be the same.
One method used to measure intensity of turbulence is to utilize a hot-wire anemometer.

Turbulent Shear or Reynolds Stresses

In a fluid flowing in turbulent flow, shear forces occur wherever there is a velocity gradient across a
shear plane, and these are much larger than those occurring in laminar flow. The velocity fluctuations
in Eq. (3.10-13) give rise to turbulent shear stresses. The equations of motion and the continuity
equation are still valid for turbulent flow. For an incompressible fluid having a constant density ρ and
viscosity μ, the continuity equation (3.6-24) holds:
Equation 3.6-24. 

Also, the x component of the equation of motion, Eq. (3.7-36), can be written as follows if Eq.
(3.6-24) holds:
Equation 3.10-16. 

We can rewrite the continuity equation (3.6-24) and Eq. (3.10-16) by replacing νx by

:
Equation 3.10-17. 

Equation 3.10-18. 
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Now we use the fact that the time-averaged value of the fluctuating velocities is zero

, and that the time-averaged product  is not zero. Then Eqs.
(3.10-17) and (3.10-18) become

Equation 3.10-19. 

Equation 3.10-20. 

By comparing these two time-smoothed equations with Eqs. (3.6-24) and (3.10-16), we see that the
time-smoothed values everywhere replace the instantaneous values. However, in Eq. (3.10-20) new
terms arise in the set of brackets which are related to turbulent velocity fluctuations. For convenience
we use the notation

Equation 3.10-21. 

These are the components of the turbulent momentum flux and are called Reynolds stresses.

Prandtl Mixing Length

The equations derived for turbulent flow must be solved to obtain velocity profiles. To do this, more
simplifications must be made before the expressions for the Reynolds stresses can be evaluated.
A number of semiempirical equations have been used; the eddy-diffusivity model of Boussinesq is
one early attempt to evaluate these stresses. By analogy to the equation for shear stress in laminar
flow, τyx = -μ(dvx/dy), the turbulent shear stress can be written as

Equation 3.10-22. 

where ηt is a turbulent or eddy viscosity, which is a strong function of position and flow. This equation
can also be written as follows:

Equation 3.10-23. 

where εt = ηt/ρ is eddy diffusivity of momentum in m2/s, by analogy to the momentum diffusivity μ/
ρ for laminar flow.
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In his mixing-length model Prandtl developed an expression to evaluate these stresses by assuming
that eddies move in a fluid in a manner similar to the movement of molecules in a gas. The eddies
move a distance called the mixing length L before they lose their identity.
Actually, the moving eddy or "lump" of fluid will gradually lose its identity. However, in the definition
of the Prandtl mixing length L, this small packet of fluid is assumed to retain its identity while traveling
the entire length L and then lose its identity or be absorbed in the host region.

Prandtl assumed that the velocity fluctuation  is due to a "lump" of fluid moving a distance L in
the y direction and retaining its mean velocity. At point L, the lump of fluid will differ in mean velocity

from the adjacent fluid by  Then the value of  is

Equation 3.10-24. 

The length L is small enough that the velocity difference can be written as

Equation 3.10-25. 

Hence,

Equation 3.10-26. 

Prandtl also assumed  Then the time average,  is

Equation 3.10-27. 

The minus sign and the absolute value were used to make the quantity  agree with experi-
mental data. Substituting Eq. (3.10-27) into (3.10-21),

Equation 3.10-28. 

Comparing with Eq. (3.10-23),

Equation 3.10-29. 
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Universal Velocity Distribution in Turbulent Flow

To determine the velocity distribution for turbulent flow at steady state inside a circular tube, we
divide the fluid inside the pipe into two regions: a central core where the Reynolds stress approxi-
mately equals the shear stress; and a thin, viscous sublayer adjacent to the wall where the shear
stress is due only to viscous shear and the turbulence effects are assumed negligible. Later we
include a third region, the buffer zone, where both stresses are important.
Dropping the subscripts and superscripts on the shear stresses and velocity, and considering the
thin, viscous sublayer, we can write

Equation 3.10-30. 

where τ0 is assumed constant in this region. On integration,

Equation 3.10-31. 

Defining a friction velocity as follows and substituting into Eq. (3.10-31),

Equation 3.10-32. 

Equation 3.10-33. 

The dimensionless velocity ratio on the left can be written as

Equation 3.10-34. 

The dimensionless number on the right can be written as

Equation 3.10-35. 

where y is the distance from the wall of the tube. For a tube of radius r0, y = r0 - r, where r is the
distance from the center. Hence, for the viscous sublayer, the velocity distribution is
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Equation 3.10-36. 

Next, considering the turbulent core where any viscous stresses are neglected, Eq. (3.10-28) be-
comes

Equation 3.10-37. 

where dv/dy is always positive and the absolute value sign is dropped. Prandtl assumed that the
mixing length is proportional to the distance from the wall, or

Equation 3.10-38. 

and that τ = τ0 = constant. Equation (3.10-37) now becomes

Equation 3.10-39. 

Hence,

Equation 3.10-40. 

Upon integration,

Equation 3.10-41. 

where K1 is a constant. The constant K1 can be found by assuming that ν is zero at a small value
of y, say y0:

Equation 3.10-42. 

Introducing the variable y+ by multiplying the numerator and denominator of the term y/y0 by ν*/ν,
where ν = μ/ρ, we obtain

Equation 3.10-43. 

Equation 3.10-44. 
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A large amount of velocity distribution data by Nikuradse and others for a range of Reynolds num-
bers of 4000 to 3.2 × 106 have been obtained, and the data fit Eq. (3.10-36) in the region up to y+

of 5 and also fit Eq. (3.10-44) above y+ of 30, with K and C1 being universal constants. For the region
of y+ from 5 to 30, which is defined as the buffer region, an empirical equation of the form of Eq.
(3.10-44) fits the data. In Fig. 3.10-4 the following relations which are valid are plotted to give a
universal velocity profile for fluids flowing in smooth, circular tubes:

Equation 3.10-45. 

Equation 3.10-46. 

Equation 3.10-47. 

Figure 3.10-4. Universal velocity profile for turbulent flow in smooth circular tubes.

Three distinct regions are apparent in Fig. 3.10-4. The first region next to the wall is the viscous
sublayer (historically called "laminar" sublayer), given by Eq. (3.10-45), where the velocity is pro-
portional to the distance from the wall. The second region, called the buffer layer, is given by Eq.
(3.10-46), and is a region of transition between the viscous sublayer with practically no eddy activity
and the violent eddy activity in the turbulent core region given by Eq. (3.10-47). These equations
can then be used and related to the Fanning friction factor discussed earlier in this chapter. They
can also be used in solving turbulent boundary-layer problems.
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Integral Momentum Balance for Boundary-Layer Analysis

Introduction and derivation of integral expression

In the solution for the laminar boundary layer on a flat plate, the Blasius solution is quite restrictive,
since it is only for laminar flow over a flat plate. Other, more complex systems cannot be solved by
this method. An approximate method developed by von Kármán can be used when the configuration
is more complicated or the flow is turbulent. This is an approximate momentum integral analysis of
the boundary layer using an empirical or assumed velocity distribution.
In order to derive the basic equation for a laminar or turbulent boundary layer, a small control volume
in the boundary layer on a flat plate is used, as shown in Fig. 3.10-5. The depth in the z direction is
b. Flow is only through the surfaces A1 and A2 and also from the top curved surface at δ. An overall
integral momentum balance using Eq. (2.8-8) and overall integral mass balance using Eq. (2.6-6)
are applied to the control volume inside the boundary layer at steady state, and the final integral
expression by von Kármán is (B2, S3)

Equation 3.10-48. 

Figure 3.10-5. Control volume for integral analysis of the boundary-layer flow.

where τ0 is the shear stress at the surface y = 0 at point x along the plate. Also, δ and τ0 are functions
of x.
Equation (3.10-48) is an expression whose solution requires knowledge of the velocity νx as a func-
tion of the distance from the surface, y. The accuracy of the results will, of course, depend on how
closely the assumed velocity profile approaches the actual profile.

Integral momentum balance for laminar boundary layer

Before we use Eq. (3.10-48) for the turbulent boundary layer, this equation will be applied to the
laminar boundary layer over a flat plate so that the results can be compared with the exact Blasius
solution in Eqs. (3.10-6)-(3.10-12).
In this analysis certain boundary conditions must be satisfied in the boundary layer:
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Equation 3.10-49. 

The conditions above are fulfilled in the following simple, assumed velocity profile:

Equation 3.10-50. 

The shear stress τ0 at a given x can be obtained from

Equation 3.10-51. 

Differentiating Eq. (3.10-50) with respect to y and setting y = 0,

Equation 3.10-52. 

Substituting Eq. (3.10-52) into (3.10-51),

Equation 3.10-53. 

Substituting Eq. (3.10-50) into Eq. (3.10-48) and integrating between y = 0 and y = δ, we obtain

Equation 3.10-54. 

Combining Eqs. (3.10-53) and (3.10-54) and integrating between δ = 0 and δ = δ, and x = 0 and x =
L,

Equation 3.10-55. 

where the length of plate is x = L. Proceeding in a manner similar to Eqs. (3.10-6)-(3.10-12), the
drag coefficient is
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Equation 3.10-56. 

A comparison of Eq. (3.10-6) with (3.10-55) and (3.10-12) with (3.10-56) shows the success of this
method. Only the numerical constants differ slightly. This method can be used with reasonable
accuracy for cases where an exact analysis is not feasible.

Integral momentum analysis for turbulent boundary layer

The procedures used for the integral momentum analysis for a laminar boundary layer can be ap-
plied to the turbulent boundary layer on a flat plate. A simple empirical velocity distribution for pipe
flow which is valid up to a Reynolds number of 105 can be adapted for the boundary layer on a flat
plate, to become

Equation 3.10-57. 

This is the Blasius -power law, which is often used.
Equation (3.10-57) is substituted into the integral relation equation (3.10-48):

Equation 3.10-58. 

The power-law equation does not hold, as y goes to zero at the wall. Another useful relation is the
Blasius correlation for shear stress for pipe flow, which is consistent at the wall for the wall shear
stress τ0. For boundary-layer flow over a flat plate, it becomes

Equation 3.10-59. 

Integrating Eq. (3.10-58), combining the result with Eq. (3.10-59), and integrating between δ = 0
and δ = δ, and x = 0 and x = L,

Equation 3.10-60. 

Integration of the drag force as before gives

Equation 3.10-61. 
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In this development the turbulent boundary layer was assumed to extend to x = 0. Actually, a certain
length at the front has a laminar boundary layer. Experimental data agree with Eq. (3.10-61) rea-
sonably well from a Reynolds number of 5 × 105 to 107. More-accurate results at higher Reynolds
numbers can be obtained by using a logarithmic velocity distribution, Eqs. (3.10-45)-(3.10-47).

DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER

Dimensional Analysis of Differential Equations

In this chapter we have derived several differential equations describing various flow situations.
Dimensional homogeneity requires that every term in a given equation have the same units. Then,
the ratio of one term in the equation to another term is dimensionless. Knowing the physical meaning
of each term in the equation, we are then able to give a physical interpretation to each of the di-
mensionless parameters or numbers formed. These dimensionless numbers, such as the Reynolds
number and others, are useful in correlating and predicting transport phenomena in laminar and
turbulent flow.
Often it is not possible to integrate the differential equation describing a flow situation. However, we
can use the equation to find out which dimensionless numbers can be used in correlating experi-
mental data for this physical situation.
An important example of this involves the use of the Navier-Stokes equation, which often cannot be
integrated for a given physical situation. To start, we use Eq. (3.7-36) for the x component of the
Navier-Stokes equation. At steady state this becomes

Equation 3.11-1. 

Each term in this equation has the units length/time2, or L/t2.
In this equation each term has a physical significance. First we use a single characteristic velocity
v and a single characteristic length L for all terms. Then the expression of each term in Eq.
(3.11-1) is as follows: The left-hand side can be expressed as v2/L and the right-hand terms, re-
spectively, as g, p/ρL, and μv/ρL2. We then write

Equation 3.11-2. 

This expresses a dimensional equality and not a numerical equality. Each term has dimensions L/t2.
The left-hand term in Eq. (3.11-2) represents the inertia force and the terms on the right-hand side
represent, respectively, the gravity force, pressure force, and viscous force. Dividing each of the
terms in Eq. (3.11-2) by the inertia force [v2/L], the following dimensionless groups or their recipro-
cals are obtained:

Equation 3.11-3. 
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Equation 3.11-4. 

Equation 3.11-5. 

Note that this method not only gives the various dimensionless groups for a differential equation but
also gives physical meaning to these dimensionless groups. The length, velocity, and so forth to be
used in a given case will be that value which is most significant. For example, the length may be
the diameter of a sphere, the length of a flat plate, and so on.
Systems that are geometrically similar are said to be dynamically similar if the parameters repre-
senting ratios of forces pertinent to the situation are equal. This means that the Reynolds, Euler, or
Froude numbers must be equal between the two systems.
This dynamic similarity is an important requirement in obtaining experimental data for a small model
and extending these data to scale up to the large prototype. Since experiments with full-scale pro-
totypes would often be difficult and/or expensive, it is customary to study small models. This is done
in the scale-up of chemical process equipment and in the design of ships and airplanes.

Dimensional Analysis Using the Buckingham Method

The method of obtaining the important dimensionless numbers from the basic differential equations
is generally the preferred method. In many cases, however, we are not able to formulate a differential
equation which clearly applies. Then a more general procedure is required, known as the Bucking-
ham method. In this method the listing of the important variables in the particular physical problem
is done first. Then we determine the number of dimensionless parameters into which the variables
may be combined by using the Buckingham pi theorem.
The Buckingham theorem states that the functional relationship among q quantities or variables
whose units may be given in terms of u fundamental units or dimensions may be written as (q −
u) independent dimensionless groups, often called π's. [This quantity u is actually the maximum
number of these variables that will not form a dimensionless group. However, only in a few cases
is u not equal to the number of fundamental units (B1).]
Let us consider the following example, to illustrate the use of this method. An incompressible fluid
is flowing inside a circular tube of inside diameter D. The significant variables are pressure drop
Δp, velocity v, diameter D, tube length L, viscosity μ, and density ρ. The total number of variables
is q = 6.
The fundamental units or dimensions are u = 3 and are mass M, length L, and time t. The units of
the variables are as follows: Δp in M/Lt2, v in L/t, D in L, L in L, μ in M/Lt, and ρ in M/L3. The number
of dimensionless groups or π's is q − u, or 6 − 3 = 3. Thus,

Equation 3.11-6. 

Next, we must select a core group of u (or 3) variables which will appear in each π group and among
them contain all the fundamental dimensions. Also, no two of the variables selected for the core can
have the same dimensions. In choosing the core, the variable whose effect one desires to isolate
is often excluded (for example, Δp). This leaves us with the variables ν, D, μ and ρ to be used. (L
and D have the same dimensions.)
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We will select D, ν, and ρ to be the core variables common to all three groups. Then the three
dimensionless groups are

Equation 3.11-7. 

Equation 3.11-8. 

Equation 3.11-9. 

To be dimensionless, the variables must be raised to certain exponents a, b, c, and so forth. First
we consider the π1 group:

Equation 3.11-7. 

To evaluate these exponents, we write Eq. (3.11-7) dimensionally by substituting the dimensions
for each variable:

Equation 3.11-10. 

Next we equate the exponents of L on both sides of this equation, of M, and finally of t:

Equation 3.11-11. 

Solving these equations, a = 0, b = −2, and c = −1. Substituting these values into Eq. (3.11-7),

Equation 3.11-12. 

Repeating this procedure for π2 and π3,

Equation 3.11-13. 

Equation 3.11-14. 
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Finally, substituting π1, π2, and π3 into Eq. (3.11-6),

Equation 3.11-15. 

Combining Eq. (2.10-5) with the left-hand side of Eq. (3.11-15), the result obtained shows that the
friction factor is a function of the Reynolds number (as was shown before in the empirical correlation
of friction factor and Reynolds number) and of the length/diameter ratio. In pipes with L/D >> 1 or
pipes with fully developed flow, the friction factor is found to be independent of L/D.
This type of analysis is useful in empirical correlations of data. However, it does not tell us the
importance of each dimensionless group, which must be determined by experimentation, nor does
it select the variables to be used.

PROBLEMS

3.1-1. Force on a Cylinder in a Wind Tunnel. Air at 101.3 kPa absolute
and 25°C is flowing at a velocity of 10 m/s in a wind tunnel. A long
cylinder having a diameter of 90 mm is placed in the tunnel and the
axis of the cylinder is held perpendicular to the air flow. What is the
force on the cylinder per meter length?

A1: Ans. CD = 1.3, FD = 6.94 N
3.1-2. Wind Force on a Steam Boiler Stack. A cylindrical steam boiler

stack has a diameter of 1.0 m and is 30.0 m high. It is exposed to
a wind at 25°C having a velocity of 50 miles/h. Calculate the force
exerted on the boiler stack.

A2: Ans. CD = 0.33, FD = 2935 N
3.1-3. Effect of Velocity on Force on a Sphere and Stokes' Law. A sphere

having a diameter of 0.042 m is held in a small wind tunnel, where
air at 37.8°C and 1 atm abs and various velocities is forced past it.

a. Determine the drag coefficient and force on the sphere for a
velocity of 2.30 × 10−4 m/s. Use Stokes' law here if it is appli-
cable.

b. Also determine the force for velocities of 2.30 × 10−3, 2.30 ×
10-2, 2.30 × 10−1, and 2.30 m/s. Make a plot of FD versus
velocity

3.1-4. Drag Force on Bridge Pier in River. A cylindrical bridge pier 1.0 m
in diameter is submerged to a depth of 10 m. Water in the river at
20°C is flowing past at a velocity of 1.2 m/s. Calculate the force on
the pier.

3.1-5. Surface Area in a Packed Bed. A packed bed is composed of cubes
0.020 m on a side and the bulk density of the packed bed is 980 kg/
m3. The density of the solid cubes is 1500 kg/m3.

a. Calculate ε, effective diameter Dp, and a.
b. Repeat for the same conditions but for cylinders having a di-

ameter of D = 0.02 m and a length h = 1.5D.
A5: Ans. (a) ε = 0.3467, Dp = 0.020 m, a = 196.0 m−1
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3.1-6. Derivation for Number of Particles in a Bed of Cylinders. For a
packed bed containing cylinders, where the diameter D of the cyl-
inders is equal to the length h, do as follows for a bed having a void
fraction ε:

a. Calculate the effective diameter.
b. Calculate the number of cylinders, n, in 1 m3 of the bed.

A6: Ans. (a) Dp = D
3.1-7. Derivation of Dimensionless Equation for Packed Bed. Starting

with Eq. (3.1-20), derive the dimensionless equation (3.1-21). Show
all steps in the derivation.

3.1-8. Flow and Pressure Drop of Gases in Packed Bed. Air at 394.3 K
flows through a packed bed of cylinders having a diameter of 0.0127
m and length the same as the diameter. The bed void fraction is
0.40 and the length of the packed bed is 3.66 m. The air enters the
bed at 2.20 atm abs at the rate of 2.45 kg/m2 · s based on the empty
cross section of the bed. Calculate the pressure drop of air in the
bed.

A8: Ans. Δp = 0.1547 × 105 Pa
3.1-9. Flow of Water in a Filter Bed. Water at 24°C is flowing by gravity

through a filter bed of small particles having an equivalent diameter
of 0.0060 m. The void fraction of the bed is measured as 0.42. The
packed bed has a depth of 1.50 m. The liquid level of water above
the bed is held constant at 0.40 m. What is the water velocity ν'
based on the empty cross section of the bed?

3.1-10. Mean Diameter of Particles in Packed Bed. A mixture of particles
in a packed bed contains the following volume percent of particles
and sizes: 15%, 10 mm; 25%, 20 mm; 40%, 40 mm; 20%, 70 mm.
Calculate the effective mean diameter, Dpm, if the shape factor is
0.74.

A10: Ans. Dpm = 18.34 mm
3.1-11. Permeability and Darcy's Law. A sample core of porous rock ob-

tained from an oil reservoir is 8 cm long and has a diameter of 2.0
cm. It is placed in a core holder. With a pressure drop of 1.0 atm,
the water flow at 20.2°C through the core is measured as 2.60
cm3/s. What is the permeability in darcy?

3.1-12. Minimum Fluidization and Expansion of Fluid Bed. Particles having
a size of 0.10 mm, a shape factor of 0.86, and a density of 1200 kg/
m3 are to be fluidized using air at 25°C and 202.65 kPa abs pres-
sure. The void fraction at minimum fluidizing conditions is 0.43. The
bed diameter is 0.60 m and the bed contains 350 kg of solids.

a. Calculate the minimum height of the fluidized bed.
b. Calculate the pressure drop at minimum fluidizing conditions.
c. Calculate the minimum velocity for fluidization.
d. Using 4.0 times the minimum velocity, estimate the porosity

of the bed.
A12: Ans. (a) Lmf = 1.810 m; (b) Δp = 0.1212 × 105 Pa; (c)  =

0.004374 m/s; (d) ε = 0.604
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3.1-13. Minimum Fluidization Velocity Using a Liquid. A tower having a di-
ameter of 0.1524 m is being fluidized with water at 20.2°C. The
uniform spherical beads in the tower bed have a diameter of 4.42
mm and a density of 1603 kg/m3. Estimate the minimum fluidizing
velocity and compare with the experimental value of 0.02307 m/s
found by Wilhelm and Kwauk (W5).

3.1-14. Fluidization of a Sand-Bed Filter. To clean a sand-bed filter, it is
fluidized at minimum conditions using water at 24°C. The round
sand particles have a density of 2550 kg/m3 and an average size
of 0.40 mm. The sand has the properties given in Table 3.1-2.

a. The bed diameter is 0.40 m and the desired height of the bed
at these minimum fluidizing conditions is 1.75 m. Calculate
the amount of solids needed.

b. Calculate the pressure drop at these conditions and the min-
imum velocity for fluidization.

c. Using 4.0 times the minimum velocity, estimate the porosity
and height of the expanded bed.

A14: Ans. (a) 325.2 kg solids; (b) 1.546 × 104 Pa
3.2-1. Flow Measurement Using a Pilot Tube. A pitot tube is used to

measure the flow rate of water at 20°C in the center of a pipe having
an inside diameter of 102.3 mm. The manometer reading is 78 mm
of carbon tetrachloride at 20°C. The pitot tube coefficient is 0.98.

a. Calculate the velocity at the center and the average velocity.
b. Calculate the volumetric flow rate of the water.

A15: Ans. (a) νmax = 0.9372 m/s, νav = 0.773 m/s; (b) 6.35 × 10−3 m3/s
3.2-2. Gas Flow Rate Using a Pitot Tube. The flow rate of air at 37.8°C is

being measured at the center of a duct having a diameter of 800
mm by a pitot tube. The pressure-difference reading on the man-
ometer is 12.4 mm of water. At the pitot-tube position, the static-
pressure reading is 275 mm of water above 1 atm abs. The pitot-
tube coefficient is 0.97. Calculate the velocity at the center and the
volumetric flow rate of the air.

3.2-3. Pitot-Tube Traverse for Flow-Rate Measurement. In a pitot-tube
traverse of a pipe having an inside diameter of 155.4 mm in which
water at 20°C is flowing, the following data were obtained:

Distance from Wall (mm)
Reading in Manometer (mm of Carbon Tetra-

chloride)

26.9 122

52.3 142

77.7 157

103.1 137

128.5 112

The pitot-tube coefficient is 0.98.

a. Calculate the maximum velocity at the center.
b. Calculate the average velocity. [Hint: Use Eq. (2.6-17) and do

a numerical or a graphical integration.]
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3.2-4. Metering Flow by a Venturi. A venturi meter having a throat diam-
eter of 38.9 mm is installed in a line having an inside diameter of
102.3 mm. It meters water having a density of 999 kg/m3. The
measured pressure drop across the venturi is 156.9 kPa. The ven-
turi coefficient Cν is 0.98. Calculate the gal/min and m3/s flow rate.

A18: Ans. 330 gal/min, 0.0208 m3/s
3.2-5. Use of a Venturi to Meter Water Flow. Water at 20°C is flowing in

a 2-in. schedule 40 steel pipe. Its flow rate is measured by a venturi
meter having a throat diameter of 20 mm. The manometer reading
is 214 mm of mercury. The venturi coefficient is 0.98. Calculate the
flow rate.

3.2-6. Metering of Oil Flow by an Orifice. A heavy oil at 20°C having a
density of 900 kg/m3 and a viscosity of 6 cp is flowing in a 4-in.
schedule 40 steel pipe. When the flow rate is 0.0174 m3/s, it is de-
sired to have a pressure-drop reading across the manometer equiv-
alent to 0.93 × 105 Pa. What size orifice should be used if the orifice
coefficient is assumed as 0.61? What is the permanent pressure
loss?

3.2-7. Water Flow Rate in an Irrigation Ditch. Water is flowing in an open
channel in an irrigation ditch. A rectangular weir having a crest
length L = 1.75 ft is used. The weir head is measured as h0 = 0.47
ft. Calculate the flow rate in ft3/s and m3/s.

A21: Ans. Flow rate = 1.776 ft3/s, 0.0503 m3/s
3.2-8. Sizing a Flow Nozzle. A flow nozzle is to be sized for use in a pipe

having an internal diameter of 1.25 in. to meter 0.60 ft3/min of water
at 25°C. A pressure drop of 10.0 in. of water is to be used. Calculate
the size of the flow nozzle and the permanent power loss in hp.
Assume the coefficient Cn = 0.96.

A22: Ans. D2 = 0.506 in., p1 − p4 = 37.38 lbf/ft2 (1.789 kPa)
3.3-1. Brake Horsepower of Centrifugal Pump. Using Fig. 3.3-2 and a flow

rate of 60 gal/min, do as follows:

a. Calculate the brake hp of the pump using water with a density
of 62.4 lbm/ft3. Compare with the value from the curve.

b. Do the same for a nonviscous liquid having a density of 0.85
g/cm3.

A23: Ans. (b) 0.69 brake hp (0.51 kW)
3.3-2. kW Power of a Fan. A centrifugal fan is to be used to take a flue

gas at rest (zero velocity) and at a temperature of 352.6 K and a
pressure of 749.3 mm Hg and discharge this gas at a pressure of
800.1 mm Hg and a velocity of 38.1 m/s. The volume flow rate of
gas is 56.6 std m3/min of gas (at 294.3 K and 760 mm Hg). Calculate
the brake kW of the fan if its efficiency is 65% and the gas has a
molecular weight of 30.7. Assume incompressible flow.

3.3-3. Adiabatic Compression of Air. A compressor operating adiabati-
cally is to compress 2.83 m3/min of air at 29.4°C and 102.7 kN/m2

to 311.6 kN/m2. Calculate the power required if the efficiency of the
compressor is 75%. Also, calculate the outlet temperature.
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3.3-4. (NPSH)R forFeed to Distillation Tower. A feed rate of 200 gpm of a
hydrocarbon mixture at 70°C is being pumped from a tank at 1 atm
abs pressure to a distillation tower. The density of the feed is 46.8
lbm/ft3 and its vapor pressure is 8.45 psia. The velocity in the inlet
line to the pump is 3 ft/s and the friction loss between the tank and
pump is 3.5 ft of fluid. The net positive suction head required is 6 ft.

a. How far below the liquid level in the tank must the pump be to
obtain this required (NPSH)R?

b. If the feed is at the boiling point, calculate the pump position.
A26: Ans. (a) z1 = −9.57 ft (−2.92 m)
3.4-1. Power for Liquid Agitation. It is desired to agitate a liquid having a

viscosity of 1.5 × 10−3 Pa · s and a density of 969 kg/m3 in a tank
having a diameter of 0.91 m. The agitator will be a six-blade open
turbine having a diameter of 0.305 m operating at 180 rpm. The tank
has four vertical baffles, each with a width J of 0.076 m. Also, W =
0.0381 m. Calculate the required kW. Use curve 2, Fig. 3.4-4.

A27: Ans. NP = 2.5, power = 0.172 kW (0.231 hp)
3.4-2. Power for Agitation and Scale-Up. A turbine agitator having six flat

blades and a disk has a diameter of 0.203 m and is used in a tank
having a diameter of 0.61 m and height of 0.61 m. The width W =
0.0405 m. Four baffles are used having a width of 0.051 m. The
turbine operates at 275 rpm in a liquid having a density of 909 kg/
m3 and viscosity of 0.020 Pa · s.

a. Calculate the kW power of the turbine and kW/m3 of volume.
b. Scale up this system to a vessel having a volume of 100 times

the original for the case of equal mass transfer rates.
A28: Ans. (a) P = 0.1508 kW, P/V = 0.845 kW/m3; (b) P2 = 15.06 kW, P2/

V2 = 0.845 kW/m3

3.4-3. Scale-down of Process Agitation System. An existing agitation
process operates using the same agitation system and fluid as de-
scribed in Example 3.4-1a. It is desired to design a small pilot unit
with a vessel volume of 2.0 liters so that effects of various process
variables on the system can be studied in the laboratory. The rates
of mass transfer appear to be important in this system, so the scale-
down should be on this basis. Design the new system specifying
sizes, rpm, and kW power.

3.4-4. Anchor Agitation System. An anchor-type agitator similar to that
described for Eq. (3.4-3) is to be used to agitate a fluid having a
viscosity of 100 Pa · s and a density of 980 kg/m3. The vessel size
is Dt = 0.90 m and H = 0.90 m. The rpm is 50. Calculate the power
required.

3.4-5. Design of Agitation System. An agitation system is to be designed
for a fluid having a density of 950 kg/m3 and viscosity of 0.005 Pa
· s. The vessel volume is 1.50 m3 and a standard six-blade open
turbine with blades at 45°C (curve 3, Fig. 3.4-4) is to be used with
Da/W = 8 and Da/Dt = 0.35. For the preliminary design a power of
0.5 kW/m3 volume is to be used. Calculate the dimensions of the
agitation system, rpm, and kW power.

3.4-6. Scale-Up of Mixing Times for a Turbine. For scaling up a turbine-
agitated system, do as follows:
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a. Derive Eq. (3.4-17) for the same power/unit volume.
b. Derive Eq. (3.4-18) for the same mixing times.

3.4-7. Mixing Time in a Turbine-Agitated System. Do as follows:

a. Predict the time of mixing for the turbine system in Example
3.4-1a.

b. Using the same system as part (a) but with a tank having a
volume of 10.0 m3 and the same power/unit volume, predict
the new mixing time.

A33: Ans. (a) ft = 4.0, tT = 17.3 s
3.4-8. Effect of Viscosity on Mixing Time. Using the same conditions for

the turbine mixer as in Example 3.4-4, part (a), except for a viscous
fluid with a viscosity of 100 Pa · s (100 000 cp), calculate the mixing
time. Compare this mixing time with that for the viscosity of 10 cp.
Also calculate the power per unit volume.

A34: Ans. tT = 562 s
3.4-9. Mixing Time in a Helical Mixer. A helical mixer with an agitator pitch/

tank diameter = 1.0 and with Dt = 1.83 m and Da/Dt = 0.95 is being
used to agitate a viscous fluid having a viscosity of 200 000 cp and
a density of 950 kg/m3. The value of N = 0.3 rev/s. Calculate the
mixing time and the power per unit volume.

A35: Ans. tT = 420 s
3.5-1. Pressure Drop of Power-Law Fluid, Banana Purée. A power-law

biological fluid, banana purée, is flowing at 23.9°C, with a velocity
of 1.018 m/s, through a smooth tube 6.10 m long having an inside
diameter of 0.01267 m. The flow properties of the fluid are K = 6.00
N · s0.454/m2 and n = 0.454. The density of the fluid is 976 kg/m3.

a. Calculate the generalized Reynolds number and also the
pressure drop using Eq. (3.5-9). Be sure to convert K to K' first.

b. Repeat part (a), but use the friction factor method.

Ans. (a) NRe,gen = 63.6, Δp = 245.2 kN/m2 (5120 lbf/ft2)
3.5-2. Pressure Drop of Pseudoplastic Fluid. A pseudoplastic power-law

fluid having a density of 63.2 lbm/ft3 is flowing through 100 ft of pipe
having an inside diameter of 2.067 in. at an average velocity of
0.500 ft/s. The flow properties of the fluid are K = 0.280 lbf · sn/ft2
and n = 0.50. Calculate the generalized Reynolds number and also
the pressure drop, using the friction factor method.

3.5-3. Turbulent Flow of Non-Newtonian Fluid, Applesauce. Applesauce
having the flow properties given in Table 3.5-1 is flowing in a smooth
tube having an inside diameter of 50.8 mm and a length of 3.05 m
at a velocity of 4.57 m/s.

a. Calculate the friction factor and the pressure drop in the
smooth tube.

b. Repeat, but for a commercial pipe having the same inside di-
ameter with a roughness of ε = 4.6 × 10−5 m.

A38: Ans. (a) NRe,gen = 4855, f = 0.0073; (b) f = 0.0100

Principles of Momentum Transfer and Applications 253

Chapter 3. Principles of Momentum Transfer and Applications. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



3.5-4. Agitation of a Non-Newtonian Liquid. A pseudoplastic liquid having
the properties n = 0.53, K = 26.49 N · sn'/m2, and ρ = 975 kg/m3 is
being agitated in a system such as in Fig. 3.5-4 where Dt = 0.304

m, Da = 0.151 m, and N = 5 rev/s. Calculate μa, , and the kW
power for this system.

A39: Ans. μa = 4.028 Pa · s,  = 27.60, NP = 3.1, P = 0.02966 kW
3.5-5. Velocity Profile of a Bingham Plastic Fluid. For the conditions of

Example 3.5-3, do as follows:

a. Calculate the velocity for the plug-flow region at r = r0.
b. Calculate the velocity for values of r of 0.35 cm, 0.45 cm, and

0.50 cm and plot the complete velocity profile versus radial
position.

3.5-6 Pressure Drop for Bingham Plastic Fluid. A Bingham plastic fluid
has a value of τ0 = 1.2 N/m2 and a viscosity μ = 0.4 Pa · s. The fluid
is flowing at 5.70 × 10−5 m3/s in a pipe 2.5 m long with an internal
diameter of 3.0 cm. Calculate the pressure drop (p0 − pL) in N/m2

and r0. (Hint: This is a trial-and-error solution. As a first trial, assume
τ0 = 0.)

A41: Ans. (p0 − pL) = 3400 N/m2

3.5-7. Flow Properties of a Non-Newtonian Fluid from Rotational Viscom-
eter Data. Following are data obtained on a fluid using a Brookfield
rotational viscometer:

RPM 0.5 1 2.5 5 10 20 50

Torque (dyn-cm) 86.2 168.9 402.5 754 1365 2379 4636

The diameter of the inner concentric rotating spindle is 25.15 mm,
the outer cylinder diameter is 27.62 mm, and the effective length is
92.39 mm. Determine the flow properties of this non-Newtonian
fluid.

A42: Ans. n = 0.870
3.6-1. Equation of Continuity in a Cylinder. Fluid having a constant den-

sity ρ is flowing in the z direction through a circular pipe with axial
symmetry. The radial direction is designated by r.
a. Using a cylindrical shell balance with dimensions dr and dz,

derive the equation of continuity for this system.
b. Use the equation of continuity in cylindrical coordinates to de-

rive the equation.
3.6-2. Change of Coordinates for Continuity Equation. Using the general

equation of continuity given in rectangular coordinates, convert it to
Eq. (3.6-27), which is the equation of continuity in cylindrical coor-
dinates. Use the relationships in Eq. (3.6-26) to do this.

3.7-1. Combining Equations of Continuity and Motion. Using the continu-
ity equation and the equations of motion for the x, y, and z compo-
nents, derive Eq. (3.7-13).

3.8-1. Average Velocity in a Circular Tube. Using Eq. (3.8-17) for the ve-
locity in a circular tube as a function of radius r,
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Equation 3.8-17. 

derive Eq. (3.8-19) for the average velocity:

Equation 3.8-19. 

3.8-2. Laminar Flow in a Cylindrical Annulus. Derive all the equations
given in Example 3.8-4 showing all the steps. Also, derive the equa-
tion for the average velocity νz av. Finally, integrate to obtain the
pressure drop from z = 0 for p = p0 to z = L for p = pL.

A47:

Ans. 
3.8-3. Velocity Profile in Wetted-Wall Tower. In a vertical wetted-wall

tower, the fluid flows down the inside as a thin film δ m thick in
laminar flow in the vertical z direction. Derive the equation for the
velocity profile νz, as a function of x, the distance from the liquid
surface toward the wall. The fluid is at a large distance from the
entrance. Also, derive expressions for νz av and νz max. (Hint: At x =
δ, which is at the wall, νz = 0. At x = 0, the surface of the flowing
liquid, νz = vz max.) Show all steps.

A48: Ans. νz = (ρgδ2/2μ)[1 − (x/δ)2], νz av = ρgδ2/3μ, νz max = ρgδ2/2μ
3.8-4. Velocity Profile in Falling Film and Differential Momentum Bal-

ance. A Newtonian liquid is flowing as a falling film on an inclined
flat surface. The surface makes an angle β with the vertical. Assume
that in this case the section being considered is sufficiently far from
both ends that there are no end effects on the velocity profile. The
thickness of the film is δ. The apparatus is similar to Fig. 2.9-3 but
is not vertical. Do as follows:

a. Derive the equation for the velocity profile of νz as a function
of x in this film using the differential momentum balance equa-
tion.

b. What are the maximum velocity and the average velocity?
c. What is the equation for the momentum flux distribution of

τxz? [Hint: Can Eq. (3.7-19) be used here?]
A49: Ans. (a) vz = (ρgδ2 cos β/2μ)[1 − (x/δ)2]; (c) τxz = ρgx cos β
3.8-5. Velocity Profiles for Flow Between Parallel Plates. In Example

3.8-2 a fluid is flowing between vertical parallel plates with one plate
moving. Do as follows:

a. Determine the average velocity and the maximum velocity.

Principles of Momentum Transfer and Applications 255

Chapter 3. Principles of Momentum Transfer and Applications. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



b. Make a sketch of the velocity profile for three cases where the
surface is moving upward, moving downward, and stationary.

3.8-6. Conversion of Shear Stresses in Terms of Fluid Motion. Starting
with the x component of motion, Eq. (3.7-10), which is in terms of
shear stresses, convert it to the equation of motion, Eq. (3.7-36), in
terms of velocity gradients, for a Newtonian fluid with constant ρ
and μ. Note that (∇·ν) = 0 in this case. Also, use of Eqs. (3.7-14)-
(3.7-20) should be considered.

3.8-7. Derivation of Equation of Continuity in Cylindrical Coordinates. By
means of a mass balance over a stationary element whose volume
is r Δr Δθ Δz, derive the equation of continuity in cylindrical coordi-
nates.

3.8-8. Flow between Two Rotating Coaxial Cylinders. The geometry of
two coaxial cylinders is the same as in Example 3.8-5. In this case,
however, both cylinders are rotating, the inner rotating with an an-
nular velocity of ω1 and the outer at ω2. Determine the velocity and
the shear-stress distributions using the differential equation of mo-
mentum.

A53:

Ans. 
3.9-1. Potential Function. The potential function ϕ for a given flow situa-

tion is ϕ = C(x2 - y2), where C is a constant. Check to see if it satisfies
Laplace's equation. Determine the velocity components νx and νy.

A54: Ans. vx = 2Cx, νy = −2Cy (C = constant)
3.9-2. Determining the Velocities from the Potential Function. The poten-

tial function for flow is given as ϕ = Ax + By, where A and B are
constants. Determine the velocities νx and νy.

3.9-3. Stream Function and Velocity Vector. Flow of a fluid in two dimen-
sions is given by the stream function ψ = Bxy, where B = 50s-1 and
the units of x and y are in cm. Determine the value of vx, vy, and the
velocity vector at x = 1 cm and y = 1 cm.

A56: Ans. ν = 70.7 cm/s
3.9-4. Stream Function and Potential Function. A liquid is flowing parallel

to the x axis. The flow is uniform and is represented by νx = U and
vy = 0.

a. Find the stream function ψ for this flow field and plot the
streamlines.

b. Find the potential function and plot the potential lines.
A57: Ans. (a) ψ = Uy
3.9-5. Velocity Components and Stream Function. A liquid is flowing in a

uniform manner at an angle of β with respect to the x axis. Its ve-
locity components are νx = U cos β and νy = U sin β. Find the stream
function and the potential function.

A58: Ans. ψ = Uy cos β − Ux sin β
3.9-6. Flow Field with Concentric Streamlines. The flow of a fluid that has

concentric streamlines has a stream function represented by ψ = 1/
(x2 + y2). Find the components of velocity νx and νy. Also, determine
if the flow is rotational and, if so, determine the vorticity, 2ωz.
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3.9-7. Potential Function and Velocity Field. In Example 3.9-2 the velocity
components were given. Show if a velocity potential exists and, if
so, also determine ϕ.

A60: Ans. ϕ = ax3/3 − axy2

3.9-8. Euler's Equation of Motion for an Ideal Fluid. Using the Euler equa-
tions (3.9-2)–(3.9-4) for ideal fluids with constant density and zero
viscosity, obtain the following equation:

3.9-9. Plot of Streamlines. For Ex. (3.9-3) plot the streamlines for ψ = 0
and ψ = 2 when x > 0.

3.9-10. Stream Function for Two-Dimensional Flow. Find the stream func-
tion of the two-dimensional flow with constant density where νx =
U[(y/L)2 − (y/L)] and νy = 0. The flow is between two parallel plates
spaced L distance apart. Also plot the velocity profile of νx versus y.

A63:

Ans. 
3.9-11. Stream and Potential Functions and Plots of These Functions. De-

termine the stream function ψ when the velocities are νx = 2x and
νy = -2y. Also determine the potential function ϕ. Plot the stream
function for ψ = 1 and ψ = 2. Also plot the equal potential lines for
ϕ = 1 and ϕ = 4.

A64: Ans. ψ = 2xy, ϕ = x2 − y2

3.9-12. Velocity Field from Stream Function. Given the stream function ψ
= 3x2 + 2y2, calculate νx and νy and draw the streamlines for ψ = 1
and ψ = 2.

A65: Ans. vx = 4y, vy = −6x
3.9-13. Streamline from Velocities. The velocity vx = x2 and vy = -2xy. De-

termine the stream function ψ.
A66: Ans. ψ = x2y
3.9-14. Stream Function from Velocity Potential. Find the stream function

ψ from the velocity potential ϕ = UL[(x/L)3 − (3xy2)/L3], where U and
L are constants. Also, find νx and νy.

A67:

Ans. 
3.10-1. Laminar Boundary Layer on Flat Plate. Water at 20°C is flowing

past a flat plate at 0.914 m/s. The plate is 0.305 m wide.

a. Calculate the Reynolds number 0.305 m from the leading
edge to determine if the flow is laminar.

b. Calculate the boundary-layer thickness at x = 0.152 and x =
0.305 m from the leading edge.

c. Calculate the total drag on the 0.305-m-long plate.
A68: Ans. (a) NRe,L = 2.77 × 105; (b) δ = 0.0029 m at x = 0.305 m
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3.10-2. Air Flow Past a Plate. Air at 294.3 K and 101.3 kPa is flowing past
a flat plate at 6.1 m/s. Calculate the thickness of the boundary layer
at a distance of 0.3 m from the leading edge and the total drag for
a 0.3-m-wide plate.

3.10-3. Boundary-Layer Flow Past a Plate. Water at 293 K is flowing past
a flat plate at 0.5 m/s. Do as follows:

a. Calculate the boundary-layer thickness in m at a point 0.1 m
from the leading edge.

b. At the same point, calculate the point shear stress τ0. Also
calculate the total drag coefficient.

3.10-4. Transition Point to Turbulent Boundary Layer. Air at 101.3 kPa and
293 K is flowing past a smooth, flat plate at 100 ft/s. The turbulence
in the air stream is such that the transition from a laminar to a tur-
bulent boundary layer occurs at NRe,L = 5 × 105.

a. Calculate the distance from the leading edge where the tran-
sition occurs.

b. Calculate the boundary-layer thickness δ at a distance of 0.5
ft and 3.0 ft from the leading edge. Also calculate the drag
coefficient for both distances L = 0.5 and 3.0 ft.

3.11-1. Dimensional Analysis for Flow Past a Body. A fluid is flowing ex-
ternal to a solid body. The force F exerted on the body is a function
of the fluid velocity ν, fluid density ρ, fluid viscosity μ, and a dimen-
sion of the body L. By dimensional analysis, obtain the dimension-
less groups formed from the variables given. (Note: Use the M, L,
t system of units. The units of F are ML/t2. Select ν, ρ, and L as the
core variables.)

A72: Ans. π1 = (F/L2)/ρv2, π2 = μ/Lvρ
3.11-2. Dimensional Analysis for Bubble Formation. Dimensional analysis

is to be used to correlate data on bubble size with the properties of
the liquid when gas bubbles are formed by a gas issuing from a
small orifice below the liquid surface. Assume that the significant
variables are bubble diameter D, orifice diameter d, liquid density
ρ, surface tension σ in N/m, liquid viscosity μ, and g. Select d, ρ,
and g as the core variables.

A73: Ans. π1 = D/d, π2 = σ/ρd2g, π3 = μ2/ρ2d3g
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