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Chapter 4. Principles of Steady-State Heat
Transfer

INTRODUCTION AND MECHANISMS OF HEAT TRANSFER

Introduction to Steady-State Heat Transfer

The transfer of energy in the form of heat occurs in many chemical and other types of processes.
Heat transfer often occurs in combination with other separation processes, such as drying of lumber
or foods, alcohol distillation, burning of fuel, and evaporation. The heat transfer occurs because of
a temperature-difference driving force and heat flows from the high to the low-temperature region.
In Section 2.3 we derived an equation for a general property balance of momentum, thermal energy,
or mass at unsteady state by writing Eq. (2.3-7). Writing a similar equation but specifically for heat
transfer,

Equation 4.1-1. 

Assuming the rate of transfer of heat occurs only by conduction, we can rewrite Eq. (2.3-14), which
is Fourier's law, as

Equation 4.1-2. 

Making an unsteady-state heat balance for the x direction only on the element of volume or control
volume in Fig. 4.1-1 by using Eqs. (4.1-1) and (4.1-2), with the cross-sectional area being A m2,

Equation 4.1-3. 
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Figure 4.1-1. Unsteady-state balance for heat transfer in control volume.

where  is rate of heat generated per unit volume. Assuming no heat generation and also assuming
steady-state heat transfer, where the rate of accumulation is zero, Eq. (4.1-3) becomes

Equation 4.1-4. 

This means the rate of heat input by conduction = the rate of heat output by conduction; or qx is a
constant with time for steady-state heat transfer.
In this chapter we are concerned with a control volume where the rate of accumulation of heat is
zero and we have steady-state heat transfer. The rate of heat transfer is then constant with time,
and the temperatures at various points in the system do not change with time. To solve problems
in steady-state heat transfer, various mechanistic expressions in the form of differential equations
for the different modes of heat transfer such as Fourier's law are integrated. Expressions for the
temperature profile and heat flux are then obtained in this chapter.
In Chapter 5 the conservation-of-energy equations (2.7-2) and (4.1-3) will be used again when the
rate of accumulation is not zero and unsteady-state heat transfer occurs. The mechanistic expres-
sion for Fourier's law in the form of a partial differential equation will be used where the temperature
at various points and the rate of heat transfer change with time. In Section 5.6 a general differential
equation of energy change will be derived and integrated for various specific cases to determine
the temperature profile and heat flux.

Basic Mechanisms of Heat Transfer

Heat transfer may occur by any one or more of the three basic mechanisms of heat transfer: con-
duction, convection, and radiation.

Conduction

In conduction, heat can be conducted through solids, liquids, and gases. The heat is conducted by
the transfer of the energy of motion between adjacent molecules. In a gas the "hotter" molecules,
which have greater energy and motions, impart energy to the adjacent molecules at lower energy
levels. This type of transfer is present to some extent in all solids, gases, or liquids in which a
temperature gradient exists. In conduction, energy can also be transferred by "free" electrons, which
is quite important in metallic solids. Examples of heat transfer mainly by conduction are heat transfer
through walls of exchangers or a refrigerator, heat treatment of steel forgings, freezing of the ground
during the winter, and so on.
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Convection

The transfer of heat by convection implies the transfer of heat by bulk transport and mixing of mac-
roscopic elements of warmer portions with cooler portions of a gas or liquid. It also often refers to
the energy exchange between a solid surface and a fluid. A distinction must be made between
forced-convection heat transfer, where a fluid is forced to flow past a solid surface by a pump, fan,
or other mechanical means, and natural or free convection, where warmer or cooler fluid next to the
solid surface causes a circulation because of a density difference resulting from the temperature
differences in the fluid. Examples of heat transfer by convection are loss of heat from a car radiator
where the air is being circulated by a fan, cooking of foods in a vessel being stirred, cooling of a hot
cup of coffee by blowing over the surface, and so on.

Radiation

Radiation differs from heat transfer by conduction and convection in that no physical medium is
needed for its propagation. Radiation is the transfer of energy through space by means of electro-
magnetic waves in much the same way as electromagnetic light waves transfer light. The same
laws that govern the transfer of light govern the radiant transfer of heat. Solids and liquids tend to
absorb the radiation being transferred through them, so that radiation is important primarily in trans-
fer through space or gases. The most important example of radiation is the transport of heat to the
earth from the sun. Other examples are cooking of food when passed below red-hot electric heaters,
heating of fluids in coils of tubing inside a combustion furnace, and so on.

Fourier's Law of Heat Conduction

As discussed in Section 2.3 for the general molecular transport equation, all three main types of
rate-transfer processes—momentum transfer, heat transfer, and mass transfer—are characterized
by the same general type of equation. The transfer of electric current can also be included in this
category. This basic equation is as follows:

Equation 2.3-1. 

This equation states what we know intuitively: that in order to transfer a property such as heat or
mass, we need a driving force to overcome a resistance.
The transfer of heat by conduction also follows this basic equation and is written as Fourier's law
for heat conduction in fluids or solids:

Equation 4.1-2. 

where qx is the heat-transfer rate in the x direction in watts (W), A is the cross-sectional area normal
to the direction of flow of heat in m2, T is temperature in K, x is distance in m, and k is the thermal
conductivity in W/m · K in the SI system. The quantity qx/A is called the heat flux in W/m2. The
quantity dT/dx is the temperature gradient in the x direction. The minus sign in Eq. (4.1-2) is required
because if the heat flow is positive in a given direction, the temperature decreases in this direction.
The units in Eq. (4.1-2) may also be expressed in the cgs system, with qx in cal/s, A in cm2, k in cal/
s · °C · cm, T in °C, and x in cm. In the English system, qx is in btu/h, A in ft2, T in °F, x in ft, k in btu/
h · °F · ft, and qx/A in btu/h · ft2. From Appendix A.1, the conversion factors are, for thermal con-
ductivity,
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Equation 4.1-5. 

Equation 4.1-6. 

For heat flux and power,

Equation 4.1-7. 

Equation 4.1-8. 

Fourier's law, Eq. (4.1-2), can be integrated for the case of steady-state heat transfer through a flat
wall of constant cross-sectional area A, where the inside temperature is T1 at point 1 and T2 at point
2, a distance of x2 - x1 m away. Rearranging Eq. (4.1-2),

Equation 4.1-9. 

Integrating, assuming that k is constant and does not vary with temperature and dropping the sub-
script x on qx for convenience,

Equation 4.1-10. 

EXAMPLE 4.1-1. Heat Loss Through an Insulating Wall
Calculate the heat loss per m2 of surface area for an insulating wall composed of 25.4-mm-thick fiber insulating
board, where the inside temperature is 352.7 K and the outside temperature is 297.1 K.

Solution: From Appendix A.3, the thermal conductivity of fiber insulating board is 0.048 W/m · K. The thickness
x2 - x1 = 0.0254 m. Substituting into Eq. (4.1-10),
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Thermal Conductivity

The defining equation for thermal conductivity is given as Eq. (4.1-2), and with this definition, ex-
perimental measurements have been made to determine the thermal conductivity of different ma-
terials. In Table 4.1-1 thermal conductivities are given for a few materials for the purpose of com-
parison. More-detailed data are given in Appendix A.3 for inorganic and organic materials and
Appendix A.4 for food and biological materials. As seen in Table 4.1-1, gases have quite low values
of thermal conductivity, liquids intermediate values, and solid metals very high values.

Table 4.1-1. Thermal Conductivities of Some Materials at 101.325 kPa (1 Atm) Pressure (k in W/m · K)

Substance
Temp.

(K) k Ref. Substance
Temp.

(K) k Ref.

Gases    Solids    
 Air 273 0.0242 (K2)  Ice 273 2.25 (C1)

  373 0.0316   Fire claybrick 473 1.00 (P1)

 H2 273 0.167 (K2)  Paper — 0.130 (M1)

 n-Butane 273 0.0135 (P2)  Hard rubber 273 0.151 (M1)

Liquids     Cork board 303 0.043 (M1)

 Water 273 0.569 (P1)  Asbestos 311 0.168 (M1)

  366 0.680   Rock wool 266 0.029 (K1)

 Benzene 303 0.159 (P1)  Steel 291 45.3 (P1)

  333 0.151    373 45  
Biological materials
and foods

    Copper 273

373

388

377

(P1)

 Olive oil 293

373

0.168

0.164

(P1)  Aluminum 273 202 (P1)

 Lean beef 263 1.35 (C1)     
 Skim milk 275 0.538 (C1)     
 Applesauce 296 0.692 (C1)     
 Salmon 277 0.502 (C1)     
  248 1.30      

Gases

In gases the mechanism of thermal conduction is relatively simple. The molecules are in continuous
random motion, colliding with one another and exchanging energy and momentum. If a molecule
moves from a high-temperature region to a region of lower temperature, it transports kinetic energy
to this region and gives up this energy through collisions with lower-energy molecules. Since smaller
molecules move faster, gases such as hydrogen should have higher thermal conductivities, as
shown in Table 4.1-1.
Theories to predict thermal conductivities of gases are reasonably accurate and are given elsewhere
(R1). The thermal conductivity increases approximately as the square root of the absolute temper-
ature and is independent of pressure up to a few atmospheres. At very low pressures (vacuum),
however, the thermal conductivity approaches zero.
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Liquids

The physical mechanism of conduction of energy in liquids is somewhat similar to that of gases,
where higher-energy molecules collide with lower-energy molecules. However, the molecules are
packed so closely together that molecular force fields exert a strong effect on the energy exchange.
Since an adequate molecular theory of liquids is not available, most correlations to predict the ther-
mal conductivities are empirical. Reid et al. (R1) discuss these in detail. The thermal conductivity of
liquids varies moderately with temperature and often can be expressed as a linear variation.

Equation 4.1-11. 

where a and b are empirical constants. Thermal conductivities of liquids are essentially independent
of pressure.
Water has a high thermal conductivity compared to organic-type liquids such as benzene. As shown
in Table 4.1-1, the thermal conductivities of most unfrozen foodstuffs, such as skim milk and ap-
plesauce, which contain large amounts of water have thermal conductivities near that of pure water.

Solids

The thermal conductivity of homogeneous solids varies quite widely, as may be seen for some
typical values in Table 4.1-1. The metallic solids of copper and aluminum have very high thermal
conductivities, while some insulating nonmetallic materials such as rock wool and corkboard have
very low conductivities.
Heat or energy is conducted through solids by two mechanisms. In the first, which applies primarily
to metallic solids, heat, like electricity, is conducted by free electrons which move through the metal
lattice. In the second mechanism, present in all solids, heat is conducted by the transmission of
energy of vibration between adjacent atoms.
Thermal conductivities of insulating materials such as rock wool approach that of air since the in-
sulating materials contain large amounts of air trapped in void spaces. Superinsulations to insulate
cryogenic materials such as liquid hydrogen are composed of multiple layers of highly reflective
materials separated by evacuated insulating spacers. Values of thermal conductivity are consider-
ably lower than for air alone.
Ice has a thermal conductivity much greater than water. Hence, the thermal conductivities of frozen
foods such as lean beef and salmon given in Table 4.1-1 are much higher than for unfrozen foods.

Convective Heat-Transfer Coefficient

It is well known that a hot piece of material will cool faster when air is blown or forced past the object.
When the fluid outside the solid surface is in forced or natural convective motion, we express the
rate of heat transfer from the solid to the fluid, or vice versa, by the following equation:

Equation 4.1-12. 

where q is the heat-transfer rate in W, A is the area in m2, Tw is the temperature of the solid surface
in K, Tf is the average or bulk temperature of the fluid flowing past in K, and h is the convective heat-
transfer coefficient in W/m2 · K. In English units, h is in btu/h · ft2 · °F.
The coefficient h is a function of the system geometry, fluid properties, flow velocity, and temperature
difference. In many cases, empirical correlations are available to predict this coefficient, since it
often cannot be predicted theoretically. Since we know that when a fluid flows past a surface there
is a thin, almost stationary layer or film of fluid adjacent to the wall which presents most of the
resistance to heat transfer, we often call the coefficient h a film coefficient.
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In Table 4.1-2 some order-of-magnitude values of h for different convective mechanisms of free or
natural convection, forced convection, boiling, and condensation are given. Water gives the highest
values of the heat-transfer coefficients.

Table 4.1-2. Approximate Magnitude of Some Heat-Transfer Coefficients

 Range of Values of h

Mechanism btu/h · ft2 · °F W/m2 · K

Condensing steam 1000–5000 5700–28000

Condensing organics 200–500 1100–2800

Boiling liquids 300–5000 1700–28000

Moving water 50–3000 280–17000

Moving hydrocarbons 10–300 55–1700

Still air 0.5–4 2.8–23

Moving air 2–10 11.3–55

To convert the heat-transfer coefficient h from English to SI units,

CONDUCTION HEAT TRANSFER

Conduction Through a Flat Slab or Wall

In this section Fourier's equation (4.1-2) will be used to obtain equations for one-dimensional steady-
state conduction of heat through some simple geometries. For a flat slab or wall where the cross-
sectional area A and k in Eq. (4.1-2) are constant, we obtained Eq. (4.1-10), which we rewrite as

Equation 4.2-1. 

This is shown in Fig. 4.2-1, where Δx = x2 - x1. Equation (4.2-1) indicates that if T is substituted for
T2 and x for X2, the temperature varies linearly with distance, as shown in Fig. 4.2-1b.

Figure 4.2-1. Heat conduction in a flat wall: (a) geometry of wall, (b) temperature plot.
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If the thermal conductivity is not constant but varies linearly with temperature, then substituting Eq.
(4.1-11) into Eq. (4.1-2) and integrating,

Equation 4.2-2. 

where

Equation 4.2-3. 

This means that the mean value of k (i.e., km) to use in Eq. (4.2-2) is the value of k evaluated at the
linear average of T1 and T2.
As stated in the introduction to transport processes in Eq. (2.3-1), the rate of a transfer process
equals the driving force over the resistance. Equation (4.2-1) can be rewritten in that form:

Equation 4.2-4. 

where R = Δx/kA and is the resistance in K/W or h · °F/btu.

Conduction Through a Hollow Cylinder

In many instances in the process industries, heat is being transferred through the walls of a thick-
walled cylinder, such as a pipe that may or may not be insulated. Consider the hollow cylinder in
Fig. 4.2-2 with an inside radius of r1, where the temperature is T1, an outside radius of r2 having a
temperature of T2, and a length of L m. Heat is flowing radially from the inside surface to the outside.
Rewriting Fourier's law, Eq. (4.1-2), with distance dr instead of dx,

Equation 4.2-5. 

Figure 4.2-2. Heat conduction in a cylinder.

The cross-sectional area normal to the heat flow is
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Equation 4.2-6. 

Substituting Eq. (4.2-6) into (4.2-5), rearranging, and integrating,

Equation 4.2-7. 

Equation 4.2-8. 

Multiplying numerator and denominator by (r2 - r1),

Equation 4.2-9. 

where

Equation 4.2-10. 

Equation 4.2-11. 

The log mean area is Alm. In engineering practice, if A2/A1 < 1.5/1, the linear mean area of (A1 +
A2)/2 is within 1.5% of the log mean area. From Eq. (4.2-8), if r is substituted for r2 and T for T2, the
temperature is seen to be a linear function of In r instead of r as in the case of a flat wall. If the
thermal conductivity varies with temperature as in Eq. (4.1-10), it can be shown that the mean value
to use in a cylinder is still km of Eq. (4.2-3).

EXAMPLE 4.2-1. Length of Tubing for Cooling Coil
A thick-walled cylindrical tubing of hard rubber having an inside radius of 5 mm and an outside radius of 20
mm is being used as a temporary cooling coil in a bath. Ice water is flowing rapidly inside, and the inside wall
temperature is 274.9 K. The outside surface temperature is 297.1 K. A total of 14.65 W must be removed from
the bath by the cooling coil. How many m of tubing are needed?

Solution: From Appendix A.3, the thermal conductivity at 0°C (273 K) is k = 0.151 W/m · K. Since data at other
temperatures are not available, this value will be used for the range of 274.9 to 297.1 K.

The calculation will be done first for a length of 1.0 m of tubing. Solving for the areas A1, A2, and Alm in Eq.
(4.2-10),
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Substituting into Eq. (4.2-9) and solving,

The negative sign indicates that the heat flow is from r2 on the outside to r1 on the inside. Since 15.2 W is
removed for a 1-m length, the needed length is

Note that the thermal conductivity of rubber is quite small. Generally, metal cooling coils are used,
since the thermal conductivity of metals is quite high. The liquid film resistances in this case are
quite small and are neglected.

Conduction Through a Hollow Sphere

Heat conduction through a hollow sphere is another case of one-dimensional conduction. Using
Fourier's law for constant thermal conductivity with distance dr, where r is the radius of the sphere,

Equation 4.2-5. 

The cross-sectional area normal to the heat flow is

Equation 4.2-12. 

Substituting Eq. (4.2-12) into (4.2-5), rearranging, and integrating,

Equation 4.2-13. 

Equation 4.2-14. 

It can easily be shown that the temperature varies hyperbolically with the radius. (See Problem
4.2-5.)
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CONDUCTION THROUGH SOLIDS IN SERIES

Plane Walls in Series

In the case where there is a multilayer wall of more than one material present, as shown in Fig.
4.3-1, we proceed as follows. The temperature profiles in the three materials A, B, and C are shown.
Since the heat flow q must be the same in each layer, we can write Fourier's equation for each layer
as

Equation 4.3-1. 

Figure 4.3-1. Heat flow through a multilayer wall.

Solving each equation for ΔT,

Equation 4.3-2. 

Adding the equations for T1 − T2, T2 − T3, and T3 − T4, the internal temperatures T2 and T3 drop out
and the final rearranged equation is

Equation 4.3-3. 

where the resistance RA = ΔxA/kAA, and so on.
Hence, the final equation is in terms of the overall temperature drop, T1 − T4, and the total resistance,
RA + RB + Rc.

EXAMPLE 4.3-1. Heat Flow Through an Insulated Wall of a Cold Room
A cold-storage room is constructed of an inner layer of 12.7 mm of pine, a middle layer of 101.6 mm of cork
board, and an outer layer of 76.2 mm of concrete. The wall surface temperature is 255.4 K inside the cold room
and 297.1 K at the outside surface of the concrete. Use conductivities from Appendix A.3 for pine, 0.151; for
cork board, 0.0433; and for concrete, 0.762 W/m · K. Calculate the heat loss in W for 1 m2 and the temperature
at the interface between the wood and cork board.
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Solution: Calling T1 = 255.4, T4 = 297.1 K, pine as material A, cork as B, and concrete as C, a tabulation of
the properties and dimensions is as follows:

The resistances for each material are, from Eq. (4.3-3), for an area of 1 m2,

Substituting into Eq. (4.3-3),

Since the answer is negative, heat flows in from the outside.

To calculate the temperature T2 at the interface between the pine wood and cork,

Substituting the known values and solving,

An alternative procedure for calculating T2 is to use the fact that the temperature drop is proportional to the
resistance:

Equation 4.3-4. 

Substituting,

Hence, T2 = 256.79 K, as calculated before.
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Multilayer Cylinders

In the process industries, heat transfer often occurs through multilayers of cylinders, as for example
when heat is being transferred through the walls of an insulated pipe. Figure 4.3-2 shows a pipe
with two layers of insulation around it, that is, a total of three concentric hollow cylinders. The tem-
perature drop is T1 − T2 across material A, T2 − T3 across B, and T3 − T4 across C.

Figure 4.3-2. Radial heat flow through multiple cylinders in series.

The heat-transfer rate q will, of course, be the same for each layer, since we are at steady state.
Writing an equation similar to Eq. (4.2-9) for each concentric cylinder,

Equation 4.3-5. 

where

Equation 4.3-6. 

Using the same method of combining the equations to eliminate T2 and T3 as was done for the flat
walls in series, the final equations are

Equation 4.3-7. 

Equation 4.3-8. 

Hence, the overall resistance is again the sum of the individual resistances in series.
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EXAMPLE 4.3-2. Heat Loss from an Insulated Pipe
A thick-walled tube of stainless steel (A) having a k = 21.63 W/m · K with dimensions of 0.0254 m ID and 0.0508
m OD is covered with a 0.0254-m-thick layer of an insulation (B), k = 0.2423 W/m · K. The inside-wall temper-
ature of the pipe is 811 K and the outside surface of the insulation is at 310.8 K. For a 0.305-m length of pipe,
calculate the heat loss and also the temperature at the interface between the metal and the insulation.

Solution: Calling T1 = 811 K, T2 the interface, and T3 = 310.8 K, the dimensions are

The areas are as follows for L = 0.305 m:

From Eq. (4.3-6), the log mean areas for the stainless steel (A) and insulation (B) are

From Eq. (4.3-7) the resistances are

Hence, the heat-transfer rate is

To calculate the temperature T2,

Solving, 811 − T2 = 5.5 K and T2 = 805.5 K. Only a small temperature drop occurs across the metal wall because
of its high thermal conductivity.
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Conduction Through Materials in Parallel

Suppose that two plane solids A and B are placed side by side in parallel, and the direction of heat
flow is perpendicular to the plane of the exposed surface of each solid. Then the total heat flow is
the sum of the heat flow through solid A plus that through B. Writing Fourier's equation for each
solid and summing,

Equation 4.3-9. 

where qT is total heat flow, T1 and T2 are the front and rear surface temperatures for solid A, and
T3 and T4 are those for solid B.
If we assume that T1 = T3 (front temperatures the same for A and B) and T2 = T4 (equal rear tem-
peratures),

Equation 4.3-10. 

An example would be an insulated wall (A) of a brick oven where steel reinforcing members (B) are
in parallel and penetrate the wall. Even though the area AB of the steel would be small compared
to the insulated brick area AA, the higher conductivity of the metal (which could be several hundred
times larger than that of the brick) could allow a large portion of the heat lost to be conducted by the
steel.
Another example is a method of increasing heat conduction to accelerate the freeze-drying of meat.
Spikes of metal in the frozen meat conduct heat more rapidly into the insides of the meat.
It should be mentioned that in some cases some two-dimensional heat flow can occur if the thermal
conductivities of the materials in parallel differ markedly. Then the results using Eq. (4.3-10) would
be affected somewhat.

Combined Convection and Conduction and Overall Coefficients

In many practical situations the surface temperatures (or boundary conditions at the surface) are
not known, but there is a fluid on both sides of the solid surfaces. Consider the plane wall in Fig.
4.3-3a, with a hot fluid at temperature T1 on the inside surface and a cold fluid at T4 on the outside
surface. The convective coefficient on the outside is ho W/m2 · K and hi on the inside. (Methods for
predicting the convective h will be given later, in Section 4.4 of this chapter.)
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Figure 4.3-3. Heat flow with convective boundaries: (a) plane wall, (b) cylindrical wall.

The heat-transfer rate using Eqs. (4.1-12) and (4.3-1) is given as

Equation 4.3-11. 

Expressing 1/hiA, ΔxA/kAA, and 1/hoA as resistances and combining the equations as before,

Equation 4.3-12. 

The overall heat transfer by combined conduction and convection is often expressed in terms of an
overall heat-transfer coefficient U defined by

Equation 4.3-13. 

where ΔToverall = T1 − T4 and U is

Equation 4.3-14. 

A more important application is heat transfer from a fluid outside a cylinder, through a metal wall,
to a fluid inside the tube, as often occurs in heat exchangers. In Fig. 4.3-3b, such a case is shown.
Using the same procedure as before, the overall heat-transfer rate through the cylinder is

Equation 4.3-15. 

where Ai represents 2πLri, the inside area of the metal tube; AA lm the log mean area of the metal
tube; and A0 the outside area.
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The overall heat-transfer coefficient U for the cylinder may be based on the inside area Ai or the
outside area A0 of the tube. Hence,

Equation 4.3-16. 

Equation 4.3-17. 

Equation 4.3-18. 

EXAMPLES 4.3-3. Heat Loss by Convection and Conduction and Overall U

Saturated steam at 267°F is flowing inside a  -in. steel pipe having an ID of 0.824 in. and an OD of 1.050 in.
The pipe is insulated with 1.5 in. of insulation on the outside. The convective coefficient for the inside steam
surface of the pipe is estimated as hi = 1000 btu/h · ft2 · °F, and the convective coefficient on the outside of the
lagging is estimated as ho = 2 btu/h · ft2 · °F. The mean thermal conductivity of the metal is 45 W/m · K or 26
btu/h · ft · °F and 0.064 W/m · K or 0.037 btu/h · ft · °F for the insulation.

a. Calculate the heat loss for 1 ft of pipe using resistances if the surrounding air is at 80°F
b. Repeat, using the overall Ui based on the inside area Ai.

Solution: Calling ri the inside radius of the steel pipe, r1 the outside radius of the pipe, and r0 the outside radius
of the lagging, then

For 1 ft of pipe, the areas are as follows:

From Eq. (4.3-6), the log mean areas for the steel (A) pipe and lagging (B) are

From Eq. (4.3-15) the various resistances are
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Using an equation similar to Eq. (4.3-15),

Equation 4.3-19. 

For part (b), the equation relating Ui to q is Eq. (4.3-16), which can be equated to Eq. (4.3-19):

Equation 4.3-20. 

Solving for Ui,

Equation 4.3-21. 

Substituting known values,

Then to calculate q,

Conduction with Internal Heat Generation

In certain systems heat is generated inside the conducting medium; that is, a uniformly distributed
heat source is present. Examples of this are electric-resistance heaters and nuclear fuel rods. Also,
if a chemical reaction is occurring uniformly in a medium, a heat of reaction is given off. In the
agricultural and sanitation fields, compost heaps and trash heaps in which biological activity is oc-
curring will have heat given off.
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Other important examples are in food processing, where the heat of respiration of fresh fruits and
vegetables is present. These heats of generation can be as high as 0.3 to 0.6 W/kg or 0.5 to 1 btu/
h · lbm.

Heat generation in plane wall

In Fig. 4.3-4 a plane wall is shown with internal heat generation. Heat is conducted only in the x
direction. The other walls are assumed to be insulated. The temperature Tw in K at x = L and x =
−L is held constant. The volumetric rate of heat generation is  W/m3 and the thermal conductivity
of the medium is k W/m · K.

Figure 4.3-4. Plane wall with internal heat generation at steady state.

To derive the equation for this case of heat generation at steady state, we start with Eq. (4.1-3) but
drop the accumulation term:

Equation 4.3-22. 

where A is the cross-sectional area of the plate. Rearranging, dividing by Δx, and letting Δx approach
zero,

Equation 4.3-23. 

Substituting Eq. (4.1-2) for qx,

Equation 4.3-24. 

Integration gives the following for  constant:

Equation 4.3-25. 
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where C1 and C2 are integration constants. The boundary conditions are at x = L or −L, T = Tw, and
at x = 0, T = T0 (center temperature). Then, the temperature profile is

Equation 4.3-26. 

The center temperature is

Equation 4.3-27. 

The total heat lost from the two faces at steady state is equal to the total heat generated, , in W:

Equation 4.3-28. 

where A is the cross-sectional area (surface area at Tw) of the plate.

Heat generation in cylinder

In a similar manner an equation can be derived for a cylinder of radius R with uniformly distributed
heat sources and constant thermal conductivity. The heat is assumed to flow only radially, that is,
the ends are neglected or insulated. The final equation for the temperature profile is

Equation 4.3-29. 

where r is distance from the center. The center temperature T0 is

Equation 4.3-30. 

EXAMPLE 4.3-4. Heat Generation in a Cylinder
An electric current of 200 A is passed through a stainless-steel wire having a radius R of 0.001268 m. The wire
is L = 0.91 m long and has a resistance R of 0.126 ohms. The outer surface temperature Tw is held at 422.1
K. The average thermal conductivity is k = 22.5 W/m · K. Calculate the center temperature.

Solution: First the value of  must be calculated. Since power = I2R, where I is current in amps and R is
resistance in ohms,

Equation 4.3-31. 

Substituting known values and solving,

Principles of Steady-State Heat Transfer 281

Chapter 4. Principles of Steady-State Heat Transfer. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



Substituting into Eq. (4.3-30) and solving, T0 = 441.7 K.

Critical Thickness of Insulation for a Cylinder

In Fig. 4.3-5 a layer of insulation is installed around the outside of a cylinder whose radius r1 is fixed
and with a length L. The cylinder has a high thermal conductivity and the inner temperature T1 at
point r1 outside the cylinder is fixed. An example is the case where the cylinder is a metal pipe with
saturated steam inside. The outer surface of the insulation at T2 is exposed to an environment at
T0 where convective heat transfer occurs. It is not obvious if adding more insulation with a thermal
conductivity of k will decrease the heat-transfer rate.

Figure 4.3-5. Critical radius for insulation of cylinder or pipe.

At steady state the heat-transfer rate q through the cylinder and the insulation equals the rate of
convection from the surface:

Equation 4.3-32. 

As insulation is added, the outside area, which is A = 2πr2 L, increases, but T2 decreases. However,
it is not apparent whether q increases or decreases. To determine this, an equation similar to Eq.
(4.3-15) with the resistance of the insulation represented by Eq. (4.2-11) is written using the two
resistances:

Equation 4.3-33. 

To determine the effect of the thickness of insulation on q, we take the derivative of q with respect
to r2, equate this result to zero, and obtain the following for maximum heat flow:

Equation 4.3-34. 

Solving,
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Equation 4.3-35. 

where (r2)cr is the value of the critical radius when the heat-transfer rate is a maximum. Hence, if
the outer radius r2 is less than the critical value, adding more insulation will actually increase the
heat-transfer rate q. Also, if the outer radius is greater than the critical, adding more insulation will
decrease the heat-transfer rate. Using values of k and ho typically encountered, the critical radius
is only a few mm. As a result, adding insulation on small electrical wires could increase the heat
loss. Adding insulation to large pipes decreases the heat-transfer rate.

EXAMPLE 4.3-5. Insulating an Electrical Wire and Critical Radius
An electric wire having a diameter of 1.5 mm and covered with a plastic insulation (thickness = 2.5 mm) is
exposed to air at 300 K and h0 = 20 W/m2 · K. The insulation has a k of 0.4 W/m · K. It is assumed that the
wire surface temperature is constant at 400 K and is not affected by the covering.

a. Calculate the value of the critical radius.
b. Calculate the heat loss per m of wire length with no insulation.
c. Repeat (b) for insulation being present.

Solution: 
For part (a), using Eq. (4.3-35),

For part (b), L = 1.0 m, r2 = 1.5/(2 × 1000) = 0.75 × 10–3 m, A = 2πr2L. Substituting into Eq. (4.3-32),

For part (c) with insulation, r1 = 1.5/(2 × 1000) = 0.75 × 10–3 m, r2 = (2.5 + 1.5/2)/1000 = 3.25 × 10–3 m.
Substituting into Eq. (4.3-33),

Hence, adding insulation greatly increases the heat loss.

Contact Resistance at an Interface

In the equations derived in this section for conduction through solids in series (see Fig. 4.3-1), it has
been assumed that the adjacent touching surfaces are at the same temperature, that is, that com-
pletely perfect contact is made between the surfaces. For many engineering designs in industry,
this assumption is reasonably accurate. However, in cases such as in nuclear power plants, where
very high heat fluxes are present, a significant drop in temperature may be present at the interface.
This interface resistance, called contact resistance, occurs when the two solids do not fit tightly
together and a thin layer of stagnant fluid is trapped between the two surfaces. At some points the
solids touch at peaks in the surfaces and at other points the fluid occupies the open space.
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This interface resistance is a complex function of the roughness of the two surfaces, the pressure
applied to hold the surfaces in contact, the interface temperature, and the interface fluid. Heat
transfer takes place by conduction, radiation, and convection across the trapped fluid and also by
conduction through the points of contact of the solids. No completely reliable empirical correlations
or theories are available to predict contact resistances for all types of materials. See references
(C7, R2) for detailed discussions.
The equation for the contact resistance is often given as follows:

Equation 4.3-36. 

where hc is the contact-resistance coefficient in W/m2 · K, ΔT the temperature drop across the
contact resistance in K, and Rc the contact resistance. The contact resistance Rc can be added to
the other resistances in Eq. (4.3-3) to include this effect for solids in series. For contact between
two ground-metal surfaces, hc values on the order of magnitude of about 0.2 × 104 to 1 × 104 W/
m2 · K have been obtained.
An approximation of the maximum contact resistance can be obtained if the maximum gap Δx be-
tween the surfaces can be estimated. Then, assuming that the heat transfer across the gap is by
conduction only through the stagnant fluid, hc is estimated as

Equation 4.3-37. 

If any actual convection, radiation, or point-to-point contact is present, it will reduce this assumed
resistance.

STEADY-STATE CONDUCTION AND SHAPE FACTORS

Introduction and Graphical Method for Two-Dimensional Conduction

In previous sections of this chapter we discussed steady-state heat conduction in one direction. In
many cases, however, steady-state heat conduction is occurring in two directions, that is, two-di-
mensional conduction is occurring. The two-dimensional solutions are more involved and in most
cases analytical solutions are not available. One important approximate method for solving such
problems is to use a numerical method discussed in detail in Section 4.15. Another important ap-
proximate method is the graphical method, which is a simple method that can provide reasonably
accurate answers for the heat-transfer rate. This method is particularly applicable to systems having
isothermal boundaries.
In the graphical method we first note that for one-dimensional heat conduction through a flat slab
(see Fig. 4.2-1) the direction of the heat flux or flux lines is always perpendicular to the isotherms.
The graphical method for two-dimensional conduction is also based on the requirement that the
heat-flux lines and isotherm lines intersect each other at right angles while forming a network of
curvilinear squares. This means, as shown in Fig. 4.4-1, that we can sketch the isotherms and also
the flux lines until they intersect at right angles (are perpendicular to each other). With care and
experience we can obtain reasonably accurate results. General steps to use in this graphical method
are as follows:
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1. Draw a model to scale of the two-dimensional solid. Label the isothermal boundaries. In Fig.
4.4-1, T1 and T2 are isothermal boundaries.

2. Select a number N that is the number of equal temperature subdivisions between the isothermal
boundaries. In Fig. 4.4-1, N = 4 subdivisions between T1 and T2. Sketch in the isotherm lines
and the heat-flow or -flux lines so that they are perpendicular to each other at the intersections.
Note that isotherms are perpendicular to adiabatic (insulated) boundaries and also lines of
symmetry.

3. Keep adjusting the isotherm and flux lines until for each curvilinear square the condition Δx =
Δy is satisfied.

Figure 4.4-1. Graphical curvilinear-square method for two-dimensional heat conduction in a rectangular flue.

In order to calculate the heat flux using the results of the graphical plot, we first assume unit depth
of the material. The heat flow q' through the curvilinear section shown in Fig. 4.4-1 is given by
Fourier's law:

Equation 4.4-1. 

This heat flow q' will be the same through each curvilinear square within this heat-flow lane. Since
Δx = Δy, each temperature subdivision ΔT is equal. This temperature subdivision can be expressed
in terms of the overall temperature difference T1 − T2 and N, the number of equal subdivisions:

Equation 4.4-2. 

Also, the heat flow q' through each lane is the same, since Δx = Δy in the construction and in Eq.
(4.4-1). Hence, the total heat transfer q through all of the lanes is

Equation 4.4-3. 

where M is the total number of heat-flow lanes as determined by the graphical procedure. Substi-
tuting Eq. (4.4-2) into (4.4-3),
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Equation 4.4-4. 

EXAMPLE 4.4-1. Two-Dimensional Conduction by Graphical Procedure
Determine the total heat transfer through the walls of the flue shown in Fig. 4.4-1 if T1 = 600 K, T2 = 400 K, k
= 0.90 W/m · K, and L (length of flue) = 5 m.

Solution: In Fig. 4.4-1, N = 4 temperature subdivisions and M = 9.25. The total heat-transfer rate through the
four identical sections with a depth or length L of 5 m is obtained by using Eq. (4.4-4):

Shape Factors in Conduction

In Eq. (4.4-4) the factor M/N is called the conduction shape factor S, where

Equation 4.4-5. 

Equation 4.4-6. 

This shape factor S has units of m and is used in two-dimensional heat conduction where only two
temperatures are involved. The shape factors for a number of geometries have been obtained and
some are given in Table 4.4-1.

Table 4.4-1. Conduction Shape Factors for q = kS(T1 − T2)*

Cylinder of length L in a
square

Horizontal buried cylinder of
length L
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Two parallel cylinders of
length L

Sphere buried

*The thermal conductivity of the medium is k.

For a three-dimensional geometry such as a furnace, separate shape factors are used to obtain the
heat flow through the edge and corner sections. When each of the interior dimensions is greater
than one-fifth of the wall thickness, the shape factors are as follows for a uniform wall thickness Tw:

Equation 4.4-7. 

where A is the inside area of wall and L the length of inside edge. For a completely enclosed ge-
ometry, there are six wall sections, 12 edges, and eight corners. Note that for a single flat wall, q =
kSwall(T1 − T2) = k(A/Tw)(T1 − T2), which is the same as Eq. (4.2-1) for conduction through a single
flat slab.
For a long, hollow cylinder of length L such as that in Fig. 4.2-2,

Equation 4.4-8. 

For a hollow sphere, from Eq. (4.2-14),

Equation 4.4-9. 
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FORCED CONVECTION HEAT TRANSFER INSIDE PIPES

Introduction and Dimensionless Numbers

In most situations involving a liquid or a gas in heat transfer, convective heat transfer usually occurs
as well as conduction. In most industrial processes where heat transfer is occurring, heat is being
transferred from one fluid through a solid wall to a second fluid. In Fig. 4.5-1 heat is being transferred
from the hot flowing fluid to the cold flowing fluid. The temperature profile is shown.

Figure 4.5-1. Temperature profile for heat transfer by convection from one fluid to another

The velocity gradient, when the fluid is in turbulent flow, is very steep next to the wall in the thin
viscous sublayer where turbulence is absent. Here the heat transfer is mainly by conduction, with
a large temperature difference of T2 − T3 in the warm fluid. As we move farther away from the wall,
we approach the turbulent region, where rapidly moving eddies tend to equalize the temperature.
Hence, the temperature gradient is less and the difference T1 − T2 is small. The average temperature
of fluid A is slightly less than the peak value T1. A similar explanation can be given for the temper-
ature profile in the cold fluid.
The convective coefficient for heat transfer through a fluid is given by

Equation 4.5-1. 

where h is the convective coefficient in W/m2 · K, A is the area in m2, T is the bulk or average
temperature of the fluid in K, Tw is the temperature of the wall in contact with the fluid in K, and q is
the heat-transfer rate in W. In English units, q is in btu/h, h in btu/h · ft2 · °F, A in ft2, and T and Tw
in °F.
The type of fluid flow, whether laminar or turbulent, of the individual fluid has a great effect on the
heat-transfer coefficient h, which is often called a film coefficient, since most of the resistance to
heat transfer is in a thin film close to the wall. The more turbulent the flow, the greater the heat-
transfer coefficient.
There are two main classifications of convective heat transfer. The first is free or natural convec-
tion, where the motion of the fluid results from the density changes in heat transfer. The buoyant
effect produces a natural circulation of the fluid, so it moves past the solid surface. In the second
type, forced convection, the fluid is forced to flow by pressure differences, a pump, a fan, and so on.
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Most of the correlations for predicting film coefficients h are semiempirical in nature and are affected
by the physical properties of the fluid, the type and velocity of flow, the temperature difference, and
the geometry of the specific physical system. Some approximate values for convective coefficients
were presented in Table 4.1-2. In the following correlations, either SI or English units can be used,
since the equations are dimensionless.
To correlate these data for heat-transfer coefficients, dimensionless numbers such as the Reynolds
and Prandtl numbers are used. The Prandtl number is the ratio of the shear component of diffusivity
for momentum μ/ρ to the diffusivity for heat k/ρcp and physically relates the relative thicknesses of
the hydrodynamic layer and thermal boundary layer:

Equation 4.5-2. 

Values of the NPr for gases are given in Appendix A.3 and range from about 0.5 to 1.0. Values for
liquids range from about 2 to well over 104. The dimensionless Nusselt number, NNu, is used to
relate data for the heat-transfer coefficient h to the thermal conductivity k of the fluid and a charac-
teristic dimension D:

Equation 4.5-3. 

For example, for flow inside a pipe, D is the diameter.

Heat-Transfer Coefficient for Laminar Flow Inside a Pipe

Certainly, the most important convective heat-transfer process industrially is that of cooling or heat-
ing a fluid flowing inside a closed circular conduit or pipe. Different types of correlations for the
convective coefficient are needed for laminar flow (NRe below 2100), for fully turbulent flow (NRe
above 6000), and for the transition region (NRe between 2100 and 6000).
For laminar flow of fluids inside horizontal tubes or pipes, the following equation of Sieder and Tate
(S1) can be used for NRe < 2100:

Equation 4.5-4. 

where D = pipe diameter in m, L = pipe length before mixing occurs in the pipe in m, μb = fluid
viscosity at bulk average temperature in Pa · s, μw = viscosity at the wall temperature, cp = heat
capacity in J/kg · K, k = thermal conductivity in W/m · K, ha = average heat-transfer coefficient in W/
m2 · K, and NNu = dimensionless Nusselt number. All the physical properties are evaluated at the
bulk fluid temperature except μw. The Reynolds number is

Equation 4.5-5. 

and the Prandtl number,
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Equation 4.5-6. 

This equation holds for (NReNPrD/L) > 100. If used down to (NReNPrD/L) > 10, it still holds to ±20%
(B1). For (NReNPrD/L) < 100, another expression is available (P1).
In laminar flow the average coefficient ha depends strongly on heated length. The average (arith-
metic mean) temperature drop ΔTa is used in the equation to calculate the heat-transfer rate q:

Equation 4.5-7. 

where Tw is the wall temperature in K, Tbi the inlet bulk fluid temperature, and Tbo the outlet bulk
fluid temperature.
For large pipe diameters and large temperature differences ΔT between pipe wall and bulk fluid,
natural convection effects can increase h (P1). Equations are also available for laminar flow in
vertical tubes.

Heat-Transfer Coefficient for Turbulent Flow Inside a Pipe

When the Reynolds number is above 6000, the flow is fully turbulent. Since the rate of heat transfer
is greater in the turbulent region, many industrial heat-transfer processes are in the turbulent region.
The following equation has been found to hold for tubes but is also used for pipes. It holds for a
NRe > 6000, a NPr between 0.7 and 16 000, and L/D > 60.

Equation 4.5-8. 

where hL is the heat-transfer coefficient based on the log mean driving force ΔTlm (see Section
4.5H). The fluid properties except for μw are evaluated at the mean bulk temperature. If the bulk
fluid temperature varies from the inlet to the outlet of the pipe, the mean of the inlet and outlet
temperatures is used. For an LID < 60, where the entry is an abrupt contraction, an approximate
correction is provided by multiplying the right-hand side of Eq. (4.5-8) by a correction factor given
in Section 4.5F.
The use of Eq. (4.5-8) may be trial and error, since the value of hL must be known in order to evaluate
Tw, and hence μw, at the wall temperature. Also, if the mean bulk temperature increases or decrea-
ses in the tube length L because of heat transfer, the bulk temperature at length L must be estimated
in order to have a mean bulk temperature of the entrance and exit to use.
The heat-transfer coefficient for turbulent flow is somewhat greater for a pipe than for a smooth tube.
This effect is much less than in fluid friction, and it is usually neglected in calculations. Also, for liquid
metals that have Prandtl numbers << 1, other correlations must be used to predict the heat-transfer
coefficient. (See Section 4.5G.) For shapes of tubes other than circular, the equivalent diameter can
be used, as discussed in Section 4.5E.
For air at 1 atm total pressure, the following simplified equation holds for turbulent flow in pipes:
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Equation 4.5-9. 

where D is in m, ν in m/s, and hL in W/m2 · K for SI units; and D' is in in., νs in ft/s, and hL in btu/h ·
ft2 · °F for English units.
Water is often used in heat-transfer equipment. A simplified equation to use for a temperature range
of T = 4−105°C (40−220°F) is

Equation 4.5-10. 

For organic liquids, a very simplified equation to use for approximations is as follows (P3):

Equation 4.5-11. 

For flow inside helical coils and NRe above 104, the predicted film coefficient for straight pipes should
be increased by the factor (1 + 3.5D/Dcoil).

EXAMPLE 4.5-1. Heating of Air in Turbulent Flow
Air at 206.8 kPa and an average of 477.6 K is being heated as it flows through a tube of 25.4 mm inside diameter
at a velocity of 7.62 m/s. The heating medium is 488.7 K steam condensing on the outside of the tube. Since
the heat-transfer coefficient of condensing steam is several thousand W/m2 · K and the resistance of the metal
wall is very small, it will be assumed that the surface wall temperature of the metal in contact with the air is
488.7 K. Calculate the heat-transfer coefficient for an L/D > 60 and also the heat-transfer flux q/A.
Solution: From Appendix A.3, for physical properties of air at 477.6 K (204.4°C), μb = 2.60 × 10-5 Pa · s, k =
0.03894 W/m, NPr = 0.686. At 488.7 K (215.5°C), μw = 2.64 × KT5 Pa · s.

The Reynolds number calculated at the bulk fluid temperature of 477.6 K is
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Hence, the flow is turbulent and Eq. (4.5-8) will be used. Substituting into Eq. (4.5-8),

Solving, hL = 63.2 W/m2 · K (11.13 btu/h · ft2 · °F). To solve for the flux q/A,

Heat-Transfer Coefficient for Transition Flow Inside a Pipe

In the transition region for a NRe between 2100 and 6000, the empirical equations are not well
defined, just as in the case of fluid friction factors. No simple equation exists for accomplishing a
smooth transition from heat transfer in laminar flow to that in turbulent flow, that is, a transition from
Eq. (4.5-4) at a NRe = 2100 to Eq. (4.5-8) at a NRe = 6000.
The plot in Fig. 4.5-2 represents an approximate relationship to use between the various heat-
transfer parameters and the Reynolds number between 2100 and 6000. For below a NRe, of 2100,
the curves represent Eq. (4.5-4), and above 104, Eq. (4.5-8). The mean ΔTa of Eq. (4.5-7) should
be used with the ha in Fig. 4.5-2.

Figure 4.5-2. Correlation of heat-transfer parameters for transition region for Reynolds numbers between 2100 and 6000.
(From R. H. Perry and C. H. Chilton, Chemical Engineers' Handbook. 5th ed. New York: McGraw-Hill Book Company, 1973.

With permission.)
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Heat-Transfer Coefficient for Noncircular Conduits

A heat-transfer system often used is one in which fluids flow at different temperatures in concentric
pipes. The heat-transfer coefficient of the fluid in the annular space can be predicted by using the
same equations as for circular pipes. However, the equivalent diameter defined in Section 2.10G
must be used. For an annular space, Deq is the ID of the outer pipe D1 minus the OD of the inner
pipe D2. For other geometries, an equivalent diameter can also be used.

EXAMPLE 4.5-2. Water Heated by Steam and Trial-and-Error Solution
Water is flowing in a horizontal 1-in. schedule 40 steel pipe at an average temperature of 65.6°C and a velocity
of 2.44 m/s. It is being heated by condensing steam at 107.8°C on the outside of the pipe wall. The steam-side
coefficient has been estimated as h0 = 10 500 W/m2 · K.

a. Calculate the convective coefficient hi for water inside the pipe.
b. Calculate the overall coefficient Ui based on the inside surface area.
c. Calculate the heat-transfer rate q for 0.305 m of pipe with the water at an average temperature of 65.6°C.

Solution: From Appendix A.5, the various dimensions are Di = 0.0266 m and D0 = 0.0334 m. For water at a
bulk average temperature of 65.6°C, from Appendix A.2, NPr = 2.72, ρ = 0.980(1000) = 980 kg/m3, k = 0.633
W/m · K, and μ = 4.32 × 10-4 Pa · S = 4.32 × 10-4 kg/m · s.

The temperature of the inside metal wall is needed and will be assumed as about one-third the difference
between 65.6 and 107.8, or 80°C = Tw, for the first trial. Hence, μw at 80°C = 3.56 × 10-4 Pa · s.

First, the Reynolds number of the water is calculated at the bulk average temperature:

Hence, the flow is turbulent. Using Eq. (4.5-8) and substituting known values,

Solving, hL = hi = 13 324 W/m2 · K.

For part (b), the various areas are as follows for 0.305-m pipe:

The k for steel is 45.0 W/m · K. The resistances are
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The overall temperature difference is (107.8 - 65.6)°C = 42.2°C = 42.2 K. The temperature drop across the
water film is

Hence, Tw = 65.6 + 14.5 = 80.1°C. This is quite close to the original estimate of 80°C. The only physical property
changing in the second estimate would be μw. This would have a negligible effect on hi, and a second trial is
not necessary.

For part (b), the overall coefficient is, by Eq. (4.3-16),

For part (c), with the water at an average temperature of 65.6°C,

Entrance-Region Effect on Heat-Transfer Coefficient

Near the entrance of a pipe where the fluid is being heated, the temperature profile is not fully
developed and the local coefficient h is greater than the fully developed heat-transfer coefficient
hL for turbulent flow. At the entrance itself, where no temperature gradient has been established,
the value of h is infinite. The value of h drops rapidly and is approximately the same as hL at L/D
≅ 60, where L is the entrance length. These relations for turbulent flow inside a pipe are as follows
where the entrance is an abrupt contraction:

Equation 4.5-12. 
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Equation 4.5-13. 

where h is the average value for a tube of finite length L and hL is the value for a very long tube.

Liquid-Metals Heat-Transfer Coefficient

Liquid metals are sometimes used as heat-transfer fluids in cases where a fluid is needed over a
wide temperature range at relatively low pressures. Liquid metals are often used in nuclear reactors
and have high heat-transfer coefficients as well as a high heat capacity per unit volume. The high
heat-transfer coefficients are due to the very high thermal conductivities and, hence, low Prandtl
numbers. In liquid metals in pipes, heat transfer by conduction is very important in the entire turbulent
core because of the high thermal conductivity and is often more important than the convection
effects.
For fully developed turbulent flow in tubes with uniform heat flux, the following equation can be used
(L1):

Equation 4.5-14. 

where the Peclet number NPe = NReNPr. This holds for L/D > 60 and NPe between 100 and 104. For
constant wall temperatures,

Equation 4.5-15. 

for L/D > 60 and NPe > 100. All physical properties are evaluated at the average bulk temperature.

EXAMPLE 4.5-3. Liquid-Metal Heat Transfer Inside a Tube
A liquid metal flows at a rate of 4.00 kg/s through a tube having an inside diameter of 0.05 m. The liquid enters
at 500 K and is heated to 505 K in the tube. The tube wall is maintained at a temperature of 30 K above the
fluid bulk temperature and constant heat flux is also maintained. Calculate the required tube length. The aver-
age physical properties are as follows: μ = 7.1 × 10-4 Pa · s, ρ = 7400 kg/m3, cp = 120 J/kg · K, k = 13 W/m · K.

Solution: The area is A = πD2/4 = π(0.05)2/4 = 1.963 × 10–3 m2. Then G = 4.0/1.963 × 10–3 = 2.038 × 103 kg/
m2 · s. The Reynolds number is

Using Eq. (4.5-14),
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Using a heat balance,

Equation 4.5-16. 

Substituting into Eq. (4.5-1),

Hence, A = 2400/75 360 = 3.185 × 10-2 m2. Then,

Solving, L = 0.203 m.

Log Mean Temperature Difference and Varying Temperature Drop

Equations (4.5-1) and (4.3-12) as written apply only when the temperature drop (Ti − T0) is constant
for all parts of the heating surface. Hence, the equation

Equation 4.5-17. 

only holds at one point in the apparatus when the fluids are being heated or cooled. However, as
the fluids travel through the heat exchanger, they become heated or cooled and either Ti or T0 or
both vary. Then (Ti − T0) or ΔT varies with position, and some mean ΔTm must be used over the
whole apparatus.

In a typical heat exchanger, a hot fluid inside a pipe is cooled from  to  by a cold fluid which
is flowing on the outside in a double pipe countercurrently (in the reverse direction) and is heated
from T2 to T1, as shown in Fig. 4.5-3a. The ΔT shown is varying with distance. Hence, ΔT in Eq.
(4.5-17) varies as the area A goes from 0 at the inlet to A at the outlet of the exchanger.

Figure 4.5-3. Temperature profiles for one-pass double-pipe heat exchangers: (a) counter-current flow; (b) cocurrent or
parallel flow.

For countercurent flow of the two fluids as in Fig. 4.5-3a, the heat-transfer rate is

Equation 4.5-18. 
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where ΔTm is a suitable mean temperature difference to be determined. For a dA area, a heat
balance on the hot and the cold fluids gives

Equation 4.5-19. 

where m is flow rate in kg/s. The values of m, m', cp, , and U are assumed constant. Also,

Equation 4.5-20. 

From Eq. (4.5-19), dT' = -dq/  and dT = dq/mcp. Then,

Equation 4.5-21. 

Substituting Eq. (4.5-20) into (4.5-21),

Equation 4.5-22. 

Integrating between points 1 and 2,

Equation 4.5-23. 

Making a heat balance between the inlet and outlet,

Equation 4.5-24. 

Solving for  and mcp in Eq. (4.5-24) and substituting into Eq. (4.5-23),

Equation 4.5-25. 

Comparing Eqs. (4.5-18) and (4.5-25), we see that ΔTm is the log mean temperature difference
ΔTlm. Hence, in the case where the overall heat-transfer coefficient U is constant throughout the
equipment and the heat capacity of each fluid is constant, the proper temperature driving force to
use over the entire apparatus is the log mean driving force,

Equation 4.5-26. 
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where
Equation 4.5-27. 

It can be also shown that for parallel flow, as pictured in Fig. 4.5-3b, the log mean temperature

difference should be used. In some cases, where steam is condensing,  and  may be the
same. The equations still hold for this case. When U varies with distance or other complicating
factors occur, other references should be consulted (B2, P3, W1).

EXAMPLE 4.5-4. Heat-Transfer Area and Log Mean Temperature Difference
A heavy hydrocarbon oil which has a cpm = 2.30 kJ/kg · K is being cooled in a heat exchanger from 371.9 K to
349.7 K and flows inside the tube at a rate of 3630 kg/h. A flow of 1450 kg water/h enters at 288.6 K for cooling
and flows outside the tube.

a. Calculate the water outlet temperature and heat-transfer area if the overall Ui = 340 W/m2 · K and the
streams are countercurrent.

b. Repeat for parallel flow.

Solution: 

Assume a cpm = 4.187 kJ/kg · K for water. The water inlet T2 = 288.6 K, outlet = T1; oil inlet  = 371.9, outlet

 = 349.7 K. Calculating the heat lost by the oil,

By a heat balance, the q must also equal the heat gained by the water:

Solving, T1 = 319.1 K.

To solve for the log mean temperature difference, ΔT2 =  − T2 = 349.7 − 288.6 = 61.1 K, ΔT1 =  - T1
= 371.9 - 319.1 = 52.8 K. Substituting into Eq. (4.5-27),

Using Eq. (4.5-26),

Solving, Ai = 2.66 m2.

For part (b), the water outlet is still T1 = 319.1 K. Referring to Fig. 4.5-3b, ΔT2 = 371.9 − 288.6 = 83.3K and
ΔT1 = 349.7 - 319.1 = 30.6 K. Again, using Eq. (4.5-27) and solving, ΔTlm = 52.7 K. Substituting into Eq.
(4.5-26), Ai = 2.87 m2. This is a larger area than for counterflow. This occurs because counterflow gives larger
temperature driving forces, and it is usually preferred over parallel flow for this reason.
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EXAMPLE 4.5-5. Laminar Heat Transfer and Trial and Error
A hydrocarbon oil at 150°F enters inside a pipe with an inside diameter of 0.0303 ft and a length of 15 ft with
a flow rate of 80 lbm/h. The inside pipe surface is assumed constant at 350°F, since steam is condensing
outside the pipe wall, and has a very large heat-transfer coefficient. The properties of the oil are cpm = 0.50
btu/lbm · °F and km = 0.083 btu/h · ft · °F. The viscosity of the oil varies with temperature as follows: 150°F,
6.50 cp; 200°F, 5.05 cp; 250°F, 3.80 cp; 300°F, 2.82 cp; 350°F, 1.95 cp. Predict the heat-transfer coefficient
and the oil outlet temperature, Tbo.

Solution: This is a trial-and-error solution since the outlet temperature of the oil Tbo is unknown. The value of
Tbo = 250°F will be assumed and checked later. The bulk mean temperature of the oil to use for the physical
properties is (150 + 250)/2 or 200°F. The viscosity at 200°F is

At the wall temperature of 350°F,

The cross-section area of the pipe A is

The Reynolds number at the bulk mean temperature is

The Prandtl number is

Since the NRe is below 2100, the flow is in the laminar region and Eq. (4.5-4) will be used. Even at the outlet
temperature of 250°F, the flow is still laminar. Substituting,

Solving, ha = 20.1 btu/h · ft2 · °F (114 W/m2 · K). Next, making a heat balance on the oil,

Equation 4.5-28. 
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Using Eq. (4.5-7)

Equation 4.5-7. 

For ΔTa,

Equating Eq. (4.5-28) to (4.5-7) and substituting,

Solving, Tbo = 255°F.

This is higher than the assumed value of 250°F. For the second trial, the mean bulk temperature of the oil
would be (150 + 255)/2 or 202.5°F. The new viscosity is 5.0 cp compared with 5.05 for the first estimate. This
only affects the (μb/μw)0.14 factor in Eq. (4.5-4), since the viscosity effect in the (NRe)(NPr) factor cancels out.
The heat-transfer coefficient will change by less than 0.2%, which is negligible. Hence, the outlet temperature
of T1 = 255°F (123.9°C) is correct.

HEAT TRANSFER OUTSIDE VARIOUS GEOMETRIES IN
FORCED CONVECTION

Introduction

In many cases a fluid is flowing over completely immersed bodies such as spheres, tubes, plates,
and so on, and heat transfer is occurring between the fluid and the solid only. Many of these shapes
are of practical interest in process engineering. The sphere, cylinder, and flat plate are perhaps of
greatest importance, with heat transfer between these surfaces and a moving fluid frequently en-
countered.
When heat transfer occurs during immersed flow, the flux is dependent on the geometry of the body,
the position on the body (front, side, back, etc.), the proximity of other bodies, the flow rate, and the
fluid properties. The heat-transfer coefficient varies over the body. The average heat-transfer co-
efficient is given in the empirical relationships to be discussed in the following sections.
In general, the average heat-transfer coefficient on immersed bodies is given by

Equation 4.6-1. 
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where C and m are constants that depend on the various configurations. The fluid properties are
evaluated at the film temperature Tf = (Tw + Tb)/2, where Tw is the surface or wall temperature and
Tb the average bulk fluid temperature. The velocity in the NRe is the undisturbed free stream velocity
v of the fluid approaching the object.

Flow Parallel to Flat Plate

When the fluid is flowing parallel to a flat plate and heat transfer is occurring between the whole
plate of length L m and the fluid, the NNu is as follows for a NRe,L below 3 × 105 in the laminar region
and a NPr > 0.7:

Equation 4.6-2. 

where NRe,L = Lνρ/μ and NNu = hL/k.
For the completely turbulent region at a NRe,L above 3 × 105 (K1, K3) and NPr > 0.7,

Equation 4.6-3. 

However, turbulence can start at a NRe,L below 3 × 105 if the plate is rough (K3), and then Eq.
(4.6-3) will hold and give a NNu greater than that given by Eq. (4.6-2). For a NRe,L below about 2 ×
104, Eq. (4.6-2) gives the larger value of NNu.

EXAMPLE 4.6-1. Cooling a Copper Fin
A smooth, flat, thin fin of copper extending out from a tube is 51 mm by 51 mm square. Its temperature is
approximately uniform at 82.2°C. Cooling air at 15.6°C and 1 atm abs flows parallel to the fin at a velocity of
12.2 m/s.

a. For laminar flow, calculate the heat-transfer coefficient, h.
b. If the leading edge of the fin is rough so that all of the boundary layer or film next to the fin is completely

turbulent, calculate h.

Solution: The fluid properties will be evaluated at the film temperature Tf = (Tw + Tb)/2:

The physical properties of air at 48.9°C from Appendix A.3 are k = 0.0280 W/m · K, ρ = 1.097 kg/m3, μ = 1.95
× 10-5 Pa · s, NPr = 0.704. The Reynolds number is, for L = 0.051 m,

Substituting into Eq. (4.6-2),
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Solving, h = 60.7 W/m2 · K (10.7 btu/h · ft2 · °F).

For part (b), substituting into Eq. (4.6-3) and solving, h = 77.2 W/m2 · K (13.6 btu/h · ft2 · °F).

Cylinder with Axis Perpendicular to Flow

Often a cylinder containing a fluid inside is being heated or cooled by a fluid flowing perpendicular
to its axis. The equation for predicting the average heat-transfer coefficient of the outside of the
cylinder for gases and liquids is (K3, P3) Eq. (4.6-1), with C and m as given in Table 4.6-1. The
NRe = Dνρ/μ, where D is the outside tube diameter and all physical properties are evaluated at the
film temperature Tf. The velocity is the undisturbed free stream velocity approaching the cylinder.

Figure 4.6-1. Nomenclature for banks of tubes in Table 4.6-2: (a) in-line tube rows, (b) staggered tube rows.

Table 4.6-1. Constants for Use in Eq. (4.6-1) for Heat Transfer to Cylinders with Axis Perpendicular to Flow (NPr > 0.6)

NRe m C

1–4 0.330 0.989

4–40 0.385 0.911

40−4 × 103 0.466 0.683

4 × 103−4 × 104 0.618 0.193

4 × 104−2.5 × 105 0.805 0.0266

Flow Past Single Sphere

When a single sphere is being heated or cooled by a fluid flowing past it, the following equation can
be used to predict the average heat-transfer coefficient for a NRe = Dνρ/μ of 1 to 70 000 and a NPr
of 0.6 to 400:

Equation 4.6-4. 

The fluid properties are evaluated at the film temperature Tf. A somewhat more accurate correlation,
which takes into account the effects of natural convection at these lower Reynolds numbers, is
available for a NRe range 1–17 000 from other sources (S2).
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EXAMPLE 4.6-2. Cooling of a Sphere
Using the same conditions as Example 4.6-1, where air at 1 atm abs pressure and 15.6°C is flowing at a velocity
of 12.2 m/s, predict the average heat-transfer coefficient for air flowing past a sphere having a diameter of 51
mm and an average surface temperature of 82.2°C. Compare this with the value of h = 77.2 W/m2 · K for the
flat plate in turbulent flow.

Solution: The physical properties at the average film temperature of 48.9°C are the same as for Example
4.6-1. The NRe is

Substituting into Eq. (4.6-4) for a sphere,

Solving, h = 56.1 W/m2 · K (9.88 btu/h · ft2 · °F). This value is somewhat smaller than the value of h = 77.2 W/
m2 · K (13.6 btu/h · ft2 · °F) for a flat plate.

Flow Past Banks of Tubes or Cylinders

Many types of commercial heat exchangers are constructed with multiple rows of tubes, where the
fluid flows at right angles to the bank of tubes. An example is a gas heater in which a hot fluid inside
the tubes heats a gas passing over the outside of the tubes. Another example is a cold liquid stream
inside the tubes being heated by a hot fluid on the outside.
Figure 4.6-1 shows the arrangement for banks of tubes in-line and banks of tubes staggered, where
D is tube OD in m (ft), Sn is distance m (ft) between the centers of the tubes normal to the flow, and
Sp that parallel to the flow. The open area to flow for in-line tubes is (Sn − D) and (Sp − D); for
staggered tubes it is (Sn − D) and (  − D). Values of C and m to be used in Eq. (4.6-1) for a
Reynolds-number range of 2000 to 40 000 for heat transfer to banks of tubes containing more than
10 transverse rows in the direction of flow are given in Table 4.6-2. For less than 10 rows, Table
4.6-3 gives correction factors.

Table 4.6-2. Values of C and m To Be Used in Eq. (4.6-1) for Heat Transfer to Banks of Tubes Containing More Than 10
Transverse Rows

 

Arrangement C m C m C m

In-line 0.386 0.592 0.278 0.620 0.254 0.632

Staggered 0.575 0.556 0.511 0.562 0.535 0.556

Source: E. D. Grimison, Trans. ASME, 59, 583 (1937).
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Table 4.6-3. Ratio of h for N Transverse Rows Deep to h for 10 Transverse Rows Deep (for Use with Table 4.6-2)

N 1 2 3 4 5 6 7 8 9 10

Ratio for stag-
gered tubes

0.68 0.75 0.83 0.89 0.92 0.95 0.97 0.98 0.99 1.00

Ratio for in-line
tubes

0.64 0.80 0.87 0.90 0.92 0.94 0.96 0.98 0.99 1.00

Source: W. M. Kays and R. K. Lo, Stanford Univ. Tech. Rept. 15, Navy Contract N6-ONR-251 T.O.6, 1952.

For cases where Sn/D and Sp/D are not equal to each other, the reader should consult Grimison
(G1) for more data. In baffled exchangers where there is normal leakage where all the fluid does
not flow normal to the tubes, the average values of h obtained should be multiplied by about 0.6
(P3). The Reynolds number is calculated using the minimum area open to flow for the velocity. All
physical properties are evaluated at Tf.

EXAMPLE 4.6-3. Heating Air by a Bank of Tubes
Air at 15.6°C and 1 atm abs flows across a bank of tubes containing four transverse rows in the direction of
flow and 10 rows normal to the flow at a velocity of 7.62 m/s as the air approaches the bank of tubes. The tube
surfaces are maintained at 57.2°C. The outside diameter of the tubes is 25.4 mm and the tubes are in-line to
the flow. The spacing Sn of the tubes normal to the flow is 38.1 mm and Sp is also 38.1 mm parallel to the flow.
For a 0.305-m length of the tube bank, calculate the heat-transfer rate.

Solution: Referring to Fig. 4.6-1a,

Since the air is heated in passing through the four transverse rows, an outlet bulk temperature of 21.1°C will
be assumed. The average bulk temperature is then

The average film temperature is

From Appendix A.3, for air at 37.7°C,

The ratio of the minimum-flow area to the total frontal area is (Sn − D)/Sn. The maximum velocity in the tube
banks is then
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For Sn/D = Sp/D = 1.5/1, the values of C and m from Table 4.6-2 are 0.278 and 0.620, respectively. Substituting
into Eq. (4.6-1) and solving for h,

This h is for 10 rows. For only four rows in the transverse direction, the h must be multiplied by 0.90, as given
in Table 4.6-3.

Since there are 10 × 4 or 40 tubes, the total heat-transfer area per 0.305 m length is

The total heat-transfer rate q using an arithmetic average temperature difference between the wall and the
bulk fluid is

Next, a heat balance on the air is made to calculate its temperature rise ΔT using the calculated q. First, the
mass flow rate of air m must be calculated. The total frontal area of the tube-bank assembly of 10 rows of tubes
each 0.305 m long is

The density of the entering air at 15.6°C is ρ = 1.224 kg/m3. The mass flow rate m is

For the heat balance, the mean cp of air at 18.3°C is 1.0048 kJ/kg · K, and then

Solving, ΔT = 5.37°C.

Hence, the calculated outlet bulk gas temperature is 15.6 + 5.37 = 20.97°C, which is close to the assumed
value of 21.1°C. If a second trial were to be made, the new average Tb to use would be (15.6 + 20.97)/2 or
18.28°C.

Heat Transfer for Flow in Packed Beds

Correlations for heat-transfer coefficients for packed beds are useful in designing fixed-bed systems
such as catalytic reactors, dryers for solids, and pebble-bed heat exchangers. In Section 3.1C the
pressure drop in packed beds was considered and discussions of the geometry factors in these
beds were given. For determining the rate of heat transfer in packed beds for a differential length
dz in m,

Equation 4.6-5. 

where a is the solid-particle surface area per unit volume of bed in m-1, S the empty cross-sectional
area of bed in m2, T1 the bulk gas temperature in K. and T2 the solid surface temperature.
For the heat transfer of gases in beds of spheres (G2, G3) and a Reynolds number range of 10–10
000,
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Equation 4.6-6. 

where ν' is the superficial velocity based on the cross section of the empty container in m/s [see
Eq. (3.1-11)], ε is the void fraction, NRe = DpG'/μf, and G' = v'ρ is the superficial mass velocity in kg/
m2 · s. The subscript f indicates properties evaluated at the film temperature, with others at the bulk
temperature. This correlation can also be used for a fluidized bed. An alternate equation to use in
place of Eq. (4.6-6) for fixed and fluidized beds is Eq. (7.3-36) for a Reynolds-number range of 10–
4000. The term JH is called the Colburn J factor and is defined as in Eq. (4.6-6) in terms of h.
Equations for heat transfer to noncircular cylinders such as hexagons and so forth are given else-
where (H1, J1, P3).

NATURAL CONVECTION HEAT TRANSFER

Introduction

Natural convection heat transfer occurs when a solid surface is in contact with a gas or liquid which
is at a different temperature from the surface. Density differences in the fluid arising from the heating
process provide the buoyancy force required to move the fluid. Free or natural convection is ob-
served as a result of the motion of the fluid. An example of heat transfer by natural convection is a
hot radiator used for heating a room. Cold air encountering the radiator is heated and rises in natural
convection because of buoyancy forces. The theoretical derivation of equations for natural convec-
tion heat-transfer coefficients requires the solution of motion and energy equations.
An important heat-transfer system occurring in process engineering is that in which heat is being
transferred from a hot vertical plate to a gas or liquid adjacent to it by natural convection. The fluid
is not moving by forced convection but only by natural or free convection. In Fig. 4.7-1 the vertical
flat plate is heated and the free convection boundary layer is formed. The velocity profile differs from
that in a forced convection system in that the velocity at the wall is zero and also is zero at the other
edge of the boundary layer, since the free stream velocity is zero for natural convection. The boun-
dary layer initially is laminar as shown, but at some distance from the leading edge it starts to become
turbulent. The wall temperature is Tw K and the bulk temperature Tb.

Figure 4.7-1. Boundary-layer velocity profile for natural convection heat transfer from a heated, vertical plate.
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The differential momentum-balance equation is written for the x and y directions for the control
volume (dx dy · 1). The driving force is the buoyancy force in the gravitational field and is due to the
density difference of the fluid. The momentum balance becomes

Equation 4.7-1. 

where ρb is the density at the bulk temperature Tb and ρ the density at T. The density difference
can be expressed in terms of the volumetric coefficient of expansion β and substituted back into
Eq. (4.7-1):

Equation 4.7-2. 

For gases, β = 1/T. The energy-balance equation can be expressed as follows:

Equation 4.7-3. 

The solutions of these equations have been obtained by using integral methods of analysis dis-
cussed in Section 3.10. Results have been obtained for a vertical plate, which is the simplest case
and serves to introduce the dimensionless Grashof number discussed below. However, in other
physical geometries the relations are too complex and empirical correlations have been obtained.
These are discussed in the following sections.

Natural Convection from Various Geometries

Natural convection from vertical planes and cylinders

For an isothermal vertical surface or plate with height L less than 1 m (P3), the average natural
convection heat-transfer coefficient can be expressed by the following general equation:

Equation 4.7-4. 

where a and m are constants from Table 4.7-1, NGr the Grashof number, ρ density in kg/m3, μ
viscosity in kg/m · s, ΔT the positive temperature difference between the wall and bulk fluid or vice
versa in K, k the thermal conductivity in W/m · K, cp the heat capacity in J/kg · K, β the volumetric
coefficient of expansion of the fluid in 1/K [for gases β is 1/(TfK)], and g is 9.80665 m/s2. All the
physical properties are evaluated at the film temperature Tf = (Tw + Tb)/2. In general, for a vertical
cylinder with length L m, the same equations can be used as for a vertical plate. In English units β
is 1/(Tf °F + 460) in 1/°R and g is 32.174 × (3600)2 ft/h2.
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Table 4.7-1. Constants for Use with Eq. (4.7-4) for Natural Convection

Physical Geometry NGrNPr a m Ref.

Vertical planes and cylinders     
 [vertical height L < 1 m (3 ft)]     
  

<104 1.36 (P3)

  
104-109 0.59 (M1)

  
>109 0.13 (M1)

Horizontal cylinders     
 [diameter D used for L and D < 0.20 m

(0.66 ft)]
    

  <10-5 0.49 0 (P3)

  
10-5-10-3 0.71 (P3)

  
10-3-1 1.09 (P3)

  
1-104 1.09 (P3)

  
104-109 0.53 (M1)

  
>109 0.13 (P3)

Horizontal plates     
 Upper surface of heated plates or ower

surface of cooled plates 105-2 × 107

2 × 107-3 × 1010

0.54

0.14

(M1)

(M1)

 Lower surface of heated plates or upper
surface of cooled plates 105-1011 0.58 (F1)

The Grashof number can be interpreted physically as a dimensionless number that represents the
ratio of the buoyancy forces to the viscous forces in free convection and plays a role similar to that
of the Reynolds number in forced convection.

EXAMPLE 4.7-1. Natural Convection from Vertical Wall of an Oven
A heated vertical wall 1.0 ft (0.305 m) high of an oven for baking food with the surface at 450°F (505.4 K) is in
contact with air at 100°F (311 K). Calculate the heat-transfer coefficient and the heat transfer/ft (0.305 m) width
of wall. Note that heat transfer for radiation will not be considered. Use English and SI units.

Solution: The film temperature is

The physical properties of air at 275°F are k = 0.0198 btu/h · ft · °F, 0.0343 W/m · K; ρ = 0.0541 lbm/ft3, 0.867
kg/m3; NPr = 0.690; μ = (0.0232 cp) × (2.4191) = 0.0562 lbm/ft · h = 2.32 × 10-5 Pa · s; β = 1/408.2 = 2.45 × 10–
3 K-1, β = 1/(460 + 275) = 1.36 × 10–3 °R-1; ΔT = Tw - Tb = 450 - 100 = 350°F (194.4 K). The Grashof number
is, in English units,
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In SI units,

The Grashof numbers calculated using English and SI units must, of course, be the same as shown:

Hence, from Table 4.7-1, a = 0.59 and m =  for use in Eq. (4.7-4). Solving for h in Eq. (4.7-4) and substituting
known values,

For a 1-ft width of wall, A = 1 × 1 = 1.0 ft2 (0.305 × 0.305 m2). Then

A considerable amount of heat will also be lost by radiation. This will be considered in Section 4.10.

Simplified equations for the natural convection heat transfer from air to vertical planes and cylinders
at 1 atm abs pressure are given in Table 4.7-2. In SI units the equation for the range of NGrNPr of
104 to 109 is the one usually encountered, and this holds for (L3 ΔT) values below about 4.7 m3 · K
and film temperatures between 255 and 533 K. To correct the value of h to pressures other than 1
atm, the values of h in Table 4.7-2 can be multiplied by (p/101.32)1/2 for NGrNPr 104 to 109 and by
(p/101.32)2/3 for NGrNPr > 109, where p = pressure in kN/m2. In English units the range of NGrNPr of
104 to 109 is encountered when (L3 ΔT) is less than about 300 ft3 · °F. The value of h can be corrected
to pressures other than 1.0 atm abs by multiplying the h at 1 atm by p1/2 for NGrNPr of 104 to 109

and by p2/3 for NGrNPr above 109, where p = atm abs pressure. Simplified equations are also given
for water and organic liquids.

Table 4.7-2. Simplified Equations for Natural Convection from Various Surfaces

   Equation

Ref.Physical Geometry NGrNPr

h = btu/h · ft2 · °F

L = ft, ΔT = °F

D = ft

h = W/m2 · K

L = m, ΔT = K

D = m

Air at 101.32 pa (1 atm) abs pressure

Vertical planes and cylin-
ders

104-109

>109

h = 0.28(ΔT/L)1/4

h = 0.18(ΔT)1/3

h = 1.37(ΔT/L)1/4

h = 1.24 ΔT1/3

(P1)

(P1)
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   Equation

Ref.Physical Geometry NGrNPr

h = btu/h · ft2 · °F

L = ft, ΔT = °F

D = ft

h = W/m2 · K

L = m, ΔT = K

D = m

Horizontal cylinders 103-109

>109

h = 0.27(ΔT/D)1/4

h = 0.18(ΔT)1/3

h = 1.32(ΔT/D)1/4

h = 1.24 ΔT1/3

(M1)

(M1)

Horizontal plates     
 Heated plate facing up-

ward or cooled plate fac-
ing downward

105-2 × 107

2 × 107-3 × 1010

h = 0.2T(ΔT/L)1/4

h = 0.22(ΔT)1/3

h = 1.32(ΔT/L)1/4

h = 1.52 ΔT1/3

(M1)

(M1)

 Heated plate facing
downward or cooled
plate facing upward

3 × 105-3 × 1010 h = 0.12(ΔT/L)1/4 h = 0.59(ΔT/L)1/4 (M1)

Water at 70°F (294 K)

Vertical planes and cylin-
ders

104-109 h = 26(ΔT/L)1/4 h = 12T(ΔT/L)1/4 (P1)

Organic liquids at 70°F (294 K)

Vertical planes and cylin-
ders

104-109 h = 12(ΔT/L)1/4 h = 59(ΔT/L)1/4 (P1)

EXAMPLE 4.7-2. Natural Convection and Simplified Equation
Repeat Example 4.7-1 but use the simplified equation.

Solution: The film temperature of 408.2 K is in the range 255–533 K. Also,

This is slightly greater than the value of 4.7 given as the approximate maximum for use of the simplified equa-
tion. However, in Example 4.7-1 the value of NGrNPr is below 109, so the simplified equation from Table
4.7-2 will be used:

The heat-transfer rate q is

This value is reasonably close to the value of 127.1 W for Example 4.7-1.

Natural convection from horizontal cylinders

For a horizontal cylinder with an outside diameter of D m, Eq. (4.7-4) is used with the constants
given in Table 4.7-1. The diameter D is used for L in the equation. Simplified equations are given
in Table 4.7-2. The usual case for pipes is for the NGrNPr range 104 to 109 (M1).
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Natural convection from horizontal plates

For horizontal flat plates Eq. (4.7-4) is also used with the constants given in Table 4.7-1 and sim-
plified equations in Table 4.7-2. The dimension L to be used is the length of a side of a square plate,
the linear mean of the two dimensions for a rectangle, and 0.9 times the diameter of a circular disk.

Natural convection in enclosed spaces

Free convection in enclosed spaces occurs in a number of processing applications. One example
is in an enclosed double window in which two layers of glass are separated by a layer of air for
energy conservation. The flow phenomena inside these enclosed spaces are complex, since a
number of different types of flow patterns can occur. At low Grashof numbers the heat transfer is
mainly by conduction across the fluid layer. As the Grashof number is increased, different flow
regimes are encountered.
The system for two vertical plates of height L m containing the fluid with a gap of δ m is shown in
Fig. 4.7-2, where the plate surfaces are at temperatures T1 and T2. The Grashof number is defined
as

Equation 4.7-5. 

Figure 4.7-2. Natural convection in enclosed vertical space.

The Nusselt number is defined as

Equation 4.7-6. 

The heat flux is calculated from

Equation 4.7-7. 

The physical properties are all evaluated at the mean temperature between the two plates. For
gases enclosed between vertical plates and L/δ > 3 (H1, J1, K1, P1),
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Equation 4.7-8. 

Equation 4.7-9. 

Equation 4.7-10. 

For liquids in vertical plates,

Equation 4.7-11. 

Equation 4.7-12. 

For gases or liquids in a vertical annulus, the same equations hold as for vertical plates.
For gases in horizontal plates with the lower plate hotter than the upper,

Equation 4.7-13. 

Equation 4.7-14. 

For liquids in horizontal plates with the lower plate hotter than the upper (G5),

Equation 4.7-15. 

EXAMPLE 4.7-3. Natural Convection in Enclosed Vertical Space
Air at 1 atm abs pressure is enclosed between two vertical plates where L = 0.6 m and δ = 30 mm. The plates
are 0.4 m wide. The plate temperatures are T1 = 394.3 K and T2 = 366.5 K. Calculate the heat-transfer rate
across the air gap.

Solution: The mean temperature between the plates is used to evaluate the physical properties: Tf = (T1 +
T2)/2 = (394.3 + 366.5)/2 = 380.4 K. Also, δ = 30/1000 = 0.030 m. From Appendix A.3, ρ = 0.9295 kg/m3, μ =
2.21 × 10-5 Pa · s, k = 0.03219 W/m · K, NPr = 0.693, β = 1/Tf = 1/380.4 = 2.629 × 10–3 K-1.
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Natural convection from other shapes

For spheres, blocks, and other types of enclosed air spaces, references elsewhere (H1, K1, M1,
P1, P3) should be consulted. In some cases when a fluid is forced over a heated surface at low
velocity in the laminar region, combined forced convection plus natural convection heat transfer
occurs. For further discussion of this, see (H1, K1, M1).

BOILING AND CONDENSATION

Boiling

Mechanisms of boiling

Heat transfer to a boiling liquid is very important in evaporation and distillation as well as in other
kinds of chemical and biological processing, such as petroleum processing, control of the temper-
ature of chemical reactions, evaporation of liquid foods, and so on. The boiling liquid is usually
contained in a vessel with a heating surface of tubes or vertical or horizontal plates which supply
the heat for boiling. The heating surfaces can be heated electrically or by a hot or condensing fluid
on the other side of the heated surface.
In boiling, the temperature of the liquid is the boiling point of this liquid at the pressure in the equip-
ment. The heated surface is, of course, at a temperature above the boiling point. Bubbles of vapor
are generated at the heated surface and rise through the mass of liquid. The vapor accumulates in
a vapor space above the liquid level and is withdrawn.
Boiling is a complex phenomenon. Suppose we consider a small heated horizontal tube or wire
immersed in a vessel containing water boiling at 373.2 K (100°C). The heat flux is q/A W/m2; ΔT = Tw
− 373.2 K, where Tw is the tube or wire wall temperature; and h is the heat-transfer coefficient in W/
m2 · K. Starting with a low ΔT, the q/A and h values are measured. This is repeated at higher values
of ΔT and the data obtained are plotted as q/A versus ΔT, as shown in Fig. 4.8-1.
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Figure 4.8-1. Boiling mechanisms for water at atmospheric pressure, heat flux vs. temperature drop: (A) natural convection,
(B) nucleate boiling, (C) transition boiling, (D) film boiling.

In the first region A of the plot in Fig. 4.8-1, at low temperature drops, the mechanism of boiling is
essentially that of heat transfer to a liquid in natural convection. The variation of h with ΔT0.25 is
approximately the same as that for natural convection to horizontal plates or cylinders. The very few
bubbles formed are released from the surface of the metal and rise without appreciably disturbing
the normal natural convection.
In the region B of nucleate boiling for a ΔT of about 5–25 K (9–45°F), the rate of bubble production
increases so that the velocity of circulation of the liquid increases. The heat-transfer coefficient h
increases rapidly and is proportional to ΔT2 to ΔT3 in this region.
In the region C of transition boiling, many bubbles are formed so quickly that they tend to coalesce
and form a layer of insulating vapor. Increasing the ΔT increases the thickness of this layer and the
heat flux and h drop as ΔT is increased. In the region D of film boiling, bubbles detach themselves
regularly and rise upward. At higher ΔT values radiation through thevapor layer next to the surface
helps increase the q/A and h. Similar-shaped curves are obtained for other shapes of surfaces (M1).
The curve of h versus ΔT has approximately the same shape as in Fig. 4.8-1. The values of h are
quite large. At the beginning of region B in Fig. 4.8-1 for nucleate boiling, h has a value of about
5700–11 400 W/m2 · K, or 1000–2000 btu/h · ft2 · °F, and at the end of this region h has a peak value
of almost 57 000 W/m2 · K, or 10 000 btu/hr · ft2 · °F. These values are quite high, and in most cases
the percent resistance of the boiling film is only a few percent of the overall resistance to heat
transfer.
The regions of commercial interest are the nucleate and film-boiling regions (P3). Nucleate boiling
occurs in kettle-type and natural-circulation reboilers.

Nucleate boiling

In the nucleate-boiling region, the heat flux is affected by ΔT, pressure, nature and geometry of the
surface and system, and physical properties of the vapor and liquid. Equations have been derived
by Rohesenow et al. (P1). They apply to single tubes or flat surfaces and are quite complex.
Simplified empirical equations for estimating the boiling heat-transfer coefficients for water boiling
on the outside of submerged surfaces at 1.0 atm abs pressure have been developed (J2).
For a horizontal surface (SI and English units),
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Equation 4.8-1. 

Equation 4.8-2. 

For a vertical surface,

Equation 4.8-3. 

Equation 4.8-4. 

where ΔT = Tw - Tsat K or °F.
If the pressure is p atm abs, the values of h at 1 atm given above are multiplied by (p/1)0.4. Equations
(4.8-1) and (4.8-3) are in the natural convection region.
For forced convection boiling inside tubes, the following simplified relation can be used (J3):

Equation 4.8-5. 

where p in this case is in kPa (SI units) and psia (English units).

Film boiling

In the film-boiling region, the heat-transfer rate is low in view of the large temperature drop used,
which is not utilized effectively. Film boiling has been subjected to considerable theoretical analysis.
Bromley (B3) gives the following equation to predict the heat-transfer coefficient in the film-boiling
region on a horizontal tube:

Equation 4.8-6. 
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where kν is the thermal conductivity of the vapor in W/m · K, ρν the density of the vapor in kg/m3,
ρl the density of the liquid in kg/m3, hfg the latent heat of vaporization in J/kg, ΔT = Tw - Tsat, Tsat the
temperature of saturated vapor in K, D the outside tube diameter in m, μν the viscosity of the vapor
in Pa · s, and g the acceleration of gravity in m/s2. The physical properties of the vapor are evaluated
at the film temperature of Tf = (Tw + Tsat)/2, and hfg at the saturation temperature. If the temperature
difference is quite high, some additional heat transfer occurs by radiation (H1).

EXAMPLE 4.8-1. Rate of Heat Transfer in a Jacketed Kettle
Water is being boiled at 1 atm abs pressure in a jacketed kettle with steam condensing in the jacket at 115.6°C.
The inside diameter of the kettle is 0.656 m and the height is 0.984 m. The bottom is slightly curved but it will
be assumed to be flat. Both the bottom and the sides up to a height of 0.656 m are jacketed. The kettle surface
for heat transfer is 3.2-mm stainless steel with a k of 16.27 W/m · K. The condensing-steam coefficient hi inside
the jacket has been estimated as 10 200 W/m2 · K. Predict the boiling heat-transfer coefficient ho for the bottom
surface of the kettle.

Solution: A diagram of the kettle is shown in Fig. 4.8-2. The simplified equations will be used for the boiling
coefficient ho. The solution is trial and error, since the inside metal surface temperature Tw is unknown. As-
suming that Tw = 110°C,

Figure 4.8-2. Steam-jacketed kettle and boiling water for Example 4.8-1.

Substituting into Eq. (4.8-2),

To check the assumed Tw, the resistance Ri of the condensing steam, Rw of the metal wall, and Ro of the
boiling liquid must be calculated. Assuming equal areas of the resistances for A = 1 m2, then by Eq. (4.3-12),
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The temperature drop across the boiling film is then

Hence, Tw = 100 + 5.9 = 105.9°C. This is lower than the assumed value of 110°C.

For the second trial, Tw = 108.3°C will be used. Then, ΔT = 108.3 − 100 = 8.3°C and, from Eq. (4.8-2), the new
ho = 3180. Calculating the new Ro = 31.44 × 10-5, and

and

This value is reasonably close to the assumed value of 108.3°C, so no further trials will be made.

Condensation

Mechanisms of condensation

Condensation of a vapor to a liquid and vaporization of a liquid to a vapor both involve a change of
phase of a fluid with large heat-transfer coefficients. Condensation occurs when a saturated vapor
such as steam comes in contact with a solid whose surface temperature is below the saturation
temperature, to form a liquid such as water.
Normally, when a vapor condenses on a surface such as a vertical or horizontal tube or other sur-
face, a film of condensate is formed on the surface and flows over the surface by the action of gravity.
It is this film of liquid between the surface and the vapor that forms the main resistance to heat
transfer. This is called film-type condensation.
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Another type of condensation, dropwise condensation, can occur, where small drops are formed on
the surface. These drops grow and coalesce, and the liquid flows from the surface. During this
condensation, large areas of tube are devoid of any liquid and are exposed directly to the vapor.
Very high rates of heat transfer occur on these bare areas. The average coefficient can be as high
as 110 000 W/m2 · K (20 000 btu/h · ft2 · °F), which is five to 10 times larger than film-type coefficients.
Film-condensation coefficients are normally much greater than those in forced convection and are
on the order of magnitude of several thousand W/m2 · K or more.
Dropwise condensation occurs on contaminated surfaces and when impurities are present. Film-
type condensation is more dependable and more common. Hence, for normal design purposes,
film-type condensation is assumed.

Film-condensation coefficients for vertical surfaces

Film-type condensation on a vertical wall or tube can be analyzed analytically by assuming laminar
flow of the condensate film down the wall. The film thickness is zero at the top of the wall or tube
and increases in thickness as it flows downward because of condensation. Nusselt (H1, W1) as-
sumed that the heat transfer from the condensing vapor at Tsat K, through this liquid film, and to the
wall at Tw K was by conduction. Equating this heat transfer by conduction to that from condensation
of the vapor, a final expression can be obtained for the average heat-transfer coefficient over the
whole surface.
In Fig. 4.8-3a, vapor at Tsat is condensing on a wall whose temperature is Tw K. The condensate is
flowing downward in laminar flow. Assuming unit thickness, the mass of the element with liquid
density ρl in Fig. 4.8-3b is (δ − y)(dx · 1)ρl. The downward force on this element is the gravitational
force minus the buoyancy force, or (δ - y)(dx) × (ρl - ρν)g, where ρv is the density of the saturated
vapor. This force is balanced by the viscous-shear force at the plane y of μl (dv/dy) (dx · 1). Equating
these forces,
Equation 4.8-7. 

Figure 4.8-3. Film condensation on a vertical plate: (a) increase in film thickness with position, (b) balance on element of
condensate.

Integrating and using the boundary condition that ν = 0 at y = 0,
Equation 4.8-8. 
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The mass flow rate of film condensate at any point x for unit depth is

Equation 4.8-9. 

Integrating,

Equation 4.8-10. 

At the wall, for area (dx · 1) m2, the rate of heat transfer is as follows if a linear temperature distribution
is assumed in the liquid between the wall and the vapor:

Equation 4.8-11. 

In a dx distance, the rate of heat transfer is qx. Also, in this dx distance, the increase in mass from
condensation is dm. Using Eq. (4.8-10),

Equation 4.8-12. 

Making a heat balance for dx distance, the mass flow rate dm times the latent heat hfg must equal
the qx from Eq. (4.8-11):

Equation 4.8-13. 

Integrating, with δ = 0 at x = 0 and δ = δ at x = x,

Equation 4.8-14. 

Using the local heat-transfer coefficient hx at x, a heat balance gives

Equation 4.8-15. 

This gives
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Equation 4.8-16. 

Combining Eqs. (4.8-14) and (4.8-16),

Equation 4.8-17. 

By integrating over the total length L, the average value of h is obtained as follows:

Equation 4.8-18. 

Equation 4.8-19. 

However, for laminar flow, experimental data are about 20% above Eq. (4.8-19).
Hence, the final recommended expression for vertical surfaces in laminar flow is (M1)

Equation 4.8-20. 

where ρl is the density of liquid in kg/m3 and ρν that of the vapor, g is 9.8066 m/s2, L is the vertical
height of the surface or tube in m, μl is the viscosity of liquid in Pa · s, kl is the liquid thermal con-
ductivity in W/m · K, ΔT = Tsat − Tw in K, and hfg is the latent heat of condensation in J/kg at Tsat. All
physical properties of the liquid except hfg are evaluated at the film temperature Tf = (Tsat + TW)/2.
For long vertical surfaces the flow at the bottom can be turbulent. The Reynolds number is defined
as

Equation 4.8-21. 

Equation 4.8-22. 

where m is total kg mass/s of condensate at tube or plate bottom and Г = m/πD or m/W. The NRe
should be below about 1800 for Eq. (4.8-20) to hold. The reader should note that some references
define NRe as Г/μ. Then this NRe should be below 450.
For turbulent flow for NRe > 1800 (M1),
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Equation 4.8-23. 

Solution of this equation is by trial and error, since a value of NRe must first be assumed in order to
calculate h.

EXAMPLE 4.8-2. Condensation on a Vertical Tube
Steam saturated at 68.9 kPa (10 psia) is condensing on a vertical tube 0.305 m (1.0 ft) long having an OD of
0.0254 m (1.0 in.) and a surface temperature of 86.11°C (187°F). Calculate the average heat-transfer coeffi-
cient using English and SI units.

Solution: From Appendix A.2,

Assuming a laminar film, using Eq. (4.8-20) in English as well as SI units, and neglecting ρν as compared to ρl,

Solving, h = 2350 btu/h · ft2 · °F = 13 350 W/m2 · K.

Next, the NRe will be calculated to see if laminar flow occurs as assumed. To calculate the total heat transferred
for a tube of area
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Equation 4.8-24. 

However, this q must also equal that obtained by condensation of m lbm/h or kg/s. Hence,

Equation 4.8-25. 

Substituting the values given and solving for m,

Substituting into Eq. (4.8-21),

Hence, the flow is laminar as assumed.

Film-condensation coefficients outside horizontal cylinders

The analysis of Nusselt can also be extended to the practical case of condensation outside a hori-
zontal tube. For a single tube the film starts out with zero thickness at the top of the tube and
increases in thickness as it flows around to the bottom and then drips off. If there is a bank of
horizontal tubes, the condensate from the top tube drips onto the one below; and so on.
For a vertical tier of N horizontal tubes placed one below the other with outside tube diameter D (M1),

Equation 4.8-26. 

In most practical applications, the flow is in the laminar region and Eq. (4.8-26) holds (C3, M1).

HEAT EXCHANGERS

Types of Exchangers

Introduction

In the process industries the transfer of heat between two fluids is generally done in heat exchang-
ers. The most common type is one in which the hot and cold fluids do not come into direct contact
with each other but are separated by a tube wall or a flat or curved surface. The transfer of heat
from the hot fluid to the wall or tube surface is accomplished by convection, through the tube wall
or plate by conduction, and then by convection to the cold fluid. In the preceding sections of this
chapter we have discussed the calculation procedures for these various steps. Now we will discuss
some of the types of equipment used and overall thermal analyses of exchangers. Complete, de-
tailed design methods have been highly developed and will not be considered here.
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Double-pipe heat exchanger

The simplest exchanger is the double-pipe or concentric-pipe exchanger. This is shown in Fig.
4.9-1, where one fluid flows inside one pipe and the other fluid flows in the annular space between
the two pipes. The fluids can be in cocurrent or countercurrent flow. The exchanger can be made
from a pair of single lengths of pipe with fittings at the ends or from a number of pairs interconnected
in series. This type of exchanger is useful mainly for small flow rates.

Figure 4.9-1. Flow in a double-pipe heat exchanger.

Shell-and-tube exchanger

If larger flows are involved, a shell-and-tube exchanger is used, which is the most important type of
exchanger in use in the process industries. In these exchangers the flows are continuous. Many
tubes in parallel are used, where one fluid flows inside these tubes. The tubes, arranged in a bundle,
are enclosed in a single shell and the other fluid flows outside the tubes in the shell side. The simplest
shell-and-tube exchanger is shown in Fig. 4.9-2a for one shell pass and one tube pass, or a 1-1
counterflow exchanger. The cold fluid enters and flows inside through all the tubes in parallel in one
pass. The hot fluid enters at the other end and flows counterflow across the outside of the tubes.
Cross-baffles are used so that the fluid is forced to flow perpendicular across the tube bank rather
than parallel with it. The added turbulence generated by this cross-flow increases the shell-side
heat-transfer coefficient.
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Figure 4.9-2. Shell-and-tube heat exchangers: (a) 1 shell pass and 1 tube pass (1-1 exchanger); (b) 1 shell pass and 2 tube
passes (1–2 exchanger).

In Fig. 4.9-2b a 1-2 parallel-counterflow exchanger is shown. The liquid on the tube side flows in
two passes as shown and the shell-side liquid flows in one pass. In the first pass of the tube side,
the cold fluid is flowing counterflow to the hot shell-side fluid; in the second pass of the tube side,
the cold fluid flows in parallel (cocurrent) with the hot fluid. Another type of exchanger has two shell-
side passes and four tube passes. Other combinations of number of passes are also used some-
times, with the 1-2 and 2-4 types being the most common.

Cross-flow exchanger

When a gas such as air is being heated or cooled, a common device used is the cross-flow heat
exchanger shown in Fig. 4.9-3a. One of the fluids, which is a liquid, flows inside through the tubes,
and the exterior gas flows across the tube bundle by forced or sometimes natural convection. The
fluid inside the tubes is considered to be unmixed, since it is confined and cannot mix with any other
stream. The gas flow outside the tubes is mixed, since it can move about freely between the tubes,
and there will be a tendency for the gas temperature to equalize in the direction normal to the flow.
For the unmixed fluid inside the tubes, there will be a temperature gradient both parallel and normal
to the direction of flow.
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Figure 4.9-3. Flow patterns of cross-flow heat exchangers: (a) one fluid mixed (gas) and one fluid unmixed; (b) both fluids
unmixed.

A second type of cross-flow heat exchanger shown in Fig. 4.9-3b is typically used in air-conditioning
and space-heating applications. In this type the gas flows across a finned-tube bundle and is un-
mixed, since it is confined in separate flow channels between the fins as it passes over the tubes.
The fluid in the tubes is unmixed.
Discussions of other types of specialized heat-transfer equipment will be deferred to Section 4.13.
The remainder of this section deals primarily with shell-and-tube and cross-flow heat exchangers.

Log-Mean-Temperature-Difference Correction Factors

In Section 4.5H it was shown that when the hot and cold fluids in a heat exchanger are in true
countercurrent flow or in cocurrent (parallel) flow, the log mean temperature difference should be
used:

Equation 4.9-1. 

where ΔT2 is the temperature difference at one end of the exchanger and ΔT1 at the other end. This
ΔT1m holds for a double-pipe heat exchanger and a 1-1 exchanger with one shell pass and one tube
pass in parallel or counterflow.
In cases where a multiple-pass heat exchanger is involved, it is necessary to obtain a different
expression for the mean temperature difference, depending on the arrangement of the shell and
tube passes. Considering first the one-shell-pass, two-tube-pass exchanger in Fig. 4.9-2b, the cold
fluid in the first tube pass is in counterflow with the hot fluid. In the second tube pass, the cold fluid
is in parallel flow with the hot fluid. Hence, the log mean temperature difference, which applies either
to parallel or to counterflow but not to a mixture of both types, as in a 1-2 exchanger, cannot be used
to calculate the true mean temperature drop without a correction.
The mathematical derivation of the equation for the proper mean temperature to use is quite com-
plex. The usual procedure is to use a correction factor FT which is so defined that when it is multiplied
by the ΔT1m, the product is the correct mean temperature drop ΔTm to use. In using the correction
factors FT, it is immaterial whether the warmer fluid flows through the tubes or the shell (K1). The
factor FT has been calculated (B4) for a 1-2 exchanger and is shown in Fig. 4.9-4a. Two dimen-
sionless ratios are used as follows:
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Equation 4.9-2. 

Equation 4.9-3. 

Figure 4.9-4. Correction factor FT to log mean temperature difference: (a) 1-2 and 1-4 exchangers, (b) 2-4 exchangers. [From
R. A. Bowman, A. C. Mueller, and W. M. Nagle, Trans. A.S.M.E., 62, 284, 285 (1940). With permission.]

where Thi = inlet temperature of hot fluid in K (°F), Tho = outlet of hot fluid, Tci inlet of cold fluid, and
Tco = outlet of cold fluid.
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In Fig. 4.9-4b, the factor FT (B4) for a 2-4 exchanger is shown. In general, it is not recommended
to use a heat exchanger for conditions under which FT < 0.75. Another shell-and-tube arrangement
should be used. Correction factors for two types of cross-flow exchanger are given in Fig. 4.9-5.
Other types are available elsewhere (B4, P1).

Figure 4.9-5. Correction factor FT to log mean temperature difference for cross-flow exchangers [Z = (Thi − Tho)/(Tco − Tci)]:
(a) single pass, shell fluid mixed, other fluid unmixed, (b) single pass, both fluids unmixed. [From R. A. Bowman, A. C. Mueller,

and W. M. Nagle, Trans. A.S.M.E., 62, 288, 289 (1940). With permission.]

Using the nomenclature of Eqs. (4.9-2) and (4.9-3), the ΔT1m of Eq. (4.9-1) can be written as

Equation 4.9-4. 

Then the equation for an exchanger is

Equation 4.9-5. 

where

Equation 4.9-6. 

EXAMPLE 4.9-1. Temperature Correction Factor for a Heat Exchanger
A 1-2 heat exchanger containing one shell pass and two tube passes heats 2.52 kg/s of water from 21.1 to
54.4°C by using hot water under pressure entering at 115.6 and leaving at 48.9°C. The outside surface area
of the tubes in the exchanger is Ao = 9.30 m2.

a. Calculate the mean temperature difference ΔTm in the exchanger and the overall heat-transfer coefficient
Uo.

b. For the same temperatures but using a 2-4 exchanger, what would be the ΔTm?

Solution: The temperatures are as follows:

First making a heat balance on the cold water, assuming a cpm of water of 4187 J/kg · K and Tco − Tci = (54.4
− 21.1)°C = 33.3°C = 33.3 K,
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The log mean temperature difference using Eq. (4.9-4) is

Next, substituting into Eqs. (4.9-2) and (4.9-3),

Equation 4.9-2. 

Equation 4.9-3. 

From Fig. 4.9-4a, FT = 0.74. Then, by Eq. (4.9-6),

Equation 4.9-6. 

Rearranging Eq. (4.9-5) to solve for Uo and substituting the known values, we have

For part (b), using a 2-4 exchanger and Fig. 4.9-4b, FT = 0.94. Then,

Hence, in this case the 2-4 exchanger utilizes more of the available temperature driving force.

Heat-Exchanger Effectiveness

Introduction

In the preceding section the log mean temperature difference was used in the equation q = UA
ΔT1m in the design of heat exchangers. This form is convenient when the inlet and outlet tempera-
tures of the two fluids are known or can be determined by a heat balance. Then the surface area
can be determined if U is known. However, when the temperatures of the fluids leaving the ex-
changer are not known and a given exchanger is to be used, a tedious trial-and-error procedure is
necessary. To solve these cases, a method called the heat-exchanger effectiveness ε is used which
does not involve any of the outlet temperatures.
The heat-exchanger effectiveness is defined as the ratio of the actual rate of heat transfer in a given
exchanger to the maximum possible amount of heat transfer if an infinite heat-transfer area were
available. The temperature profile for a counterflow heat exchanger is shown in Fig. 4.9-6.
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Figure 4.9-6. Temperature profile for countercurrent heat exchanger.

Derivation of effectiveness equation

The heat balance for the cold (C) and hot (H) fluids is

Equation 4.9-7. 

Calling (mcp)H = CH and (mcp)c = CC, then in Fig. 4.9-6, CH > CC, and the cold fluid undergoes a
greater temperature change than the hot fluid. Hence, we designate CC as Cmin or minimum heat
capacity. Then, if there is an infinite area available for heat transfer, TCo = THi. Then the effectiveness
ε is

Equation 4.9-8. 

If the hot fluid is the minimum fluid, THo = TCi, and

Equation 4.9-9. 

In both equations the denominators are the same and the numerator gives the actual heat transfer:

Equation 4.9-10. 

Note that Eq. (4.9-10) uses only inlet temperatures, which is an advantage when inlet temperatures
are known and it is desired to predict the outlet temperatures for a given existing exchanger.
For the case of a single-pass, counterflow exchanger, combining Eqs. (4.9-8) and (4.9-9),

Equation 4.9-11. 

We consider first the case when the cold fluid is the minimum fluid. Rewriting Eq. (4.5-25) using the
present nomenclature,
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Equation 4.9-12. 

Combining Eq. (4.9-7) with the left side of Eq. (4.9-11) and solving for THi,

Equation 4.9-13. 

Subtracting TCo from both sides,

Equation 4.9-14. 

From Eq. (4.9-7) for Cmin = CC and Cmax = CH,

Equation 4.9-15. 

This can be rearranged to give the following:

Equation 4.9-16. 

Substituting Eq. (4.9-13) into (4.9-16),

Equation 4.9-17. 

Finally, substituting Eqs. (4.9-14) and (4.9-17) into (4.9-12), rearranging, taking the antilog of both
sides, and solving for ε,

Equation 4.9-18. 

We define NTU as the number of transfer units as follows:
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Equation 4.9-19. 

The same result would have been obtained if CH = Cmin. For parallel flow we obtain

Equation 4.9-20. 

In Fig. 4.9-7, Eqs. (4.9-18) and (4.9-20) have been plotted in convenient graphical form. Additional
charts are available for different shell-and-tube and cross-flow arrangements (K1).

Figure 4.9-7. Heat-exchanger effectiveness ε: (a) counterflow exchanger, (b) parallel flow exchanger.

EXAMPLE 4.9-2. Effectiveness of Heat Exchanger
Water flowing at a rate of 0.667 kg/s enters a countercurrent heat exchanger at 308 K and is heated by an oil
stream entering at 383 K at a rate of 2.85 kg/s (cp = 1.89 kJ/kg · K). The overall U = 300 W/m2 · K and the area
A = 15.0 m2. Calculate the heat-transfer rate and the exit water temperature.

Solution: Assuming that the exit water temperature is about 370 K, the cp for water at an average temperature
of (308 + 370)/2 = 339 K is 4.192 kJ/kg · K (Appendix A.2). Then, (mcp)H = CH = 2.85(1.89 × 103) = 5387 W/
K and (mcp)C = CC = 0.667(4.192 × 103) = 2796 W/K = Cmin. Since CC is the minimum, Cmin/Cmax = 2796/5387
= 0.519.

Using Eq. (4.9-19), NTU = UA/Cmin = 300(15.0)/2796 = 1.607. Using Fig. (4.9-7a) for a counterflow exchanger,
ε = 0.71. Substituting into Eq. (4.9-10),

Using Eq. (4.9-7),
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Solving, TCo = 361.3 K.

Fouling Factors and Typical Overall U Values

In actual practice, heat-transfer surfaces do not remain clean. Dirt, soot, scale, and other deposits
form on one or both sides of the tubes of an exchanger and on other heat-transfer surfaces. These
deposits offer additional resistance to the flow of heat and reduce the overall heat-transfer coefficient
U. In petroleum processes coke and other substances can deposit. Silting and deposits of mud and
other materials can occur. Corrosion products which could constitute a serious resistance to heat
transfer may form on the surfaces. Biological growth such as algae can occur with cooling water
and in the biological industries.
To avoid or lessen these fouling problems, chemical inhibitors are often added to minimize corrosion,
salt deposition, and algae growth. Water velocities above 1 m/s are generally used to help reduce
fouling. Large temperature differences may cause excessive deposition of solids on surfaces and
should be avoided if possible.
The effect of such deposits and fouling is usually taken care of in design by adding a term for the
resistance of the fouling on the inside and outside of the tube in Eq. (4.3-17) as follows:

Equation 4.9-21. 

where hdi is the fouling coefficient for the inside and hdo the fouling coefficient for the outside of the
tube in W/m2 · K. A similar expression can be written for U0 using Eq. (4.3-18).
Fouling coefficients recommended for use in designing heat-transfer equipment are available in
many references (P3, N1). A short tabulation of some typical fouling coefficients is given in Table
4.9-1.

Table 4.9-1. Typical Fouling Coefficients (P3, N1)

 hd (W/m2 · K) hd (btu/h · ft2 · °F)

Distilled and seawater 11 350 2000

City water 5680 1000

Muddy water 1990–2840 350–500

Gases 2840 500

Vaporizing liquids 2840 500

Vegetable and gas oils 1990 350

In order to perform preliminary estimates of sizes of shell-and-tube heat exchangers, typical values
of overall heat-transfer coefficients are given in Table 4.9-2. These values should be useful as a
check on the results of the design methods described in this chapter.

Table 4.9-2. Typical Values of Overall Heat-Transfer Coefficients in Shell-and-Tube Exchangers (H1, P3, W1)

 U U

 (W/m2· K) (btu/h · ft2 · °F)

Water to water 1140–1700 200–300

Water to brine 570–1140 100–200

Water to organic liquids 570–1140 100–200

Water to condensing steam 1420–2270 250–400

Water to gasoline 340–570 60–100
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 U U

 (W/m2· K) (btu/h · ft2 · °F)

Water to gas oil 140–340 25–60

Water to vegetable oil 110–285 20–50

Gas oil to gas oil 110–285 20–50

Steam to boiling water 1420–2270 250–400

Water to air (finned tube) 110–230 20–40

Light organics to light organics 230–425 40–75

Heavy organics to heavy organics 55–230 10–40

INTRODUCTION TO RADIATION HEAT TRANSFER

Introduction and Basic Equation for Radiation

Nature of radiant heat transfer

In the preceding sections of this chapter we have studied conduction and convection heat transfer.
In conduction, heat is transferred from one part of a body to another, and the intervening material
is heated. In convection, heat is transferred by the actual mixing of materials and by conduction. In
radiant heat transfer, the medium through which the heat is transferred usually is not heated. Ra-
diation heat transfer is the transfer of heat by electromagnetic radiation.
Thermal radiation is a form of electromagnetic radiation similar to X rays, light waves, gamma rays,
and so on, differing only in wavelength. It obeys the same laws as light: It travels in straight lines,
can be transmitted through space and vacuum, and so on. It is an important mode of heat transfer
and is especially important where large temperature differences occur, as, for example, in a furnace
with boiler tubes, in radiant dryers, or in an oven baking food. Radiation often occurs in combination
with conduction and convection. An elementary discussion of radiant heat transfer will be given here,
with a more advanced and comprehensive discussion being given in Section 4.11.
In an elementary sense the mechanism of radiant heat transfer is composed of three distinct steps
or phases:

1. The thermal energy of a hot source, such as the wall of a furnace at T1, is converted into
energy in the form of electromagnetic-radiation waves.

2. These waves travel through the intervening space in straight lines and strike a cold object at
T2, such as a furnace tube containing water to be heated.

3. The electromagnetic waves that strike the body are absorbed by the body and converted back
to thermal energy or heat.

Absorptivity and black bodies

When thermal radiation (such as light waves) falls upon a body, part is absorbed by the body in the
form of heat, part is reflected back into space, and part may actually be transmitted through the
body. For most cases in process engineering, bodies are opaque to transmission, so this will be
neglected. Hence, for opaque bodies,

Equation 4.10-1. 

where α is absorptivity or fraction absorbed and ρ is reflectivity or fraction reflected.
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A black body is defined as one that absorbs all radiant energy and reflects none. Hence, ρ = 0 and α =
1.0 for a black body. Actually, in practice there are no perfect black bodies, but a close approximation
is a small hole in a hollow body, as shown in Fig. 4.10-1. The inside surface of the hollow body is
blackened by charcoal. The radiation enters the hole and impinges on the rear wall; part is absorbed
there and part is reflected in all directions. The reflected rays impinge again, part is absorbed, and
the process continues. Hence, essentially all of the energy entering is absorbed and the area of the
hole acts as a perfect black body. The surface of the inside walls is "rough" and rays are scattered
in all directions, unlike a mirror, where they are reflected at a definite angle.

Figure 4.10-1. Concept of a perfect black body.

As stated previously, a black body absorbs all radiant energy falling on it and reflects none. Such a
black body also emits radiation, depending on its temperature, and does not reflect any. The ratio
of the emissive power of a surface to that of a black body is called emissivity ε and is 1.0 for a black
body. Kirchhoff's law states that at the same temperature T1, α1 and ε1 of a given surface are the
same, or

Equation 4.10-2. 

Equation (4.10-2) holds for any black or nonblack solid surface.

Radiation from a body and emissivity

The basic equation for heat transfer by radiation from a perfect black body with an emissivity ε =
1.0 is

Equation 4.10-3. 

where q is heat flow in W, A is m2 surface area of body, σ is a constant 5.676 × 10-8 W/m2 · K4

(0.1714 X 10-8 btu/h · ft2 · °R4), and T is temperature of the black body in K (°R).
For a body that is not a black body and has an emissivity ε < 1.0, the emissive power is reduced by
ε, or

Equation 4.10-4. 

Substances that have emissivities of less than 1.0 are called gray bodies when the emissivity is
independent of the wavelength. All real materials have an emissivity ε < 1.
Since the emissivity ε and absorptivity α of a body are equal at the same temperature, the emissivity,
like absorptivity, is low for polished metal surfaces and high for oxidized metal surfaces. Typical
values are given in Table 4.10-1 but do vary some with temperature. Most non-metallic substances
have high values. Additional data are tabulated in Appendix A.3.
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Table 4.10-1. Total Emissivity, ε, of Various Surfaces

Surface T(K) T(°F) Emissivity, ε
Polished aluminum 500

850

440

1070

0.039

0.057

Polished iron 450 350 0.052

Oxidized iron 373 212 0.74

Polished copper 353 176 0.018

Asbestos board 296 74 0.96

Oil paints, all colors 373 212 0.92–0.96

Water 273 32 0.95

Radiation to a Small Object from Surroundings

In the case of a small gray object of area A1 m2 at temperature T1 in a large enclosure at a higher
temperature T2, there is a net radiation to the small object. The small body emits an amount of
radiation to the enclosure given by Eq. (4.10-4) as . The emissivity ε1 of this body is taken
at T1. The small body also absorbs an amount of energy from the surroundings at T2 given by

. The α12 is the absorptivity of body 1 for radiation from the enclosure at T2. The value
of α12 is approximately the same as the emissivity of this body at T2. The net heat of absorption is
then, by the Stefan-Boltzmann equation,

Equation 4.10-5. 

A further simplification of Eq. (4.10-5) is usually made for engineering purposes by using only one
emissivity for the small body, at temperature T2. Thus,

Equation 4.10-6. 

EXAMPLE 4.10-1. Radiation to a Metal Tube
A small oxidized horizontal metal tube with an OD of 0.0254 m (1 in.), 0.61 m (2 ft) long, and with a surface
temperature at 588 K (600°F) is in a very large furnace enclosure with fire-brick walls and the surrounding air
at 1088 K (1500°F). The emissivity of the metal tube is 0.60 at 1088 K and 0.46 at 588 K. Calculate the heat
transfer to the tube by radiation using SI and English units.

Solution: Since the large-furnace surroundings are very large compared to the small enclosed tube, the sur-
roundings, even if gray, when viewed from the position of the small body appear black, and Eq. (4.10-6) is
applicable. Substituting given values into Eq. (4.10-6) with an ε of 0.6 at 1088 K,

Other examples of small objects in large enclosures occurring in the process industries are a loaf of bread in
an oven receiving radiation from the walls around it, a package of meat or food radiating heat to the walls of a
freezing enclosure, a hot ingot of solid iron cooling and radiating heat in a large room, and a thermometer
measuring the temperature in a large duct.
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Combined Radiation and Convection Heat Transfer

When radiation heat transfer occurs from a surface, it is usually accompanied by convective heat
transfer, unless the surface is in a vacuum. When the radiating surface is at a uniform temperature,
we can calculate the heat transfer for natural or forced convection using the methods described in
the previous sections of this chapter. The radiation heat transfer is calculated by the Stefan-Boltz-
mann equation (4.10-6). Then the total rate of heat transfer is the sum of convection plus radiation.
As discussed before, the heat-transfer rate by convection and the convective coefficient are given by

Equation 4.10-7. 

where qconv is the heat-transfer rate by convection in W, hc the natural or forced convection coeffi-
cient in W/m2 · K, T1 the temperature of the surface, and T2 the temperature of the air and the
enclosure. A radiation heat-transfer coefficient hr in W/m2 · K can be defined as

Equation 4.10-8. 

where qrad is the heat-transfer rate by radiation in W. The total heat transfer is the sum of Eqs.
(4.10-7) and (4.10-8),

Equation 4.10-9. 

To obtain an expression for hr, we equate Eq. (4.10-6) to (4.10-8) and solve for hr:

Equation 4.10-10. 

A convenient chart giving values of hr in English units calculated from Eq. (4.10-10) with ε = 1.0 is
given in Fig. 4.10-2. To use values from this figure, the value obtained from the figure should be
multiplied by ε to give the value of hr to use in Eq. (4.10-9). If the air temperature is not the same
as T2 of the enclosure, Eqs. (4.10-7) and (4.10-8) must be used separately and not combined to-
gether as in (4.10-9).
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Figure 4.10-2. Radiation heat-transfer coefficient as a function of temperature. (From R. H. Perry and C. H. Chilton, Chemical
Engineers' Handbook, 5th ed. New York: McGraw-Hill Book Company, 1973. With permission.)

EXAMPLE 4.10-2. Combined Convection Plus Radiation from a Tube
Recalculate Example 4.10-1 for combined radiation plus natural convection to the horizontal 0.0254-m tube.

Solution: The area A of the tube = π(0.0254)(0.61) = 0.0487 m2. For the natural convection coefficient to the
0.0254-m horizontal tube, the simplified equation from Table 4.7-2 will be used as an approximation even
though the film temperature is quite high:

Substituting the known values,

Using Eq. (4.10-10) and ε = 0.6,

Substituting into Eq. (4.10-9),
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Hence, the heat loss of -2130 W for radiation is increased to only -2507 W when natural convection is also
considered. In this case, because of the large temperature difference, radiation is the most important factor.

Perry and Green (P3, pp. 10-14) give a convenient table of natural convection plus radiation coefficients (hc +
hr) from single horizontal oxidized steel pipes as a function of the outside diameter and temperature difference.
The coefficients for insulated pipes are about the same as those for a bare pipe (except that lower surface
temperatures are involved for the insulated pipes), since the emissivity of cloth insulation wrapping is about
that of oxidized steel, approximately 0.8. A more detailed discussion of radiation will be given in Section 4.11.

Effect of Radiation on Temperature Measurement of a Gas

When a temperature sensor or probe (thermometer, thermocouple, etc.) is used to measure the
temperature of a gas flowing in an enclosure, significant errors can occur. Radiation heat exchange
will take place between the sensor and the wall and convection heat transfer between the sensor
and the gas. The sensor will indicate a temperature between the true gas and wall surface temper-
atures. This is shown in Fig. 4.10-3, where the wall temperature Tw is less than the true gas tem-
perature Tg.

Figure 4.10-3. Temperature measurement of a gas showing radiation and convection heat transfer for a bare probe and a
shielded probe.

The equations for the heat transfer qc by convection to the probe and radiation qr from the probe to
the wall are as follows for Tw < Tg:

Equation 4.10-11. 

where Ap is the area of the tube in m2 and ε is the emissivity of the probe.

EXAMPLE 4.10-3. Effect of Radiation on Temperature Measurement in a Gas
A thermocouple is measuring the temperature of hot air flowing in a pipe whose walls are at Tw = 400 K (260°F).
The true gas temperature Tg = 465 K (377°F). Calculate the temperature Tp indicated by the thermocouple.
The emissivity of the probe is assumed as ε = 0.6 and the convection heat-transfer coefficient hc = 40 W/m2 ·
K.

Solution: Substituting into Eq. (4.10-11) for convection, qc, and for radiation, qr,
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Equating qc = qr, canceling out the term Ap, and solving by trial and error, Tp = 451.4 K. Hence, the thermocouple
reading of Tp = 451.4 K (352.5°F) is 13.6 K (24.5°F) lower than the true gas temperature of 465 K (377°F).

Probes with a radiation shield as shown in Fig. 4.10-3 are often used to reduce radiation errors. The
shield will have a temperature which is closer to the gas temperature than is the wall. Since the
probe now radiates heat to a surface which is closer to the gas temperature, the radiation loss is
less. It can be shown that with one shield, the radiation heat loss will be halved. Multiple shields can
be used to further reduce the error. Using a polished surface on the probe to reduce the emissivity
lowers the radiation heat loss. This also reduces the measurement error.

ADVANCED RADIATION HEAT-TRANSFER PRINCIPLES

Introduction and Radiation Spectrum

Introduction

This section will cover some basic principles together with some advanced topics on radiation that
were not covered in Section 4.10. The exchange of radiation between two surfaces depends upon
the size, shape, and relative orientation of these two surfaces and also upon their emissivities and
absorptivities. In the cases to be considered the surfaces are separated by nonabsorbing media
such as air. When gases such as CO2 and H2O vapor are present, some absorption by the gases
occurs, which is not considered until later in this section.

Radiation spectrum and thermal radiation

Energy can be transported in the form of electromagnetic waves, which travel at the speed of light.
Bodies may emit many forms of radiant energy, such as gamma rays, thermal energy, radio waves,
and so on. In fact, there is a continuous spectrum of electromagnetic radiation. This electromagnetic
spectrum is divided into a number of wavelength ranges, such as cosmic rays (λ < 10-13 m), gamma
rays (λ = 10-13 to 10–10 m), thermal radiation (λ = 10-7 to 10-4 m), and so on. The electromagnetic
radiation produced solely because of the temperature of the emitter is called thermal radiation and
exists between the wavelengths of 10-7 and 10-4 m. This portion of the electromagnetic spectrum is
of importance in radiant thermal heat transfer. Electromagnetic waves having wavelengths between
3.8 × 10-7 and 7.6 × 10-7 m, called visible radiation, can be detected by the human eye. This visible
radiation lies within the thermal radiation range.
When different surfaces are heated to the same temperature, they do not all emit or absorb the
same amount of thermal radiant energy. A body that absorbs and emits the maximum amount of
energy at a given temperature is called a black body. A black body is a standard to which other
bodies can be compared.

Planck's law and emissive power

When a black body is heated to a temperature T, photons are emitted from the surface which have
a definite distribution of energy. Planck's equation relates the monochromatic emissive power EBλ
in W/m3 at a temperature T in K and a wavelength λ in m:
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Equation 4.11-1. 

A plot of Eq. (4.11-1) is given in Fig. 4.11-1 and shows that the energy given off increases with T.
Also, for a given T, the emissive power reaches a maximum value at a wavelength that decreases
as the temperature T increases. At a given temperature the radiation emitted extends over a spec-
trum of wavelengths. The visible-light spectrum occurs in the low λ region. The sun has a temper-
ature of about 5800 K and the solar spectrum straddles this visible range.

Figure 4.11-1. Spectral distribution of total energy emitted by a black body at various temperatures of the black body.

For a given temperature, the wavelength at which the black-body emissive power is a maximum
can be determined by differentiating Eq. (4.11-1) with respect to λ at constant T and setting the
result equal to zero. The result is as follows and is known as Wien's displacement law:

Equation 4.11-2. 

The locus of the maximum values is shown in Fig. 4.11-1.

Stefan-Boltzmann law

The total emissive power is the total amount of radiation energy per unit area leaving a surface with
temperature T over all wavelengths. For a black body, the total emissive power is given by the
integral of Eq. (4.11-1) at a given T over all wavelengths, or the area under the curve in Fig. 4.11-1:
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Equation 4.11-3. 

This gives

Equation 4.11-4. 

The result is the Stefan-Boltzmann law with σ = 5.676 × 10-8 W/m2 · K4. The units of EB are W/m2.

Emissivity and Kirchhoff's law

An important property in radiation is the emissivity of a surface. The emissivity ε of a surface is
defined as the total emitted energy of the surface divided by the total emitted energy of a black body
at the same temperature:

Equation 4.11-5. 

Since a black body emits the maximum amount of radiation, ε is always <1.0.
We can derive a relationship between the absorptivity α1 and emissitivy ε1 of a material by placing
this material in an isothermal enclosure and allowing the body and enclosure to reach the same
temperature at thermal equilibrium. If G is the irradiation on the body, the energy absorbed must
equal the energy emitted:

Equation 4.11-6. 

If this body is removed and replaced by a black body of equal size, then at equilibrium,

Equation 4.11-7. 

Dividing Eq. (4.11-6) by (4.11-7),

Equation 4.11-8. 

But α2 = 1.0 for a black body. Hence, since E1/EB = ε1,

Equation 4.11-9. 

This is Kirchhoff's law, which states that at thermal equilibrium α = ε of a body. When a body is not
at equilibrium with its surroundings, the result is not valid.
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Concept of gray body

A gray body is defined as a surface for which the monochromatic properties are constant over all
wavelengths. For a gray surface,

Equation 4.11-10. 

Hence, the total absorptivity a and the monochromatic absorptivity αλ of a gray surface are equal,
as are ε and ελ:

Equation 4.11-11. 

Applying Kirchhoff's law to a gray body, αλ = ελ and

Equation 4.11-12. 

As a result, the total absorptivity and emissivity are equal for a gray body even if the body is not in
thermal equilibrium with its surroundings.
Gray bodies do not exist in practice; the concept of a gray body is an idealized one. The absorptivity
of a surface actually varies with the wavelength of the incident radiation. Engineering calculations
can often be based on the assumption of a gray body with reasonable accuracy. The a is assumed
constant even with a variation in λ of the incident radiation. Also, in actual systems, various surfaces
may be at different temperatures. In these cases, α for a surface is evaluated by determining the
emissivity not at the actual surface temperature but at the temperature of the source of the other
radiating surface or emitter, since this is the temperature the absorbing surface would reach if the
absorber and emitter were at thermal equilibrium. The temperature of the absorber has only a slight
effect on the absorptivity.

Derivation of View Factors in Radiation for Various Geometries

Introduction

The concepts and definitions presented in Section 4.11A form a sufficient foundation so that the net
radiant exchange between surfaces can be determined. If two surfaces are arranged so that radiant
energy can be exchanged, a net flow of energy will occur from the hotter surface to the colder
surface. The size, shape, and orientation of two radiating surfaces or a system of surfaces are factors
in determining the net heat-flow rate between them. To simplify the discussion we assume that the
surfaces are separated by a nonabsorbing medium such as air. This assumption is adequate for
many engineering applications. However, in cases such as a furnace, the presence of CO2 and
H2O vapor make such a simplification impossible because of their high absorptivities.
The simplest geometrical configuration will be considered first, that of radiation exchange between
parallel, infinite planes. This assumption implies that there are no edge effects in the case of finite
surfaces. First, the simplest case will be treated, in which the surfaces are black bodies, and then
more complicated geometries and gray bodies will be treated.

View factor for infinite parallel black planes

If two parallel and infinite black planes at T1 and T2 are radiating toward each other, plane 1 emits

 radiation to plane 2, which is all absorbed. Also, plane 2 emits  radiation to plane 1,
which is all absorbed. Then for plane 1, the net radiation is from plane 1 to 2,
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Equation 4.11-13. 

In this case all the radiation from 1 to 2 is intercepted by 2; that is, the fraction of radiation leaving
1 that is intercepted by 2 is F12, which is 1.0. The factor F12 is called the geometric view factor or
simply view factor. Hence,

Equation 4.11-14. 

where F12 is fraction of radiation leaving surface 1 in all directions which is intercepted by surface
2. Also,

Equation 4.11-15. 

In the case of parallel plates, F12 = F21 = 1.0 and the geometric factor is simply omitted.

View factor for infinite parallel gray planes

If both of the parallel plates A1 and A2 are gray, with emissivities and absorptivities of ε1 = α1 and
ε2 = α2, respectively, we can proceed as follows. Since each surface has an unobstructed view of

the other, the view factor is 1.0. In unit time, surface A1 emits  radiation to A2. Of this,
the fraction ε2 (where α2 = ε2) is absorbed:

Equation 4.11-16. 

Also, the fraction (1 - ε2) or the amount (1 - ε2)( ) is reflected back to A1. Of this amount

A1 reflects back to A2 a fraction (1 - ε1) or an amount (1 - ε1)(1 - ε2)( ). The surface A2
absorbs the fraction ε2, or

Equation 4.11-17. 

The amount reflected back to A1 from A2 is (1 - ε2)(1 - ε1)(1 - ε2)( ). Then A1 absorbs ε1

of this and reflects back to A2 an amount (1 - ε1)(1 - ε2)(1 - ε1)(1 - ε2) × ( ). The surface
A2 then absorbs

Equation 4.11-18. 

This continues, and the total amount absorbed at A2 is the sum of Eqs. (4.11-16), (4.11-17),
(4.11-18), and so on:

Equation 4.11-19. 

The result is a geometric series (M1):
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Equation 4.11-20. 

Repeating the above for the amount absorbed at A1 which comes from A2,

Equation 4.11-21. 

The net radiation is the difference of Eqs. (4.11-20) and (4.11-21):

Equation 4.11-22. 

If ε1 = ε2 = 1.0 for black bodies, Eq. (4.11-22) becomes Eq. (4.11-13).

EXAMPLE 4.11-1. Radiation Between Parallel Planes
Two parallel gray planes which are very large have emissivities of ε1 = 0.8 and ε2 = 0.7; surface 1 is at 1100°F
(866.5 K) and surface 2 at 600°F (588.8 K). Use English and SI units for the following:

a. What is the net radiation from 1 to 2?
b. If the surfaces are both black, what is the net radiation?

Solution: For part (a), using Eq. (4.11-22) and substituting the known values,

For black surfaces in part (b), using Eq. (4.11-13),

Note the large reduction in radiation when surfaces with emissivities less than 1.0 are used.

Example 4.11-1 shows the large influence that emissivities less than 1.0 have on radiation. This fact
is used to reduce radiation loss or gain from a surface by using planes as a radiation shield. For
example, for two parallel surfaces of emissivity ε at T1 and T2, the interchange is, by Eq. (4.11-22),

Equation 4.11-23. 
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The subscript 0 indicates that there are no planes in between the two surfaces. Suppose that we
now insert one or more radiation planes between the original surfaces. Then it can be shown that

Equation 4.11-24. 

where N is the number of radiation planes or shields between the original surfaces. Hence, a great
reduction in radiation heat loss is obtained by using these shields.

Derivation of general equation for view factor between black bodies

Suppose that we consider radiation between two parallel black planes of finite size as shown in Fig.
4.11-2a. Since the planes are not infinite in size, some of the radiation from surface 1 does not strike
surface 2, and vice versa. Hence, the net radiation interchange is less, since some is lost to the
surroundings. The fraction of radiation leaving surface 1 in all directions which is intercepted by
surface 2 is called F12 and must be determined for each geometry by taking differential surface
elements and integrating over the entire surface.

Figure 4.11-2. Radiation between two black surfaces: (a) two planes alone, (b) two planes connected by refractory reradiating
walls.

Before we can derive a general relationship for the view factor between two finite bodies, we must
consider and discuss two quantities, a solid angle and the intensity of radiation. A solid angle ω is
a dimensionless quantity which is a measure of an angle in solid geometry. In Fig. 4.11-3a the
differential solid angle dω1 is equal to the normal projection of dA2 divided by the square of the
distance between the point P and area dA2:

Equation 4.11-25. 
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Figure 4.11-3. Geometry for a solid angle and intensity of radiation: (a) solid-angle geometry, (b) intensity of radiation from
emitting area dA.

The units of a solid angle are steradian or sr. For a hemisphere the number of sr subtended by this
surface is 2π.
The intensity of radiation for a black body, IB, is the rate of radiation emitted per unit area projected
in a direction normal to the surface and per unit solid angle in a specified direction as shown in Fig.
4.11-3b. The projection of dA on the line between centers is dA cos θ.

Equation 4.11-26. 

where q is in W and IB is in W/m2 · sr. We assume that the black body is a diffuse surface which
emits with equal intensity in all directions, that is, I = constant. The emissive power EB which leaves
a black-body plane surface is determined by integrating Eq. (4.11-26) over all solid angles subten-
ded by a hemisphere covering the surface. The final result is as follows [see references (C3, H1,
K1) for details]:

Equation 4.11-27. 

where EB is in W/m2.
In order to determine the radiation heat-transfer rates between two black surfaces, we must deter-
mine the general case for the fraction of the total radiant heat that leaves a surface and arrives on
a second surface. Using only black surfaces, we consider the case shown in Fig. 4.11-4, in which
radiant energy is exchanged between area elements dA1 and dA2. The line r is the distance between
the areas, and the angles between this line and the normals to the two surfaces are θ1 and θ2. The
rate of radiant energy that leaves dA1 in the direction given by the angle θ1 is IB1 dA cos θ1. The
rate that leaves dA1 and arrives on dA2 is given by Eq. (4.11-28):

Equation 4.11-28. 
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Figure 4.11-4. Area elements for radiation shape factor.

where dω1 is the solid angle subtended by the area dA2 as seen from dA1. Combining Eqs.
(4.11-25) and (4.11-28),

Equation 4.11-29. 

From Eq. (4.11-27), IB1 = EB1 /π. Substituting EB1 /π for IB1 into Eq. (4.11-29),

Equation 4.11-30. 

The energy leaving dA2 and arriving at dA1 is

Equation 4.11-31. 

Substituting  for EB1 and  for EB2 from Eq. (4.11-4) and taking the difference of Eqs.
(4.11-30) and (4.11-31) for the net heat flow,

Equation 4.11-32. 

Performing the double integrations over surfaces A1 and A2 will yield the total net heat flow between
the finite areas:

Equation 4.11-33. 

Equation (4.11-33) can also be written as
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Equation 4.11-34. 

where F12 is a geometric shape factor or view factor and designates the fraction of the total radiation
leaving A1 which strikes A2, and F21 represents the fraction leaving A2 which strikes A1. Also, the
following relation exists:

Equation 4.11-35. 

which is valid for black surfaces and nonblack surfaces. The view factor F12 is then

Equation 4.11-36. 

Values of the view factor can be calculated for a number of geometrical arrangements.

View factors between black bodies for various geometries

A number of basic relationships between view factors are given below.
The reciprocity relationship given by Eq. (4.11-35) is

Equation 4.11-35. 

This relationship can be applied to any two surfaces i and j:

Equation 4.11-37. 

If surface A1 can only see surface A2, then F12 = 1.0.
If surface A1 sees a number of surfaces A2,A3, . . ., and all the surfaces form an enclosure, then the
enclosure relationship is

Equation 4.11-38. 

If the surface A1 cannot see itself (surface is flat or convex), F11 = 0.

EXAMPLE 4.11-2. View Factor from a Plane to a Hemisphere
Determine the view factors between a plane A1 covered by a hemisphere A2 as shown in Fig. 4.11-5.
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Figure 4.11-5. Radiant exchange between a flat surface and a hemisphere for Example 4.11-2.

Solution: Since surface A1 sees only A2, the view factor F12 = 1.0. Using Eq. (4.11-35),

Equation 4.11-35. 

The area A1 = πR2;A2 = 2πR2. Substituting into Eq. (4.11-35) and solving for F21,

Using Eq. (4.11-38) for surface A1, F11 = 1.0 - F12 = 1.0 - 1.0 = 0. Also, writing Eq. (4.11-38) for surface A2,

Equation 4.11-39. 

Solving for F22, F22 = 1.0 - F21 = 1.0 -  = .

EXAMPLE 4.11-3. Radiation Between Parallel Disks
In Fig. 4.11-6 a small disk of area A1 is parallel to a large disk of area A2, with A1 centered directly below A2.
The distance between the centers of the disks is R and the radius of A2 is a. Determine the view factor for
radiant heat transfer from A1 to A2.

Figure 4.11-6. View factor for radiation from a small element to a parallel disk for Example 4.11-3.

Solution: The differential area for A2 is taken as the circular ring of radius x so that dA2 = 2πx dx. The angle
θ1 = θ2. Using Eq. (4.11-36),
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In this case the area A1 is very small compared to A2, so dA1 can be integrated to A1 and the other terms inside
the integral can be assumed constant. From the geometry shown, r = (R2 + x2)1/2, cos θ1 = R/(R2 + x2)1/2.
Making these substitutions into the equation for F12,

Integrating,

The integration of Eq. (4.11-36) has been performed for numerous geometrical configurations and values of
F12 tabulated. Then,

Equation 4.11-34. 

where F12 is the fraction of the radiation leaving A1 which is intercepted by A2 and F21 the fraction reaching
A1 from A2. Since the flux from 1 to 2 must equal that from 2 to 1, Eq. (4.11-34) becomes Eq. (4.11-35) as
given previously:

Equation 4.11-35. 

Hence, one selects the surface whose view factor can be determined most easily. For example, the view factor
F12 for a small surface A1 completely enclosed by a large surface A2 is 1.0, since all the radiation leaving A1
is intercepted by A2. In Fig. 4.11-7 the view factors F12 between parallel planes are given, and in Fig. 4.11-8
the view factors for adjacent perpendicular rectangles. View factors for other geometries are given elsewhere
(H1, K1, P3, W1).
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Figure 4.11-7. View factor between parallel planes directly opposed. (From W. H. McAdams, Heat Transmission, 3rd
ed. New York McGraw-Hill Book Company, 1954. With permission.)

Figure 4.11-8. View factor for adjacent perpendicular rectangles. [From H. C. Hottel, Mech. Eng., 52, 699 (1930). With
permission.]

View Factors When Surfaces Are Connected by Reradiating Walls

If the two black-body surfaces A1 and A2 are connected by nonconducting (refractory) but reradiating
walls as in Fig. 4.11-2b, a larger fraction of the radiation from surface 1 is intercepted by 2. This

view factor is called . The case of two surfaces connected by the walls of an enclosure such
as a furnace is a common example of this. The general equation for this case assuming a uniform
refractory temperature has been derived (M1, C3) for two radiant sources A1 and A2 which are not
concave, so they do not see themselves:
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Equation 4.11-40. 

Also, as before,

Equation 4.11-41. 

Equation 4.11-42. 

The factor  for parallel planes is given in Fig. 4.11-7 and for other geometries can be calculated

from Eq. (4.11-36). For view factors F12 and  for parallel tubes adjacent to a wall as in a furnace
as well as for variation in refractory wall temperature, see elsewhere (M1, P3). If there are no rera-
diating walls,

Equation 4.11-43. 

View Factors and Gray Bodies

A general and more practical case, which is the same as for Eq. (4.11-40) but with the surfaces
A1 and A2 being gray with emissivities ε1 and ε2, will be considered. Nonconducting reradiating walls
are present as before. Since the two surfaces are now gray, there will be some reflection of radiation,
which will decrease the net radiant exchange between the surfaces below that for black surfaces.
The final equations for this case are

Equation 4.11-44. 

Equation 4.11-45. 

where  is the new view factor for two gray surfaces A1 and A2 which cannot see themselves
and are connected by reradiating walls. If no refractory walls are present, F12 is used in place of

 in Eq. (4.11-41). Again,

Equation 4.11-46. 
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EXAMPLE 4.11-4. Radiation Between Infinite Parallel Gray Planes
Derive Eq. (4.11-22) by starting with the general equation for radiation between two gray bodies A1 and A2
which are infinite parallel planes having emissivities ε1 and ε2, respectively.

Solution: Since there are no reradiating walls, by Eq. (4.11-43)  becomes F12. Also, since all the radiation
from surface 1 is intercepted by surface 2, F12 = 1.0. Substituting into Eq. (4.11-45), noting that A1/A2 = 1.0,

Then using Eq. (4.11-44),

This is identical to Eq. (4.11-22).

EXAMPLE 4.11-5. Complex View Factor for Perpendicular Rectangles
Find the view factor F12 for the configuration shown in Fig. 4.11-9 of the rectangle with area A2 displaced from
the common edge of rectangle A1 and perpendicular to A1. The temperature of A1 is T1 and that of A2 and A3 is
T2.

Figure 4.11-9. Configuration for Example 4.11-5.

Solution: The area A3 is a fictitious area between areas A2 and A1. Designate the area A2 plus A3 as A(23).
The view factor F1(23) for areas A1 and A(23) can be obtained from Fig. 4.11-8 for adjacent perpendicular rec-
tangles. Also, F13 can be obtained from Fig. 4.11-8. The radiation interchange between A1 and A(23) is equal
to that intercepted by A2 and by A3:
Equation 4.11-47. 
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Hence,

Equation 4.11-48. 

Solving for F12,

Equation 4.11-49. 

Methods similar to those used in this example can be employed to find the shape factors for a general
orientation of two rectangles in perpendicular planes or parallel rectangles (C3, H1, K1).

EXAMPLE 4.11-6. Radiation to a Small Package
A small, cold package having an area A1 and emissivity ε1 is at temperature T1. It is placed in a warm room
with the walls at T2 and an emissivity ε2. Using Eq. (4.11-45), derive the view factor for this and the equation
for the radiation heat transfer.

Solution: For the small surface A1 completely enclosed by the enclosure A2,  = F12 by Eq. (4.11-43),
since there are no reradiating (refractory) walls. Also, F12 = 1.0, since all the radiation from A1 is intercepted
by the enclosure A2 because A1 does not have any concave surfaces and cannot "see" itself. Since A2 is very
large compared to A1, A1/A2 = 0. Substituting into Eq. (4.11-45),

Substituting into Eq. (4.11-44),

This is the same as Eq. (4.10-6) derived previously.

For solving complicated radiation problems involving more than four or five heat-transfer surfaces,
matrix methods have been developed and are discussed in detail elsewhere (H1, K1).

Radiation in Absorbing Gases

Introduction to absorbing gases in radiation

As discussed in this section, solids and liquids emit radiation over a continuous spectrum. However,
most gases that are monatomic or diatomic, such as He, Ar, H2, O2, and N2, are virtually transparent
to thermal radiation; that is, they emit practically no radiation and do not absorb radiation. Gases
with a dipole moment and higher polyatomic gases emit significant amounts of radiation and also
absorb radiant energy within the same bands in which they emit radiation. These gases include
CO2, H2O, CO, SO2, NH3, and organic vapors.
For a particular gas, the width of the absorption or emission bands depends on the pressure and
also the temperature. If an absorbing gas is heated, it radiates energy to the cooler surroundings.
The net radiation heat-transfer rate between surfaces is decreased in these cases because the gas
absorbs some of the radiant energy being transported between the surfaces.

Principles of Steady-State Heat Transfer 354

Chapter 4. Principles of Steady-State Heat Transfer. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



Absorption of radiation by a gas

The absorption of radiation in a gas layer can be described analytically, since the absorption by a
given gas depends on the number of molecules in the path of radiation. Increasing the partial pres-
sure of the absorbing gas or the path length increases the amount of absorption. We define IλO as
the intensity of radiation at a particular wavelength before it enters the gas and IλL as the intensity
at the same wavelength after having traveled a distance of L in the gas. If the beam impinges on a
gas layer of thickness dL, the decrease in intensity, dIλ, is proportional to Iλ and dL:

Equation 4.11-50. 

where Iλ is in W/m2. Integrating,

Equation 4.11-51. 

The constant αλ depends on the particular gas, its partial pressure, and the wavelength of radiation.
This equation is called Beer's law. Gases frequently absorb only in narrow-wavelength bands.

Characteristic mean beam length of absorbing gas

The calculation methods for gas radiation are quite complicated. For the purpose of engineering
calculations, Hottel (M1) has presented approximate methods for calculating radiation and absorp-
tion when gases such as CO2 and water vapor are present. Thick layers of a gas absorb more
energy than do thin layers. Hence, in addition to specifying the pressure and temperature of a gas,
we must specify a characteristic length (mean beam length) of a gas mass to determine the emis-
sivity and absorptivity of a gas. The mean beam length L depends on the specific geometry.
For a black differential receiving surface area dA located in the center of the base of a hemisphere
of radius L containing a radiating gas, the mean beam length is L. The mean beam length has been
evaluated for various geometries, as presented in Table 4.11-1. For other shapes, L can be ap-
proximated by

Equation 4.11-52. 

Table 4.11-1. Mean Beam Length for Gas Radiation to Entire Enclosure Surface (M1, R2, P3)

Geometry of Enclosure Mean Beam Length, L

Sphere, diameter D 0.65D

Infinite cylinder, diameter D 0.95D

Cylinder, length = diameter D 0.60D

Infinite parallel plates, separation distance D 1.8D

Hemisphere, radiation to element in base, radius R R

Cube, radiation to any face, side D 0.60D

Volume surrounding bank of long tubes with centers on equilateral triangle, clearance
= tube diameter D 2.8D

where V is volume of the gas in m3, A is surface area of the enclosure in m2, and L is in m.
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Emissivity, absorptivity, and radiation of a gas

Gas emissivities have been correlated and Fig. 4.11-10 gives the gas emissivity εG of CO2 at a total
pressure of the system of 1.0 atm abs. The pG is the partial pressure of CO2 in atm and L is the
mean beam length in m. The emissivity εG is defined as the ratio of the rate of energy transfer from
the hemispherical body of gas to a surface element at the midpoint divided by the rate of energy
transfer from a black hemisphere surface of radius L and temperature TG to the same element.

Figure 4.11-10. Total emissivity of the gas carbon dioxide at a total pressure of 1.0 atm. (From W. H. McAdams, Heat
Transmission, 3rd ed. New York: McGraw-Hill Book Company, 1954. With permission.)

The rate of radiation emitted from the gas is  in W/m2 of receiving surface element, where
εG is evaluated at TG. If the surface element at the midpoint at T1 is radiating heat back to the gas,

the absorption rate of the gas will be , where αG is the absorptivity of the gas for black-body
radiation from the surface at T1. The αG of CO2 is determined from Fig. 4.11-10 at T1, but instead
of the parameter pGL, the parameter pG L(T1/TG) is used. The resulting value from the chart is then
multiplied by (TG/T1)0.65 to give αG. The net rate of radiant transfer between a gas at TG and a black
surface of finite area A1 at T1 is then

Equation 4.11-53. 

When the total pressure is not 1.0 atm, a correction chart is available to correct the emissivity of
CO2. Charts are also available for water vapor (H1, K1, M1, P3). When both CO2 and H2O are
present the total radiation is reduced somewhat, since each gas is somewhat opaque to radiation
from the other gas. Charts for these interactions are also available (H1, K1, M1, P3).
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EXAMPLE 4.11-7. Gas Radiation to a Furnace Enclosure
A furnace is in the form of a cube 0.3 m on a side inside, and these interior walls can be approximated as black
surfaces. The gas inside at 1.0 atm total pressure and 1100 K contains 10 mol % CO2 and the rest is O2 and
N2. The small amount of water vapor present will be neglected. The walls of the furnace are maintained at 600
K by external cooling. Calculate the total heat transfer to the walls neglecting heat transfer by convection.

Solution: From Table 4.11-1, the mean beam length for radiation to a cube face is L = 0.60D = 0.60(0.30) =
0.180 m. The partial pressure of CO2 is pG = 0.10(100) = 0.10 atm. Then pGL = 0.10(0.180) = 0.0180 atm m.
From Fig. 4.11-10, εG = 0.064 at TG = 1100 K.

To obtain αG, we evaluate αG at T1 = 600 K and pGL(T1/TG) = (0.0180) (600/1100) = 0.00982 atm · m. From
Fig. 4.11-10, the uncorrected value of αG = 0.048. Multiplying this by the correction factor (TG/T1)0.65, the final
correction value is

Substituting into Eq. (4.11-53),

For six sides, A = 6(0.3 × 0.3) = 0.540 m2. Then,

For the case where the walls of the enclosure are not black, some of the radiation striking the walls
is reflected back to the other walls and into the gas. As an approximation when the emissivity of the
walls is greater than 0.7, an effective emissivity ε' can be used:
Equation 4.11-54. 

where ε is the actual emissivity of the enclosure walls. Then Eq. (4.11-53) is modified to give the
following (M1):
Equation 4.11-55. 

Other approximate methods are available for gases containing suspended luminous flames, clouds
of nonblack particles, refractory walls and absorbing gases present, and so on (M1, P3).

HEAT TRANSFER OF NON-NEWTONIAN FLUIDS

Introduction

Most of the studies on heat transfer with fluids have been done with Newtonian fluids. However, a
wide variety of non-Newtonian fluids are encountered in the industrial chemical, biological, and food
processing industries. To design equipment to handle these fluids, the flow-property constants
(rheological constants) must be available or must be measured experimentally. Section 3.5 gave a
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detailed discussion of rheological constants for non-Newtonian fluids. Since many non-Newtonian
fluids have high effective viscosities, they are often in laminar flow. Since the majority of non-New-
tonian fluids are pseudoplastic fluids, which can usually be represented by the power law, Eq.
(3.5-2), the discussion will be concerned with such fluids. For other fluids, the reader is referred to
Skelland (S3).

Heat Transfer Inside Tubes

Laminar flow in tubes

A large portion of the experimental investigations have been concerned with heat transfer of non-
Newtonian fluids in laminar flow through cylindrical tubes. The physical properties that are needed
for heat-transfer coefficients are density, heat capacity, thermal conductivity, and the rheological
constants K' and n' or K and n.
In heat transfer in a fluid in laminar flow, the mechanism is primarily one of conduction. However,
for low flow rates and low viscosities, natural convection effects can be present. Since many non-
Newtonian fluids are quite "viscous," natural convection effects are reduced substantially. For lam-
inar flow inside circular tubes of power-law fluids, the equation of Metzner and Gluck (M2) can be
used with highly "viscous" non-Newtonian fluids with negligible natural convection for horizontal or
vertical tubes for the Graetz number NGz > 20 and n' > 0.10:

Equation 4.12-1. 

where

Equation 4.12-2. 

Equation 4.12-3. 

The viscosity coefficients γb at temperature Tb and γw at Tw are defined as

Equation 4.12-4. 

The nomenclature is as follows: k in W/m · K, cp in J/kg · K, ρ in kg/m3, flow rate m in kg/s, length
of heated section of tube L in m, inside diameter D in m, the mean coefficient ha in W/m2 · K, and
K and n' rheological constants (see Section 3.5). The physical properties and Kb are all evaluated
at the mean bulk temperature Tb and Kw at the average wall temperature Tw.
The value of the rheological constant n' or n has been found not to vary appreciably over wide
temperature ranges (S3). However, the rheological constant K' or K has been found to vary appre-
ciably. A plot of log K' versus 1/Tabs (C1) or versus T°C (S3) can often be approximated by a straight
line. Often data for the temperature effect on K are not available. Since the ratio Kb/Kw is taken to
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the 0.14 power, this factor can sometimes be neglected without causing large errors. For a value of
the ratio of 2:1, the error is only about 10%. A plot of log viscosity versus 1/T for Newtonian fluids
is also often a straight line. The value of ha obtained from Eq. (4.12-1) is the mean value to use over
the tube length L with the arithmetic temperature difference ΔTa:

Equation 4.12-5. 

when Tw is the average wall temperature for the whole tube and Tbi is the inlet bulk temperature
and Tbo the outlet bulk temperature. The heat flux q is

Equation 4.12-6. 

EXAMPLE 4.12-1. Heating a Non-Newtonian Fluid in Laminar Flow
A non-Newtonian fluid flowing at a rate of 7.56 × 10-2 kg/s inside a 25.4-mm-ID tube is being heated by steam
condensing outside the tube. The fluid enters the heating section of the tube, which is 1.524 m long, at a
temperature of 37.8°C. The inside wall temperature Tw is constant at 93.3°C. The mean physical properties of
the fluid are ρ = 1041 kg/m3, cpm = 2.093 kJ/kg · K, and k = 1.212 W/m · K. The fluid is a power-law fluid having
the following flow-property (rheological) constants: n = n' = 0.40, which is approximately constant over the
temperature range encountered, and K = 139.9 N · sn'/m2 at 37.8°C and 62.5 at 93.3°C. For this fluid a plot of
log K versus T°C is approximately a straight line. Calculate the outlet bulk temperature of the fluid if it is in
laminar flow.

Solution: The solution is trial and error, since the outlet bulk temperature Tbo of the fluid must be known in
order to calculate ha from Eq. (4.12-2). Assuming Tbo = 54.4°C for the first trial, the mean bulk temperature
Tb is (54.4 + 37.8)/2, or 46.1°C.

Plotting the two values of K given at 37.8 and 93.3°C as log K versus T°C and drawing a straight line through
these two points, a value for Kb of 123.5 at Tb = 46.1°C is read from the plot. At Tw = 93.3°C, Kw = 62.5.

Next, δ is calculated using Eq. (4.12-2):

Substituting into Eq. (4.12-3),

From Eq. (4.12-4),

Then substituting into Eq. (4.12-1),
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Equation 4.12-1. 

Solving, ha = 448.3 W/m2 · K.

By a heat balance, the value of q in W is as follows:

Equation 4.12-7. 

This is equated to Eq. (4.12-6) to obtain

Equation 4.12-8. 

The arithmetic mean temperature difference ΔTa by Eq. (4.12-5) is

Substituting the known values in Eq. (4.12-8) and solving for Tbo,

This value of 54.1°C is close enough to the assumed value of 54.5°C that a second trial is not needed. Only
the value of Kb would be affected. Known values can be substituted into Eq. (3.5-11) for the Reynolds number
to show that it is less than 2100 and that the flow is laminar.

For less "viscous" non-Newtonian power-law fluids in laminar flow, natural convection may affect
the heat-transfer rates. Metzner and Gluck (M2) recommend use of an empirical correction to Eq.
(4.12-1) for horizontal tubes.

Turbulent flow in tubes

For turbulent flow of power-law fluids through tubes. Clapp (C4) presents the following empirical
equation for heat transfer:
Equation 4.12-9. 
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where NRe,gen is defined by Eq. (3.5-11) and hL is the heat-transfer coefficient based on the log
mean temperature driving force. The fluid properties are evaluated at the bulk mean temperature.
Metzner and Friend (M3) also give equations for turbulent heat transfer.

Natural Convection

Acrivos (A1, S3) gives relationships for natural convection heat transfer to power-law fluids from
various geometries of surfaces such as spheres, cylinders, and plates.

SPECIAL HEAT-TRANSFER COEFFICIENTS

Heat Transfer in Agitated Vessels

Introduction

Many chemical and biological processes are often carried out in agitated vessels. As discussed in
Section 3.4, the liquids are generally agitated in cylindrical vessels with an impeller mounted on a
shaft and driven by an electric motor. Typical agitators and vessel assemblies have been shown in
Figs. 3.4-1 and 3.4-3. Often it is necessary to cool or heat the contents of the vessel during agitation.
This is usually done by heat-transfer surfaces, which may be in the form of cooling or heating jackets
in the wall of the vessel or coils of pipe immersed in the liquid.

Vessel with heating jacke

In Fig. 4.13-1a, a vessel with a cooling or heating jacket is shown. When heating, the fluid entering
is often steam, which condenses inside the jacket and leaves at the bottom. The vessel is equipped
with an agitator and in most cases also with baffles (not shown).

Figure 4.13-1. Heat transfer in agitated vessels: (a) vessel with heating jacket, (b) vessel with heating coils.

Correlations for the heat-transfer coefficient from the agitated Newtonian liquid inside the vessel to
the jacket walls of the vessel have the following form:
Equation 4.13-1. 
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where h is the heat-transfer coefficient for the agitated liquid to the inner wall in W/m2 · K, Dt is the
inside diameter of the tank in m, k is thermal conductivity in W/m · K, Da is diameter of agitator in
m, N is rotational speed in revolutions per sec, ρ is fluid density in kg/m3, and μ, is liquid viscosity
in Pa · s. All the liquid physical properties are evaluated at the bulk liquid temperature except μw,
which is evaluated at the wall temperature Tw. Below are listed some available correlations and the

Reynolds-number range ( ).

1. Paddle agitator with no baffles (C5, U1)

2. Flat-blade turbine agitator with no baffles (B4)

3. Flat-blade turbine agitator with baffles (B4, B5)

4. Anchor agitator with no baffles (U1)

5. Helical-ribbon agitator with no baffles (G4)

Some typical overall U values for jacketed vessels for various process applications are tabulated in
Table 4.13-1.

Table 4.13-1. Typical Overall Heat-Transfer Coefficients in Jacketed Vessels

Fluid in
Jacket Fluid in Vessel Wall Material Agitation

U

Ref.

btu W

h · ft2 · °F m2 · K

Steam Water Copper None 150 852 (P1)

Simple stirring 250 1420  
Steam Paste Cast iron Double scrapers 125 710 (P1)

Steam Boiling water Copper None 250 1420 (P1)

Steam Milk Enameled cast iron None 200 1135 (P1)

Stirring 300 1700  
Hot water Cold water Enameled cast iron None 70 398 (P1)

Steam Tomato purée Metal Agitation 30 170 (C1)

EXAMPLE 4.13-1. Heat-Transfer Coefficient in Agitated Vessel with Jacket
A jacketed 1.83-m-diameter agitated vessel with baffles is being used to heat a liquid which is at 300 K. The
agitator is 0.61 m in diameter and is a flat-blade turbine rotating at 100 rpm. Hot water is in the heating jacket.
The wall surface temperature is constant at 355.4 K. The liquid has the following bulk physical properties: ρ =
961 kg/m3, cp = 2500 J/kg · K, k = 0.173 W/m · K, and μ = 1.00 Pa · s at 300 K and 0.084 Pa · s at 355.4 K.
Calculate the heat-transfer coefficient to the wall of the jacket.

Solution: The following are given:
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First, calculating the Reynolds number at 300 K,

The Prandtl number is

Using Eq. (4.13-1) with a = 0.74, b = , and m = 0.14,

Equation 4.13-1. 

Substituting and solving for h,

A correlation to predict the heat-transfer coefficient of a power-law non-Newtonian fluid in a jacketed
vessel with a turbine agitator is also available elsewhere (C6).

Vessel with heating coils

In Fig. 4.13-1b, an agitated vessel with a helical heating or cooling coil is shown. Correlations for
the heat-transfer coefficient to the outside surface of the coils in agitated vessels are listed below
for various types of agitators.
For a paddle agitator with no baffles (C5),

Equation 4.13-2. 

This holds for a Reynolds-number range of 300 to 4 × 105.
For a flat-blade turbine agitator with baffles, see (O1).
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When the heating or cooling coil is in the form of vertical tube baffles with a flat-blade turbine, the
following correlation can be used (D1):
Equation 4.13-3. 

where D0 is the outside diameter of the coil tube in m, nb is the number of vertical baffle tubes, and
μf is the viscosity at the mean film temperature.
Perry and Green (P3) give typical values of overall heat-transfer coefficients U for coils immersed
in various liquids in agitated and nonagitated vessels.

Scraped-Surface Heat Exchangers

Liquid-solid suspensions, viscous aqueous and organic solutions, and numerous food products,
such as margarine and orange juice concentrate, are often cooled or heated in a scraped-surface
exchanger. This consists of a double-pipe heat exchanger with a jacketed cylinder containing steam
or cooling liquid and an internal shaft rotating and fitted with wiper blades, as shown in Fig. 4.13-2.

Figure 4.13-2. Scraped-surface heat exchanger.

The viscous liquid product flows at low velocity through the central tube between the rotating shaft
and the inner pipe. The rotating scrapers or wiper blades continually scrape the surface of liquid,
preventing localized overheating and giving rapid heat transfer. In some cases this device is also
called a votator heat exchanger.
Skelland et al. (S4) give the following equation to predict the inside heat-transfer coefficient for the
votator:
Equation 4.13-4. 
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where D = diameter of vessel in m, DS = diameter of rotating shaft in m, v = axial flow velocity of
liquid in m/s, N = agitator speed in rev/s, and nB = number of blades on agitator. Data cover a region
of axial flow velocities of 0.076 to 0.38 m/min and rotational speeds of 100 to 750 rpm.
Typical overall heat-transfer coefficients in food applications are U = 1700 W/m2 · K (300 btu/h ·
ft2 · F) for cooling margarine with NH3, 2270 (400) for heating applesauce with steam, 1420 (250)
for chilling shortening with NH3, and 2270 (400) for cooling cream with water (B6).

Extended Surface or Finned Exchangers

Introduction

The use of fins or extended surfaces on the outside of a heat-exchanger pipe wall to give relatively
high heat-transfer coefficients in the exchanger is quite common. An automobile radiator is such a
device, where hot water passes inside through a bank of tubes and loses heat to the air. On the
outside of the tubes, extended surfaces receive heat from the tube walls and transmit it to the air
by forced convection.
Two common types of fins attached to the outside of a tube wall are shown in Fig. 4.13-3. In Fig.
4.13-3a there are a number of longitudinal fins spaced around the tube wall and the direction of gas
flow is parallel to the axis of the tube. In Fig. 4.13-3b the gas flows normal to the tubes containing
many circular or transverse fins.

Figure 4.13-3. Two common types of fins on a section of circular tube: (a) longitudinal fin, (b) circular or transverse fin.

The qualitative effect of using extended surfaces can be shown approximately in Eq. (4.13-5) for a
fluid inside a tube having a heat-transfer coefficient of hi and an outside coefficient of h0:

Equation 4.13-5. 
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The resistance Rmetal of the wall can often be neglected. The presence of the fins on the outside
increases A0 and hence reduces the resistance 1/h0A0 of the fluid on the outside of the tube. For
example, if we have hi for condensing steam, which is very large, and h0 for air outside the tube,
which is quite small, increasing A0 greatly reduces 1/h0A0. This in turn greatly reduces the total
resistance, which increases the heat-transfer rate. If the positions of the two fluids are reversed,
with air inside and steam outside, little increase in heat transfer could be obtained by using fins.
Equation (4.13-5) is only an approximation, since the temperature on the outside surface of the bare
tube is not the same as that at the end of the fin because of the added resistance to heat flow by
conduction from the fin tip to the base of the fin. Hence, a unit area of fin surface is not as efficient
as a unit area of bare tube surface at the base of the fin. A fin efficiency ηf has been mathematically
derived for various geometries of fins.

Derivation of equation for fin efficiency

We will consider a one-dimensional fin exposed to a surrounding fluid at temperature T∞ as shown
in Fig. 4.13-4. At the base of the fin the temperature is T0 and at point x it is T. At steady state, the
rate of heat conducted into the element at x is qx|x and is equal to the rate of heat conducted out
plus the rate of heat lost by convection:

Equation 4.13-6. 

Figure 4.13-4. Heat balance for one-dimensional conduction and convection in a rectangular fin with constant cross-sectional
area.

Substituting Fourier's equation for conduction and the convection equation,

Equation 4.13-7. 

where A is the cross-sectional area of the fin in m2, P the perimeter of the fin in m, and (P Δx) the
area for convection. Rearranging Eq. (4.13-7), dividing by Δx, and letting Δx approach zero,

Equation 4.13-8. 

Letting θ = T - T∞, Eq. (4.13-8) becomes
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Equation 4.13-9. 

The first boundary condition is that θ = θ0 = T0 − T∞ at x = 0. For the second boundary condition
needed to integrate Eq. (4.13-9), several cases can be considered, depending upon the physical
conditions at x = L. In the first case, the end of the fin is insulated and dθ/dx = 0 at x = L. In the
second case, the fin loses heat by convection from the tip surface, so that -k(dT/dx)L = h(TL − T∞).
The solution using the second case is quite involved and will not be considered here. Using the first
case, where the tip is insulated, integration of Eq. (4.13-9) gives

Equation 4.13-10. 

where m = (hP/kA)1/2.
The heat lost by the fin is expressed as

Equation 4.13-11. 

Differentiating Eq. (4.13-10) with respect to x and combining it with Eq. (4.13-11),

Equation 4.13-12. 

In the actual fin the temperature T in the fin decreases as the tip of the fin is approached. Hence,
the rate of heat transfer per unit area decreases as the distance from the tube base is increased.
To indicate this effectiveness of the fin in transferring heat, the fin efficiency ηf is defined as the ratio
of the actual heat transferred from the fin to the heat transferred if the entire fin were at the base
temperature T0:

Equation 4.13-13. 

where PL is the entire surface area of fin. The expression for mL is

Equation 4.13-14. 

For fins which are thin, 2t is small compared to 2w, and

Equation 4.13-15. 
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Equation (4.13-15) holds for a fin with an insulated tip. This equation can be modified to hold for the
case where the fin loses heat from its tip. This can be done by extending the length of the fin by t/
2, where the corrected length Lc to use in Eqs. (4.13-13)–(4.13-15) is

Equation 4.13-16. 

The fin efficiency calculated from Eq. (4.13-13) for a longitudinal fin is shown in Fig. 4.13-5a. In Fig.
4.13-5b, the fin efficiency for a circular fin is presented. Note that the abscissa on the curves is
Lc(h/kt)1/2 and not Lc(2h/kt)1/2 as in Eq. (4.13-15).

Figure 4.13-5. Fin efficiency ηf for various fins: (a) longitudinal or straight fins, (b) circular or transverse fins. (See Fig.
4.13-3 for the dimensions of the fins.)

EXAMPLE 4.13.-2. Fin Efficiency and Heat Loss from Fin
A circular aluminum fin as shown in Fig. 4.13-3b (k = 222 W/m · K) is attached to a copper tube having an
outside radius of 0.04 m. The length of the fin is 0.04 m and the thickness is 2 mm. The outside wall or tube
base is at 523.2 K and the external surrounding air at 343.2 K has a convective coefficient of 30 W/m2 · K.
Calculate the fin efficiency and rate of heat loss from the fin.

Solution: The given data are T0 = 523.2 K, T∞ = 343.2 K, L = 0.04 m, rl = 0.04 m, t = 0.002 m, k = 222 W/m ·
K, h = 30 W/m2 · K. By Eq. (4.13-16), Lc = L + t/2 = 0.040 + 0.002/2 = 0.041 m. Then,

Also, (Lc + r1)/r1 = (0.041 + 0.040)/0.040 = 2.025. Using Fig. 4.13-5b, ηf = 0.89. The heat transfer from the fin
itself is

Equation 4.13-17. 

where Af is the outside surface area (annulus) of the fin and is given by the following for both sides of the fin:

Equation 4.13-18. 
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Hence,

Substituting into Eq. (4.13-17),

Overall heat-transfer coefficient for finned tubes

We consider here the general case similar to Fig. 4.3-3b, where heat transfer occurs from a fluid
inside a cylinder or tube, through the cylinder metal wall A of thickness ΔxA, and then to the fluid
outside the tube, where the tube has fins on the outside. The heat is transferred through a series of
resistances. The total heat q leaving the outside of the tube is the sum of heat loss by convection
from the base of the bare tube qt and the loss by convection from the fins, qf:

Equation 4.13-19. 

This can be written as a resistance since the paths are in parallel:

Equation 4.13-20. 

where At is the area of the bare tube between the fins, Af the area of the fins, and h0 the outside
convective coefficient. The resistance in Eq. (4.3-20) can be substituted for the resistance (1/h0A0) in
Eq. (4.3-15) for a bare tube to give the overall equation for a finned tube exchanger:

Equation 4.13-21. 

where T4 is the temperature of the fluid inside the tube and T1 the outside fluid temperature. Writing
Eq. (4.13-21) in the form of an overall heat-transfer coefficient Ui based on the inside area Ai, q =
UiAi(T4 - T1) and

Equation 4.13-22. 

The presence of fins on the outside of the tube changes the characteristics of the fluid flowing past
the tube (either flowing parallel to the longitudinal finned tube or transverse to the circular finned
tube). Hence, the correlations for fluid flow parallel to or transverse to bare tubes cannot be used
to predict the outside convective coefficient h0. Correlations are available in the literature (K4, M1,
P1, P3) for heat transfer to various types of fins.
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DIMENSIONAL ANALYSIS IN HEAT TRANSFER

Introduction

As seen in many of the correlations for fluid flow and heat transfer, many dimensionless groups,
such as the Reynolds number and Prandtl number, occur in these correlations. Dimensional analysis
is often used to group the variables in a given physical situation into dimensionless parameters or
numbers which can be useful in experimentation and correlating data.
An important way of obtaining these dimensionless groups is to use dimensional analysis of differ-
ential equations as described in Section 3.11. Another useful method is the Buckingham method,
in which the listing of the significant variables in the particular physical problem is done first. Then
we determine the number of dimensionless parameters into which the variables may be combined.

Buckingham Method

Heat transfer inside a pipe

The Buckingham theorem, given in Section 3.11, states that the function relationship among q
quantities or variables whose units may be given in terms of u fundamental units or dimensions may
be written as (q –u) dimensionless groups.
As an additional example to illustrate the use of this method, let us consider a fluid flowing in turbulent
flow at velocity v inside a pipe of diameter D and undergoing heat transfer to the wall. We wish to
predict the dimensionless groups relating the heat-transfer coefficient h to the variables D, ρ, μ,
cp, k, and v. The total number of variables is q = 7.
The fundamental units or dimensions are u = 4 and are mass M, length L, time t, and temperature
T. The units of the variables in terms of these fundamental units are as follows:

Hence, the number of dimensionless groups or π's can be assumed to be 7 – 4, or 3. Then

Equation 4.14-1. 

We will choose the four variables D, k, μ, and v to be common to all the dimensionless groups. Then
the three dimensionless groups are

Equation 4.14-2. 

Equation 4.14-3. 

Equation 4.14-4. 

For π1, substituting the actual dimensions,
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Equation 4.14-5. 

Summing for each exponent,

Equation 4.14-6. 

Solving these equations simultaneously, a = 1, b = 0, c = -1, and d = 1.
Substituting these values into Eq. (4.14-2),

Equation 4.14-7. 

Repeating for π2 and π 3 and substituting the actual dimensions,

Equation 4.14-8. 

Equation 4.14-9. 

Substituting π1, π2, and π3 into Eq. (4.14-1) and rearranging,

Equation 4.14-10. 

This is in the form of the familiar equation for heat transfer inside pipes, Eq. (4.5-8).
This type of analysis is useful in empirical correlations of heat-transfer data. The importance of each
dimensionless group, however, must be determined by experimentation (B1, M1).

Natural convection heat transfer outside a vertical plane

In the case of natural convection heat transfer from a vertical plane wall of length L to an adjacent
fluid, different dimension-less groups should be expected as compared to forced convection inside
a pipe, since velocity is not a variable. The buoyant force due to the difference in density between
the cold and the heated fluid should be a factor. As seen in Eqs. (4.7-1) and (4.7-2), the buoyant
force depends upon the variables β, g, ρ, and ΔT. Hence, the list of variables to be considered and
their fundamental units are as follows:
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The number of variables is q = 9. Since u = 4, the number of dimensionless groups or π's is 9 - 4,
or 5. Then π1 = f(π2, π3, π4,π5).
We will choose the four variables L, μ, k, and g to be common to all the dimensionless groups:

For π1, substituting the dimensions,

Equation 4.14-11. 

Solving for the exponents as before, , b = -1, c = 0, and . Then π1 becomes

Equation 4.14-12. 

Taking the square of both sides to eliminate fractional exponents,

Equation 4.14-13. 

Repeating for the other π equations,

Combining the dimensionless groups π1, π3, and π4 as follows,

Equation 4.14-14. 
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Equation (4.14-14) is the Grashof group given in Eq. (4.7-4). Hence,

Equation 4.14-15. 

NUMERICAL METHODS FOR STEADY-STATE CONDUCTION
IN TWO DIMENSIONS

Analytical Equation for Conduction

In Section 4.4 we discussed methods for solving two-dimensional heat-conduction problems using
graphical procedures and shape factors. In this section we consider analytical and numerical meth-
ods.
The equation for conduction in the x direction is as follows:

Equation 4.15-1. 

Now we shall derive an equation for steady-state conduction in two directions x and y. Referring to
Fig. 4.15-1, a rectangular block Δx by Δy by L is shown. The total heat input to the block is equal to
the output:

Equation 4.15-2. 

Figure 4.15-1. Steady-state conduction in two directions.

Now, from Eq. (4.15-1),

Equation 4.15-3. 

Writing similar equations for the other three terms and substituting into Eq. (4.15-2),
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Equation 4.15-4. 

Dividing through by Δx ΔyL and letting Δx and Δy approach zero, we obtain the final equation for
steady-state conduction in two directions:

Equation 4.15-5. 

This is called the Laplace equation.. There are a number of analytical methods for solving this
equation. In the method of separation of variables, the final solution is expressed as an infinite
Fourier series (H1, G2, K1). We consider the case shown in Fig. 4.15-2. The solid is called a semi-
infinite solid since one of its dimensions is ∞. The two edges or boundaries at x = 0 and x = L are
held constant at T1 K. The edge at y = 0 is held at T2. And at y = ∞, T = T1. The solution relating T
to position y and x is

Equation 4.15-6. 

Figure 4.15-2. Steady-state heat conduction in two directions in a semi-infinite plate.

Other analytical methods are available and are discussed in many texts (C2, H1, G2, K1). A large
number of such analytical solutions have been given in the literature. However, there are many
practical situations where the geometry or boundary conditions are too complex for analytical sol-
utions, so that finite-difference numerical methods are used. These are discussed in the next sec-
tion.

Finite-Difference Numerical Methods

Derivation of the method

Since the advent of fast digital computers, solutions to many complex two-dimensional heat-con-
duction problems by numerical methods are readily possible. In deriving the equations we can start
with the partial differential equation (4.15-5). Setting up the finite difference of ∂·2T/∂·x2,
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Equation 4.15-7. 

where the index m stands for a given value of y, m + 1 stands for y + 1 Δy, and n is the index
indicating the position of T on the x scale. This is shown in Fig. 4.15-3. The two-dimensional solid
is divided into squares. The solid inside a square is imagined to be concentrated at the center of
the square, and this concentrated mass is a "node." Each node is imagined to be connected to the
adjacent nodes by a small conducting rod as shown.

Figure 4.15-3. Temperatures and arrangement of nodes for two-dimensional steady-state heat conduction.

The finite difference of ∂·2T/∂·y2 is written in a similar manner:

Equation 4.15-8. 

Substituting Eqs. (4.15-7) and (4.15-8) into Eq. (4.15-5) and setting Δx = Δy,

Equation 4.15-9. 
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This equation states that the net heat flow into any point or node is zero at steady state. The shaded
area in Fig. 4.15-3 represents the area on which the heat balance was made. Alternatively, Eq.
(4.15-9) can be derived by making a heat balance on this shaded area. The total heat in for unit
thickness is

Equation 4.15-10. 

Rearranging, this becomes Eq. (4.15-9). In Fig. 4.15-3 the rods connecting the nodes act as fictitious
heat-conducting rods.
To use the numerical method, Eq. (4.15-9) is written for each node or point. Hence, for N unknown
nodes, N linear algebraic equations must be written and the system of equations solved for the
various node temperatures. For a hand calculation using a modest number of nodes, the iteration
method can be used to solve the system of equations.

Iteration method of solution

In using the iteration method, the right-hand side of Eq. (4.15-9) is set equal to a residual :

Equation 4.15-11. 

Since  = 0 at steady state, solving for Tn,m in Eq. (4.15-11) or (4.15-9),

Equation 4.15-12. 

Equations (4.15-11) and (4.15-12) are the final equations to be used. Their use is illustrated in the
following example.

EXAMPLE 4.15-1. Steady-State Heat Conduction in Two Directions
Figure 4.15-4 shows a cross section of a hollow rectangular chamber with inside dimensions 4 × 2 m and
outside dimensions 8 × 8 m. The chamber is 20 m long. The inside walls are held at 600 K and the outside at
300 K. The k is 1.5 W/m · K. For steady-state conditions find the heat loss per unit chamber length. Use grids
1 ×‐ 1 m.
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Figure 4.15-4. Square grid pattern for Example 4.15-1.

Solution: Since the chamber is symmetrical, one-fourth of the chamber (shaded part) will be used. Preliminary
estimates will be made for the first approximation: T1,2 = 450 K, T2,2 = 400, T3,2 = 400, T3,3 = 400, T3,4 =
450, T3,5 = 500, T4,2 = 325, T4,3 = 350, T4,4 = 375, and T4,5 = 400. Note that T0,2 = T2,2, T3,6 = T3,4, and T4,6 =
T4,4 by symmetry.

To start the calculation, one can select any interior point, but it is usually better to start near a boundary. Using

T1,2, we calculate the residual  by Eq. (4.15-11):

Hence, T1,2 is not at steady state. Next, we set  to 0 and calculate a new value of T1,2 by Eq. (4.15-12):

This new value of T1,2 of 425 K will replace the old one of 450 and be used to calculate the other nodes. Next,

Setting  to zero and using Eq. (4.15-12),

Continuing for all the rest of the interior nodes,

Using Eq. (4.15-12), T3,2 = 364,
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Having completed one sweep across the grid map, we can start a second approximation, using, of course, the
new values calculated. We can start again with T1,2 or we can select the node with the largest residual. Starting
with T1,2 again,

This is continued until the residuals are as small as desired. The final values are as follows:

To calculate the total heat loss from the chamber per unit chamber length, we use Fig. 4.15-5. For nodes T2,4 to
T3,4 with Δx = Δy and 1 m deep,

Equation 4.15-13. 
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Figure 4.15-5. Drawing for calculation of total heat conduction.

The heat flux for nodes T2,5 to T3,5 and for T1,3 to T1,2 should be multiplied by  because of symmetry. The
total heat conducted is the sum of the five paths for one-fourth of the solid. For four duplicate parts,

Equation 4.15-14. 

Also, the total heat conducted can be calculated using the nodes at the outside, as shown in Fig. 4.15-5. This
gives qII = 3430 W. The average value is

If a larger number of nodes, that is, a smaller grid size, is used, a more accurate solution can be
obtained. Using a grid size of 0.5 m instead of 1.0 m for Example 4.15-1, a qav of 3250 W is obtained.
If a very fine grid is used, more accuracy can be obtained, but a digital computer would be needed
for the large number of calculations. Matrix methods are also available for solving a set of simulta-
neous equations on a computer. The iteration method used here is often called the Gauss-Seidel
method. The simplest and most convenient method is to use a spreadsheet calculation with a com-
puter. This avoids the complication of using complex matrix methods and so forth.

Equations for other boundary conditions

In Example 4.15-1 the conditions at the boundaries were such that the node points were known and
constant. For the case where there is convection at the boundary to a constant temperature T∞, a
heat balance on the node n, m in Fig. 4.15-6a is as follows, where heat in = heat out (K1):
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Equation 4.15-15. 

Figure 4.15-6. Other types of boundary conditions: (a) convection at a boundary, (b) insulated boundary, (c) exterior corner
with convective boundary, (d) interior corner with convective boundary.

Setting Δx = Δy, rearranging, and setting the resultant equation =  residual, the following re-
sults:

a. For convection at a boundary,

Equation 4.15-16. 

In a similar manner, for the cases in Fig. 4.15-6:

b. For an insulated boundary,

Equation 4.15-17. 
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c. For an exterior corner with convection at the boundary,

Equation 4.15-18. 

d. For an interior corner with convection at the boundary,

Equation 4.15-19. 

For curved boundaries and other types of boundaries, see (C3, K1). To use Eqs. (4.15-16)–

(4.15-19), the residual  is first obtained using the proper equation. Then  is set equal to
zero and Tn,m solved for in the resultant equation.

PROBLEMS

4.1-1. Insulation in a Cold Room. Calculate the heat loss per m2 of surface
area for a temporary insulating wall of a food cold storage room
where the outside temperature is 299.9 K and the inside tempera-
ture 276.5 K. The wall is composed of 25.4 mm of corkboard having
a k of 0.0433 W/m · K.

A1: Ans. 39.9 W/m2

4.1-2. Determination of Thermal Conductivity. In determining the thermal
conductivity of an insulating material, the temperatures were meas-
ured on both sides of a flat slab of 25 mm of the material and were
318.4 and 303.2 K. The heat flux was measured as 35.1 W/m2.
Calculate the thermal conductivity in btu/h · ft · °F and in W/m · K.

4.2-1. Mean Thermal Conductivity in a Cylinder. Prove that if the thermal
conductivity varies linearly with temperature as in Eq. (4.1-11), the
proper mean value km to use in the cylindrical equation is given by
Eq. (4.2-3) as in a slab.

4.2-2. Heat Removal of a Cooling Coil. A cooling coil of 1.0 ft of 304 stain-
less-steel tubing having an inside diameter of 0.25 in. and an out-
side diameter of 0.40 in. is being used to remove heat from a bath.
The temperature at the inside surface of the tube is 40°F and is 80°F
on the outside. The thermal conductivity of 304 stainless steel is a
function of temperature:

where k is in btu/h · ft · °F and T is in °F. Calculate the heat removal
in btu/s and watts.

A4: Ans. 1.225 btu/s, 1292 W
4.2-3. Removal of Heat from a Bath. Repeat Problem 4.2-2 but for a cool-

ing coil made of 308 stainless steel having an average thermal con-
ductivity of 15.23 W/m · K.
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4.2-4. Variation of Thermal Conductivity. A flat plane of thickness Δx has
one surface maintained at T1 and the other at T2. If the thermal
conductivity varies according to temperature as

where a, b, and c are constants, derive an expression for the one-
dimensional heat flux q/A.

4.2-5. Temperature Distribution in a Hollow Sphere. Derive Eq. (4.2-14)
for the steady-state conduction of heat in a hollow sphere. Also,
derive an equation which shows that the temperature varies hyper-
bolically with the radius r.

A7:

Ans. 
4.3-1. Insulation Needed for Food Cold Storage Room. A food cold stor-

age room is to be constructed of an inner layer of 19.1 mm of pine
wood, a middle layer of cork board, and an outer layer of 50.8 mm
of concrete. The inside wall surface temperature is -17.8°C and the
outside surface temperature is 29.4°C at the outer concrete surface.
The mean conductivities are for pine, 0.151; cork, 0.0433; and con-
crete, 0.762 W/m · K. The total inside surface area of the room to
use in the calculation is approximately 39 m2 (neglecting corner and
end effects). What thickness of cork board is needed to keep the
heat loss to 586 W?

A8: Ans. 0.128 m thickness
4.3-2. Insulation of a Furnace. A wall of a furnace 0.244 m thick is con-

structed of material having a thermal conductivity of 1.30 W/m · K.
The wall will be insulated on the outside with material having an
average k of 0.346 W/m · K, so the heat loss from the furnace will
be equal to or less than 1830 W/m2. The inner surface temperature
is 1588 K and the outer 299 K. Calculate the thickness of insulation
required.

A9: Ans. 0.179 m
4.3-3. Heat Loss Through Thermopane Double Window. A double win-

dow called ther-mopane is one in which two layers of glass are
separated by a layer of dry, stagnant air. In a given window, each
of the glass layers is 6.35 mm thick separated by a 6.35-mm space
of stagnant air. The thermal conductivity of the glass is 0.869 W/m
· K and that of air is 0.026 over the temperature range used. For a
temperature drop of 27.8 K over the system, calculate the heat loss
for a window 0.914 m X 1.83 m. (Note: This calculation neglects the
effect of the convective coefficient on one outside surface of one
side of the window, the convective coefficient on the other outside
surface, and convection inside the window.)

4.3-4. Heat Loss from Steam Pipeline. A steel pipeline, 2-in. schedule 40
pipe, contains saturated steam at 121.1°C. The line is covered with
25.4 mm of insulation. Assuming that the inside surface tempera-
ture of the metal wall is at 121.1°C and the outer surface of the
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insulation is at 26.7°C, calculate the heat loss for 30.5 m of pipe.
Also, calculate the kg of steam condensed per hour in the pipe due
to the heat loss. The average k for steel from Appendix A.3 is 45
W/m · K and the k for the insulation is 0.182.

A11: Ans. 5384 W, 8.81 kg steam/h
4.3-5. Heat Loss with Trial-and-Error Solution. The exhaust duct from a

heater has an inside diameter of 114.3 mm with ceramic walls 6.4
mm thick. The average k = 1.52 W/m · K. Outside this wall, an in-
sulation of rock wool 102 mm thick is installed. The thermal con-
ductivity of the rock wool is k = 0.046 + 1.56 × 10-4 T°C (W/m · K).
The inside surface temperature of the ceramic is T1 = 588.7 K, and
the outside surface temperature of the insulation is T3 = 311 K.
Calculate the heat loss for 1.5 m of duct and the interface temper-
ature T2 between the ceramic and the insulation. [Hint: The correct
value of km for the insulation is that evaluated at the mean temper-
ature of (T2 + T3)/2. Hence, for the first trial assume a mean tem-
perature of, say, 448 K. Then calculate the heat loss and T2. Using
this new T2, calculate a new mean temperature and proceed as
before.]

4.3-6. Heat Loss by Convection and Conduction. A glass window with an
area of 0.557 m2 is installed in the wooden outside wall of a room.
The wall dimensions are 2.44 × 3.05 m. The wood has a k of 0.1505
W/m · K and is 25.4 mm thick. The glass is 3.18 mm thick and has
a k of 0.692. The inside room temperature is 299.9 K (26.7°C) and
the outside air temperature is 266.5 K. The convection coefficient
hi on the inside wall of the glass and the wood is estimated as 8.5
W/m2 · K; the outside h0 is also estimated as 8.5 for both surfaces.
Calculate the heat loss through the wooden wall, through the glass,
and the total.

A13: Ans. 569.2 W (wood) (1942 btu/h), 77.6 W (glass) (265 btu/h), 646.8
W (total) (2207 btu/h)

4.3-7. Convection, Conduction, and Overall U. A gas at 450 K is flowing
inside a 2-in. steel pipe, schedule 40. The pipe is insulated with 51
mm of lagging having a mean k = 0.0623 W/m · K. The convective
heat-transfer coefficient of the gas inside the pipe is 30.7 W/m2 · K
and the convective coefficient on the outside of the lagging is 10.8.
The air is at a temperature of 300 K.

a. Calculate the heat loss per unit length of 1 m of pipe using
resistances.

b. Repeat, using the overall U0 based on the outside area A0.
4.3-8. Heat Transfer in Steam Heater. Water at an average of 70°F is

flowing in a 2-in. steel pipe, schedule 40. Steam at 220°F is con-
densing on the outside of the pipe. The convective coefficient for
the water inside the pipe is h = 500 btu/h · ft2 · °F and the condensing
steam coefficient on the outside is h = 1500.

a. Calculate the heat loss per unit length of 1 ft of pipe using
resistances.

b. Repeat, using the overall Ui based on the inside area Ai.
c. Repeat, using Uo.
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A15: Ans. (a) q = 26 710 btu/h (7.828 kW), (b) Ui = 329.1 btu/h · ft2 · °F
(1869 W/m2 · K), (c) Uo = 286.4 btu/h · ft2 · °F (1626 W/m2 · K)

4.3-9. Heat Loss from Temperature Measurements. A steel pipe carrying
steam has an outside diameter of 89 mm. It is lagged with 76 mm
of insulation having an average k = 0.043 W/m · K. Two thermo-
couples, one located at the interface between the pipe wall and the
insulation and the other at the outer surface of the insulation, give
temperatures of 115°C and 32°C, respectively. Calculate the heat
loss in W per m of pipe.

4.3-10. Effect of Convective Coefficients on Heat Loss in Double Win-
dow. Repeat Problem 4.3-3 for heat loss in the double window.
However, include a convective coefficient of h = 11.35 W/m2 · K on
one outside surface of one side of the window and an h of 11.35 on
the other outside surface. Also calculate the overall U.

A17: Ans. q = 106.7 W, U = 2.29 W/m2 · K
4.3-11. Uniform Chemical Heat Generation. Heat is being generated uni-

formly by a chemical reaction in a long cylinder of radius 91.4 mm.
The generation rate is constant at 46.6 W/m3. The walls of the cyl-
inder are cooled so that the wall temperature is held at 311.0 K. The
thermal conductivity is 0.865 W/m · K. Calculate the center-line
temperature at steady state.

A18: Ans. To = 311.112 K
4.3-12. Heat of Respiration of a Food Product. A fresh food product is held

in cold storage at 278.0 K. It is packed in a container in the shape
of a flat slab with all faces insulated except for the top flat surface,
which is exposed to the air at 278.0 K. For estimation purposes the
surface temperature will be assumed to be 278 K. The slab is 152.4
mm thick and the exposed surface area is 0.186 m2. The density of
the foodstuff is 641 kg/m3. The heat of respiration is 0.070 kJ/kg ·
h and the thermal conductivity is 0.346 W/m · K. Calculate the max-
imum temperature in the food product at steady state and the total
heat given off in W. (Note: It is assumed in this problem that there
is no air circulation inside the foodstuff. Hence, the results will be
conservative, since circulation during respiration will reduce the
temperature.)

A19: Ans. 278.42 K, 0.353 W (1.22 btu/h)
4.3-13. Temperature Rise in Heating Wire. A current of 250 A is passing

through a stainless-steel wire having a diameter of 5.08 mm. The
wire is 2.44 m long and has a resistance of 0.0843 Ω. The outer
surface is held constant at 427.6 K. The thermal conductivity is k
= 22.5 W/m · K. Calculate the center-line temperature at steady
state.

4.3-14. Critical Radius for Insulation. A metal steam pipe having an outside
diameter of 30 mm has a surface temperature of 400 K and is to be
insulated with an insulation having a thickness of 20 mm and a k of
0.08 W/m · K. The pipe is exposed to air at 300 K and a convection
coefficient of 30 W/m2 · K.

a. Calculate the critical radius and the heat loss per m of length
for the bare pipe.
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b. Calculate the heat loss for the insulated pipe assuming that
the surface temperature of the pipe remains constant.

A21: Ans. (b) q = 54.4 W
4.4-1. Curvilinear-Squares Graphical Method. Repeat Example 4.4-1 but

with the following changes:

a. Select the number of equal temperature subdivisions be-
tween the isothermal boundaries to be five instead of four.
Draw in the curvilinear squares and determine the total heat
flux. Also calculate the shape factor S. Label each isotherm
with the actual temperature.

b. Repeat part (a), but in this case the thermal conductivity is not
constant but k = 0.85 (1 + 0.00040T), where T is temperature
in K. [Note: To calculate the overall q, the mean value of k at
the mean temperature is used. The spacing of the isotherms
is independent of how k varies with T (M1). However, the
temperatures corresponding to the individual isotherms are a
function of how the value of k depends upon T. Write the
equation for q' for a given curvilinear section using the mean
value of k over the temperature interval. Equate this to the
overall value of q divided by M or q/M. Then solve for the iso-
therm temperature.]

4.4-2. Heat Loss from a Furnace. A rectangular furnace with inside di-
mensions of 1.0 × 1.0 × 2.0 m has a wall thickness of 0.20 m. The
k of the walls is 0.95 W/m · K. The inside of the furnace is held at
800 K and the outside at 350 K. Calculate the total heat loss from
the furnace.

A23: Ans. q = 25 171 W
4.4-3. Heat Loss from a Buried Pipe. A water pipe whose wall tempera-

ture is 300 K has a diameter of 150 mm and a length of 10 m. It is
buried horizontally in the ground at a depth of 0.40 m measured to
the center line of the pipe. The ground surface temperature is 280
K and k = 0.85 W/m · K. Calculate the loss of heat from the pipe.

A24: Ans. q = 451.2 W
4.5-1. Heating Air by Condensing Steam. Air is flowing through a tube

having an inside diameter of 38.1 mm at a velocity of 6.71 m/s,
average temperature of 449.9 K, and pressure of 138 kPa. The in-
side wall temperature is held constant at 204.4°C (477.6 K) by
steam condensing outside the tube wall. Calculate the heat-transfer
coefficient for a long tube and the heat-transfer flux.

A25: Ans. h = 39.38 W/m2 · K (6.94 btu/h · ft2 · °F)
4.5-2. Trial-and-Error Solution for Heating Water. Water is flowing inside

a horizontal 1 -in. schedule 40 steel pipe at 37.8°C and a velocity
of 1.52 m/s. Steam at 108.3°C is condensing on the outside of the
pipe wall and the steam coefficient is assumed constant at 9100 W/
m2 · K.

a. Calculate the convective coefficient hi for the water. (Note that
this is trial and error. A wall temperature on the inside must
be assumed first.)
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b. Calculate the overall coefficient Ui based on the inside area
and the heat-transfer flux q/Ai in W/m2.

4.5-3. Heat-Transfer Area and Use of Log Mean Temperature Differ-
ence. A reaction mixture having a cpm = 2.85 kJ/kg · K is flowing at
a rate of 7260 kg/h and is to be cooled from 377.6 K to 344.3 K.
Cooling water at 288.8 K is available and the flow rate is 4536 kg/
h. The overall Uo is 653 W/m2 · K.

a. For counterflow, calculate the outlet water temperature and
the area Ao of the exchanger.

b. Repeat for cocurrent flow.
A27: Ans. (a) T1 = 325.2 K, Ao = 5.43 m2; (b) Ao = 6.46 m2

4.5-4. Heating Water with Hot Gases and Heat-Transfer Area. Water
flowing at the rate of 13.85 kg/s is to be heated from 54.5 to 87.8°C
in a heat exchanger by 54 430 kg/h of hot gas flowing counterflow
and entering at 427°C (cpm = 1.005 kJ/kg · K). The overall Uo = 69.1
W/m2 · K. Calculate the exit-gas temperature and the heat-transfer
area.

A28: Ans. T = 299.5°C
4.5-5. Cooling Oil and Overall U. Oil flowing at the rate of 7258 kg/h with

a cpm = 2.01 kJ/kg · K is cooled from 394.3 K to 338.9 K in a coun-
terflow heat exchanger by water entering at 294.3 K and leaving at
305.4 K. Calculate the flow rate of the water and the overall Ui if the
Ai is 5.11 m2.

A29: Ans. 17 420 kg/h, Ui = 686 W/m2 · K
4.5-6. Laminar Flow and Heating of Oil. A hydrocarbon oil having the

same physical properties as the oil in Example 4.5-5 enters at 175°F
inside a pipe having an inside diameter of 0.0303 ft and a length of
15 ft. The inside pipe surface temperature is constant at 325°F. The
oil is to be heated to 250°F in the pipe. How many lbm/h oil can be
heated? (Hint: This solution is trial and error. One method is to as-
sume a flow rate of, say, m = 75 lb mass/h. Calculate the NRe and
the value of ha. Then make a heat balance to solve for q in terms
of m. Equate this q to the q from the equation q = haA ΔTa. Solve
for m. This is the new m to use for the second trial.)

A30: Ans. m = 84.2 lbm/h (38.2 kg/h)
4.5-7. Heating Air by Condensing Steam. Air at a pressure of 101.3 kPa

and 288.8 K enters inside a tube having an inside diameter of 12.7
mm and a length of 1.52 m with a velocity of 24.4 m/s. Condensing
steam on the outside of the tube maintains the inside wall temper-
ature at 372.1 K. Calculate the convection coefficient of the air.
(Note: This solution is trial and error. First assume an outlet tem-
perature of the air.)

4.5-8. Heat Transfer with a Liquid Metal. The liquid metal bismuth at a
flow rate of 2.00 kg/s enters a tube having an inside diameter of 35
mm at 425°C and is heated to 430°C in the tube. The tube wall is
maintained at a temperature of 25°C above the liquid bulk temper-
ature. Calculate the tube length required. The physical properties
are as follows (H1): k = 15.6 W/m · K, cp = 149 J/kg · K, μ = 1.34 ×‐
10–3 Pa · s.
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4.6-1. Heat Transfer from a Flat Plate. Air at a pressure of 101.3 kPa and
a temperature of 288.8 K is flowing over a thin, smooth, flat plate at
3.05 m/s. The plate length in the direction of flow is 0.305 m and its
temperature is 333.2 K. Calculate the heat-transfer coefficient as-
suming laminar flow.

A33: Ans. h = 12.35 W/m2 · K (2.18 btu/h · ft2 · °F)
4.6-2. Chilling Frozen Meat. Cold air at -28.9°C and 1 atm is recirculated

at a velocity of 0.61 m/s over the exposed top flat surface of a piece
of frozen meat. The sides and bottom of this rectangular slab of
meat are insulated and the top surface is 254 mm by 254 mm
square. If the surface of the meat is at -6.7°C, predict the average
heat-transfer coefficient to the surface. As an approximation, as-
sume that either Eq. (4.6-2) or (4.6-3) can be used, depending on
the NRe,L.

A34: Ans. h = 6.05 W/m2 · K
4.6-3. Heat Transfer to an Apple. It is desired to predict the heat-transfer

coefficient for air being blown past an apple lying on a screen with
large openings. The air velocity is 0.61 m/s at 101.32 kPa pressure
and 316.5 K. The surface of the apple is at 277.6 K and its average
diameter is 114 mm. Assume that it is a sphere.

4.6-4. Heating Air by a Steam Heater. A total of 13 610 kg/h of air at 1
atm abs pressure and 15.6°C is to be heated by passing over a bank
of tubes in which steam at 100°C is condensing. The tubes are 12.7
mm OD, 0.61 m long, and arranged in-line in a square pattern with
Sp = Sn = 19.05 mm. The bank of tubes contains six transverse rows
in the direction of flow and 19 rows normal to the flow. Assume that
the tube surface temperature is constant at 93.33°C. Calculate the
outlet air temperature.

4.7-1. Natural Convection from an Oven Wall. The oven wall in Example
4.7-1 is insulated so that the surface temperature is 366.5 K instead
of 505.4 K. Calculate the natural convection heat-transfer coeffi-
cient and the heat-transfer rate per m of width. Use both Eq.
(4.7-4) and the simplified equation. (Note: Radiation is being ne-
glected in this calculation.) Use both SI and English units.

4.7-2. Losses by Natural Convection from a Cylinder. A vertical cylinder
76.2 mm in diameter and 121.9 mm high is maintained at 397.1 K
at its surface. It loses heat by natural convection to air at 294.3 K.
Heat is lost from the cylindrical side and the flat circular end at the
top. Calculate the heat loss neglecting radiation losses. Use the
simplified equations of Table 4.7-2 and those equations for the low-
est range of NGr NPr. The equivalent L to use for the top flat surface
is 0.9 times the diameter.

A38: Ans. q = 26.0 W
4.7-3. Heat Loss from a Horizontal Tube. A horizontal tube carrying hot

water has a surface temperature of 355.4 K and an outside diameter
of 25.4 mm. The tube is exposed to room air at 294.3 K. What is the
natural convection heat loss for a 1-m length of pipe?
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4.7-4. Natural Convection Cooling of an Orange. An orange 102 mm in
diameter having a surface temperature of 21.1°C is placed on an
open shelf in a refrigerator held at 4.4°C. Calculate the heat loss by
natural convection, neglecting radiation. As an approximation, the
simplified equation for vertical planes can be used with L replaced
by the radius of the sphere (M1). For a more accurate correlation,
see (S2).

4.7-5. Natural Convection in Enclosed Horizontal Space. Repeat Exam-
ple 4.7-3 but for the case where the two plates are horizontal and
the bottom plate is hotter than the upper plate. Compare the results.

A41: Ans. q = 18.64 W
4.7-6. Natural Convection Heat Loss in Double Window. A vertical double

plate-glass window has an enclosed air-gap space of 10 mm. The
window is 2.0 m high by 1.2 m wide. One window surface is at 25°C
and the other at 10°C. Calculate the free convection heat-transfer
rate through the air gap.

4.7-7. Natural Convection Heat Loss for Water in Vertical Plates. Two
vertical square metal plates having dimensions of 0.40 X 0.40 m
are separated by a gap of 12 mm and this enclosed space is filled
with water. The average surface temperature of one plate is 65.6°C
and the other plate is at 37.8°C. Calculate the heat-transfer rate
through this gap.

4.7-8. Heat Loss from a Furnace. Two horizontal metal plates having di-
mensions of 0.8 X 1.0 m comprise the top of a furnace and are
separated by a distance of 15 mm. The lower plate is at 400°C and
the upper at 100°C, and air at 1 atm abs is enclosed in the gap.
Calculate the heat-transfer rate between the plates.

4.8-1. Boiling Coefficient in a Jacketed Kettle. Predict the boiling heat-
transfer coefficient for the vertical jacketed sides of the kettle given
in Example 4.8-1. Then, using this coefficient for the sides and the
coefficient from Example 4.8-1 for the bottom, predict the total heat
transfer.

A45: Ans. Tw = 107.65°C, ΔT = 7.65 K, and h(vertical) = 3560 W/m2 · K
4.8-2. Boiling Coefficient on a Horizontal Tube. Predict the boiling heat-

transfer coefficient for water under pressure boiling at 250°F for a

horizontal surface of -in.-thick stainless steel having a k of 9.4 btu/
h · ft · °F. The heating medium on the other side of this surface is a
hot fluid at 290°F having an h of 275 btu/h · ft2 · °F. Use the simplified
equations. Be sure to correct this h value for the effect of pressure.

4.8-3. Condensation on a Vertical Tube. Repeat Example 4.8-2 but for a
vertical tube 1.22 m (4.0 ft) high instead of 0.305 m (1.0 ft) high.
Use SI and English units.

A47: Ans. h = 9438 W/m2 · K, 1663 btu/h · ft2 · °F; NRe = 207.2 (laminar
flow)
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4.8-4. Condensation of Steam on Vertical Tubes. Steam at 1 atm abs
pressure and 100°C is condensing on a bank of five vertical tubes
each 0.305 m high and having an OD of 25.4 mm. The tubes are
arranged in a bundle spaced far enough apart that they do not in-
terfere with each other. The surface temperature of the tubes is
97.78°C. Calculate the average heat-transfer coefficient and the
total kg condensate per hour.

A48: Ans. h = 15 240 W/m2 · K
4.8-5. Condensation on a Bank of Horizontal Tubes. Steam at 1 atm abs

pressure and 100°C is condensing on a horizontal tube bank with
five layers of tubes (N = 5) placed one below the other. Each layer
has four tubes (total tubes = 4 × 5 = 20) and the OD of each tube
is 19.1 mm. The tubes are each 0.61 m long and the tube surface
temperature is 97.78°C. Calculate the average heat-transfer coef-
ficient and the kg condensate per second for the whole condenser.
Make a sketch of the tube bank.

4.9-1. Mean Temperature Difference in an Exchanger. A 1-2 exchanger
with one shell pass and two tube passes is used to heat a cold fluid
from 37.8°C to 121.1°C by using a hot fluid entering at 315.6°C and
leaving at 148.9°C. Calculate the ΔTlm and the mean temperature
difference ΔTm in K.

A50: Ans. ΔTlm = 148.9 K, ΔTm = 131.8 K
4.9-2. Cooling Oil by Water in an Exchanger. Oil flowing at the rate of 5.04

kg/s (cpm = 2.09 kJ/kg · K) is cooled in a 1-2 heat exchanger from
366.5 K to 344.3 K by 2.02 kg/s of water entering at 283.2 K. The
overall heat-transfer coefficient Uo is 340 W/m2 · K. Calculate the
area required. (Hint: A heat balance must first be made to determine
the outlet water temperature.)

4.9-3. Heat Exchange Between Oil and Water. Water is flowing at the rate
of 1.13 kg/s in a 1-2 shell-and-tube heat exchanger and is heated
from 45°C to 85°C by an oil having a heat capacity of 1.95 kJ/kg ·
K. The oil enters at 120°C and leaves at 85°C. Calculate the area
of the exchanger if the overall heat-transfer coefficient is 300 W/
m2 · K.

4.9-4. Outlet Temperature and Effectiveness of an Exchanger. Hot oil at
a flow rate of 3.00 kg/s (cp = 1.92 kJ/kg · K) enters an existing coun-
terflow exchanger at 400 K and is cooled by water entering at 325
K (under pressure) and flowing at a rate of 0.70 kg/s. The overall
U = 350 W/m2 · K and A = 12.9 m2. Calculate the heat-transfer rate
and the exit oil temperature.

4.10-1. Radiation to a Tube from a Large Enclosure. Repeat Example
4.10-1 but use the slightly more accurate Eq. (4.10-5) with two dif-
ferent emissivities.

A54: Ans. q = -2171 W (-7410 btu/h)
4.10-2. Baking a Loaf of Bread in an Oven. A loaf of bread having a surface

temperature of 373 K is being baked in an oven whose walls and
the air are at 477.4 K. The bread moves continuously through the
large oven on an open chain belt conveyor. The emissivity of the
bread is estimated as 0.85, and the loaf can be assumed to be a
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rectangular solid 114.3 mm high × 114.3 mm wide × 330 mm long.
Calculate the radiation heat-transfer rate to the bread, assuming
that it is small compared to the oven and neglecting natural con-
vection heat transfer.

A55: Ans. q = 278.4 W (950 btu/h)
4.10-3. Radiation and Convection from a Steam Pipe. A horizontal oxi-

dized steel pipe carrying steam and having an OD of 0.1683 m has
a surface temperature of 374.9 K and is exposed to air at 297.1 K
in a large enclosure. Calculate the heat loss for 0.305 m of pipe from
natural convection plus radiation. For the steel pipe, use an ε of
0.79.

A56: Ans. q = 163.3 W (557 btu/h)
4.10-4. Radiation and Convection to a Loaf of Bread. Calculate the total

heat-transfer rate to the loaf of bread in Problem 4.10-2, including
the radiation plus natural convection heat transfer. For radiation first
calculate a value of hr. For natural convection, use the simplified
equations for the lower NGrNPr range. For the four vertical sides, the
equation for vertical planes can be used with an L of 114.3 mm. For
the top surface, use the equation for a cooled plate facing upward,
and for the bottom, a cooled plate facing downward. The charac-
teristic L for a horizontal rectangular plate is the linear mean of the
two dimensions.

4.10-5. Heat Loss from a Pipe. A bare stainless-steel tube having an out-
side diameter of 76.2 mm and an ε of 0.55 is placed horizontally in
air at 294.2 K. The pipe surface temperature is 366.4 K. Calculate
the value of hc + hr for convection plus radiation and the heat loss
for 3 m of pipe.

4.11-1. Radiation Shielding. Two very large and parallel planes each have
an emissivity of 0.7. Surface 1 is at 866.5 K and surface 2 is at 588.8
K. Use SI and English units.

a. What is the net radiation loss of surface 1?
b. To reduce this loss, two additional radiation shields also hav-

ing an emissivity of 0.7 are placed between the original sur-
faces. What is the new radiation loss?

A59: Ans. (a) 13 565 W/m2, 4304 btu/h · ft2; (b) 4521 W/m2, 1435 btu/h
· ft2

4.11-2. Radiation from a Craft in Space. A space satellite in the shape of
a sphere is traveling in outer space, where its surface temperature
is held at 283.2 K. The sphere "sees" only outer space, which can
be considered as a black body with a temperature of 0 K. The pol-
ished surface of the sphere has an emissivity of 0.1. Calculate the
heat loss per m2 by radiation.

A60: Ans. q12/A1 = 36.5 W/m2

4.11-3. Radiation and Complex View Factor. Find the view factor F12 for
the configuration shown in Fig. P4.11-3. The area A4 and A3 are
fictitious areas (C3). The area A2 + A4 is called A(24) and A1 + A3 is
called A(13). Areas A(24) and A(13) are perpendicular to each other.
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[Hint: Follow the methods in Example 4.11-5. First, write an equa-
tion similar to Eq. (4.11-48) which relates the interchange between
A3 and A(24). Then relate the interchange between A(13) and A(24).
Finally, relate A(13) and A4.]

Figure P4.11-3. Geometric configuration for Problem 4.11-3.
A61: Ans. A1F12 = A(13)F(13)(24) + A3F34 - A3F3(24) - A(13)F(13)4
4.11-4. Radiation Between Parallel Surfaces. Two parallel surfaces each

1.83 × 1.83 m square are spaced 0.91 m apart. The surface tem-
perature of A1 is 811 K and that of A2 is 533 K. Both are black sur-
faces.

a. Calculate the radiant heat transfer between the two surfaces.
b. Do the same as for part (a), but for the case where the two

surfaces are connected by nonconducting reradiating walls.
c. Repeat part (b), but A1 has an emissivity of 0.8 and A2 an

emissivity of 0.7.
4.11-5. Radiation Between Adjacent Perpendicular Plates. Two adjacent

rectangles are perpendicular to each other. The first rectangle is
1.52 × 2.44 m and the second 1.83 × 2.44 m, with the 2.44-m side
common to both. The temperature of the first surface is 699 K and
that of the second is 478 K. Both surfaces are black. Calculate the
radiant heat transfer between the two surfaces.

4.11-6. View Factor for Complex Geometry. Using the dimensions given in
Fig. P4.11-3, calculate the individual view factors and also F12.

4.11-7. Radiation from a Surface to the Sky. A plane surface having an area
of 1.0 m2 is insulated on the bottom side and is placed on the ground
exposed to the atmosphere at night. The upper surface is exposed
to air at 290 K, and the convective heat-transfer coefficient from the
air to the plane is 12 W/m2 · K. The plane radiates to the clear sky.
The effective radiation temperature of the sky can be assumed as
80 K. If the plane is a black body, calculate the temperature of the
plane at equilibrium.

Ans. T = 266.5 K = -6.7°C
4.11-8. Radiation and Heating of Planes. Two plane disks each 1.25 m in

diameter are parallel and directly opposite each other. They are
separated by a distance of 0.5 m. Disk 1 is heated by electrical
resistance to 833.3 K. Both disks are insulated on all faces except
the two faces directly opposite each other. Assume that the sur-

Principles of Steady-State Heat Transfer 391

Chapter 4. Principles of Steady-State Heat Transfer. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



roundings emit no radiation and that the disks are in space. Calcu-
late the temperature of disk 2 at steady state and also the electrical
energy input to disk 1. (Hint: The fraction of heat lost from area
number 1 to space is 1 – F12.)

A66: Ans. F12 = 0.45, T2 = 682.5 K
4.11-9. Radiation by Disks to Each Other and to Surroundings. Two disks

each 2.0 m in diameter are parallel and directly opposite each other
and are separated by a distance of 2.0 m. Disk 1 is held at 1000 K
by electric heating and disk 2 at 400 K by cooling water in a jacket
at the rear of the disk. The disks radiate only to each other and to
the surrounding space at 300 K. Calculate the electric heat input
and also the heat removed by the cooling water.

4.11-10. View Factor by Integration. A small black disk is vertical, with an
area of 0.002 m2, and radiates to a vertical black plane surface that
is 0.03 m wide and 2.0 m high and is opposite and parallel to the
small disk. The disk source is 2.0 m away from the vertical plane
and placed opposite the bottom of the plane. Determine F12 by in-
tegration of the view-factor equation.

A68: Ans. F12 = 0.00307
4.11-11. Gas Radiation to Gray Enclosure. Repeat Example 4.11-7 but with

the following changes:

a. The interior walls are not black surfaces but gray surfaces with
an emissivity of 0.75.

b. The same conditions as part (a) with gray walls, but in addition
heat is transferred by natural convection to the interior walls.
Assume an average convective coefficient of 8.0 W/m2 · K.

Ans. (b) q(convection + radiation) = 4.426 W
4.11-12. Gas Radiation and Convection to a Stack. A furnace discharges

hot flue gas at 1000 K and 1 atm abs pressure containing 5%
CO2 into a stack having an inside diameter of 0.50 m. The inside
walls of the refractory lining are at 900 K and the emissivity of the
lining is 0.75. The convective heat-transfer coefficient of the gas has
been estimated as 10 W/m2 · K. Calculate the rate of heat transfer
q/A from the gas by radiation plus convection.

4.12-1. Laminar Heat Transfer of a Power-Law Fluid. A non-Newtonian
power-law fluid banana purée flowing at a rate of 300 lbm/h inside
a 1.0-in.-ID tube is being heated by a hot fluid flowing outside the
tube. The banana purée enters the heating section of the tube,
which is 5 ft long, at a temperature of 60°F. The inside wall tem-
perature is constant at 180°F. The fluid properties as given by
Charm (C1) are ρ = 69.9 lbm/ft3, cp = 0.875 btu/lbm · °F, and k =
0.320 btu/h · ft · °F. The fluid has the following rheological constants:
n = n' = 0.458, which can be assumed constant, and K = 0.146 lbf
· sn · ft-2 at 70°F and 0.0417 at 190°F A plot of log K versus T°F can
be assumed to be a straight line. Calculate the outlet bulk temper-
ature of the fluid in laminar flow.

4.12-2. Heating a Power-Law Fluid in Laminar Flow. A non-Newtonian
power-law fluid having the same physical properties and rheological
constants as the fluid in Example 4.12-1 is flowing in laminar flow
at a rate of 6.30 × 10-2 kg/s inside a 25.4-mm-ID tube. It is being
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heated by a hot fluid outside the tube. The fluid enters the heating
section of the tube at 26.7°C and leaves the heating section at an
outlet bulk temperature of 46.1°C. The inside wall temperature is
constant at 82.2°C. Calculate the length of tube needed in m.
(Note: In this case the unknown tube length L appears in the equa-
tion for ha and in the heat-balance equation.)

Ans. L = 1.722 m
4.13-1. Heat Transfer in a Jacketed Vessel with a Paddle Agitator. A vessel

with a paddle agitator and no baffles is used to heat a liquid at
37.8°C. A steam-heated jacket furnishes the heat. The vessel's in-
side diameter is 1.22 m; the agitator diameter is 0.406 m and it is
rotating at 150 rpm. The wall surface temperature is 93.3°C. The
physical properties of the liquid are ρ = 977 kg/m3, cp = 2.72 kJ/kg
· K, k = 0.346 W/m · K, and μ = 0.100 kg/m · s at 37.8°C and 7.5 ×
10–3 at 93.3°C. Calculate the heat-transfer coefficient to the wall of
the jacket.

4.13-2. Heat Loss from Circular Fins. Use the data and conditions from
Example 4.13-2 and calculate the fin efficiency and rate of heat loss
from the following different fin materials:

a. Carbon steel (k = 44 W/m · K).
b. Stainless steel (k = 17.9 W/m · K).

A74: Ans. (a) ηf = 0.66, q = 111.1 W
4.13-3. Heat Loss from Longitudinal Fin. A longitudinal aluminum fin as

shown in Fig. 4.13-3a (k = 230 W/m · K) is attached to a copper tube
having an outside radius of 0.04 m. The length of the fin is 0.080 m
and the thickness is 3 mm. The tube base is held at 450 K and the
external surrounding air at 300 K has a convective coefficient of 25
W/m2 · K. Calculate the fin efficiency and the heat loss from the fin
per 1.0 m of length.

4.13-4. Heat Transfer in Finned Tube Exchanger. Air at an average tem-
perature of 50°C is being heated by flowing outside a steel tube (k
= 45.1 W/m · K) having an inside diameter of 35 mm and a wall
thickness of 3 mm. The outside of the tube is covered with 16 lon-
gitudinal steel fins with a length L = 13 mm and a thickness of t =
1.0 mm. Condensing steam inside at 120°C has a coefficient of
7000 W/m2 · K. The outside coefficient of the air has been estimated
as 30 W/m2 · K. Neglecting fouling factors and using a tube 1.0 m
long, calculate the overall heat-transfer coefficient Ui based on the
inside area Ai.

4.14-1. Dimensional Analysis for Natural Convection. Repeat the dimen-
sional analysis for natural convection heat transfer to a vertical plate
as given in Section 4.14. However, do as follows:

a. Carry out all the detailed steps solving for all the exponents
in the π's.

b. Repeat, but in this case select the four variables L, μ, cp, and
g to be common to all the dimensionless groups.

4.14-2. Dimensional Analysis for Unsteady-State Conduction. For un-
steady-state conduction in a solid, the following variables are in-
volved: ρ, cp, L (dimension of solid), t, k, and z (location in solid).
Determine the dimensionless groups relating the variables.
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A78:

Ans. 
4.15-1. Temperatures in a Semi-Infinite Plate. A semi-infinite plate is sim-

ilar to that in Fig. 4.15-2. At the surfaces x = 0 and x = L, the tem-
perature is held constant at 200 K. At the surface y = 0, the tem-
perature is held at 400 K. If L = 1.0 m, calculate the temperature at
the point y = 0.5 m and x = 0.5 m at steady state.

4.15-2. Heat Conduction in a Two-Dimensional Solid. For two-dimensional
heat conduction as given in Example 4.15-1, derive the equation to
calculate the total heat loss from the chamber per unit length using
the nodes at the outside. There should be eight paths for one-fourth
of the chamber. Substitute the actual temperatures into the equa-
tion and obtain the heat loss.

Ans. q = 3426 W
4.15-3. Steady-State Heat Loss from a Rectangular Duct. A chamber that

is in the shape of a long, hollow, rectangular duct has outside di-
mensions of 3 × 4 m and inside dimensions of 1 × 2 m. The walls
are 1 m thick. The inside surface temperature is constant at 800 K
and the outside constant at 200 K. The k = 1.4 W/m · K. Calculate
the steady-state heat loss per unit m of length of duct. Use a grid
size of Δx = Δy = 0.5 m. Also, use the outside nodes to calculate
the total heat conduction. Use a spreadsheet for the calculation.

A80: Ans. q = 7428 W
4.15-4. Two-Dimensional Heat Conduction and Different Boundary Condi-

tions. A very long, solid piece of material 1 by 1 m square has its
top face maintained at a constant temperature of 1000 K and its left
face at 200 K. The bottom face and right face are exposed to an
environment at 200 K and have a convection coefficient of h = 10

W/m2 · K. The k = 10 W/m · K. Use a grid size of Δx = Δy = m and
calculate the steady-state temperatures of the various nodes.

4.15-5. Nodal Point at Exterior Corner Between Insulated Surfaces. Derive
the finite-difference equation for the case for the nodal point Tn,m at
an exterior corner between insulated surfaces. The diagram is sim-
ilar to Fig. 4.15-6c except that the two boundaries are insulated.

A82:
Ans. 
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