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Chapter 5. Principles of Unsteady-State Heat
Transfer

DERIVATION OF BASIC EQUATION

Introduction

In Chapter 4 we considered various heat-transfer systems in which the temperature at any given
point and the heat flux were always constant over time, that is, in steady state. In the present chapter
we will study processes in which the temperature at any given point in the system changes with
time, that is, heat transfer is unsteady state or transient.
Before steady-state conditions can be reached in a process, some time must elapse after the heat-
transfer process is initiated to allow the unsteady-state conditions to disappear. For example, in
Section 4.2A we determined the heat flux through a wall at steady state. We did not consider the
period during which one side of the wall was being heated up and the temperatures were increasing.
Unsteady-state heat transfer is important because of the large number of heating and cooling prob-
lems occurring industrially. In metallurgical processes it is necessary to predict cooling and heating
rates for various geometries of metals in order to predict the time required to reach certain temper-
atures. In food processing, for example, the canning industry, perishable canned foods are heated
by immersion in steam baths or chilled by immersion in cold water. In the paper industry wood logs
are immersed in steam baths before processing. In most of these processes the material is suddenly
immersed in a fluid of higher or lower temperature.

Derivation of Unsteady-State Conduction Equation

To derive the equation for unsteady-state conduction in one direction in a solid, we refer to Fig.
5.1-1. Heat is being conducted in the x direction in the cube Δx, Δy, Δz in size. For conduction in
the x direction, we write

Equation 5.1-1. 
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Figure 5.1-1. Unsteady-state conduction in one direction.

The term ∂T/∂x means the partial or derivative of T with respect to x, with the other variables, y, z,
and time t, being held constant. Next, making a heat balance on the cube, we can write

Equation 5.1-2. 

The rate of heat input to the cube is

Equation 5.1-3. 

Also,

Equation 5.1-4. 

The rate of accumulation of heat in the volume Δx Δy Δz in time ∂t is

Equation 5.1-5. 

The rate of heat generation in volume Δx Δy Δz is

Equation 5.1-6. 

Substituting Eqs. (5.1-3)–(5.1-6) into (5.1-2) and dividing by Δx Δy Δz,

Equation 5.1-7. 

Letting Δx approach zero, we have the second partial of T with respect to x or ∂2T/∂x2 on the left
side. Then, rearranging,
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Equation 5.1-8. 

where α is k/pcp, thermal diffusivity. This derivation assumes constant k, p, and cp. In SI units, α =
m2/s, T = K, t = s, k = W/m · K, p = kg/m3,  = W/m3, and cp = J/kg · K. In English units, α = ft2/h, T
= °F, t = h, k = btu/h · ft·°F, ρ = lbm/ft3,  = btu/h · ft3, and cp = btu/lbm · °F.
For conduction in three dimensions, a similar derivation gives

Equation 5.1-9. 

In many cases, unsteady-state heat conduction is occurring but the rate of heat generation is zero.
Then Eqs. (5.1-8) and (5.1-9) become

Equation 5.1-10. 

Equation 5.1-11. 

Equations (5.1-10) and (5.1-11) relate the temperature T with position x, y, and z and time t. The
solutions of Eqs. (5.1-10) and (5.1-11) for certain specific cases as well as for the more general
cases are considered in much of the remainder of this chapter.

SIMPLIFIED CASE FOR SYSTEMS WITH NEGLIGIBLE
INTERNAL RESISTANCE

Basic Equation

We begin our treatment of transient heat conduction by analyzing a simplified case. In this situation
we consider a solid which has a very high thermal conductivity or very low internal conductive re-
sistance compared to the external surface resistance, where convection occurs from the external
fluid to the surface of the solid. Since the internal resistance is very small, the temperature within
the solid is essentially uniform at any given time.
An example would be a small, hot cube of steel at T0 K at time t = 0, suddenly immersed in a large
bath of cold water at T∞ which is held constant with time. Assume that the heat-transfer coefficient
h in W/m2 · K is constant with time. Making a heat balance on the solid object for a small time interval
of time dt s, the heat transfer from the bath to the object must equal the change in internal energy
of the object:

Equation 5.2-1. 
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where A is the surface area of the object in m2, T the average temperature of the object at time t in
s, ρ the density of the object in kg/m3, and V the volume in m3. Rearranging the equation and
integrating between the limits of T = T0 when t = 0 and T = T when t = t,

Equation 5.2-2. 

Equation 5.2-3. 

This equation describes the time–temperature history of the solid object. The term cp ρV is often
called the lumped thermal capacitance of the system. This type of analysis is often called the lumped
capacity method or Newtonian heating or cooling method.

Equation for Different Geometries

In using Eq. (5.2-3) the surface/volume ratio of the object must be known. The basic assumption of
negligible internal resistance was made in the derivation. This assumption is reasonably accurate
when

Equation 5.2-4. 

where hx1/k is called the Biot number NBi, which is dimensionless, and x1 is a characteristic dimen-
sion of the body obtained from x1 = V/A. The Biot number compares the relative values of internal
conduction resistance and surface convective resistance to heat transfer.
For a sphere,

Equation 5.2-5. 

For a long cylinder,

Equation 5.2-6. 

For a long square rod,

Equation 5.2-7. 
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EXAMPLE 5.2-1. Cooling of a Steel Ball
A steel ball having a radius of 1.0 in. (25.4 mm) is at a uniform temperature of 800°F (699.9 K). It is suddenly
plunged into a medium whose temperature is held constant at 250°F (394.3 K). Assuming a convective coef-
ficient of h = 2.0 btu/h · ft2 · °F (11.36 W/m2 · K), calculate the temperature of the ball after 1 h (3600 s). The
average physical properties are k = 25 btu/h · ft · °F (43.3 W/m · K), ρ = 490 lbm/ft3 (7849 kg/m3), and cp = 0.11
btu/lbm · °F (0.4606 kJ/kg · K). Use SI and English units.

Solution: For a sphere from Eq. (5.2-5),

From Eq. (5.2-4) for the Biot number,

This value is <0.1; hence, the lumped capacity method can be used. Then,

Substituting into Eq. (5.2-3) for t = 1.0 h and solving for T,

Total Amount of Heat Transferred

The temperature of the solid at any time t can be calculated from Eq. (5.2-3). At any time t, the
instantaneous rate of heat transfer q(t) in W from the solid of negligible internal resistance can be
calculated from

Equation 5.2-8. 

Substituting the instantaneous temperature T from Eq. (5.2-3) into Eq. (5.2-8),

Equation 5.2-9. 
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To determine the total amount of heat Q in W · s or J transferred from the solid from time t = 0 to t
= t, we can integrate Eq. (5.2-9):

Equation 5.2-10. 

Equation 5.2-11. 

EXAMPLE 5.2-2. Total Amount of Heat in Cooling
For the conditions in Example 5.2-1, calculate the total amount of heat removed up to time t = 3600 s.

Solution: From Example 5.2-1, hA/cpρV = 3.71 × 10−4 s−1. Also, V = 4πr3/3 = 4(π)(0.0254)3/3 = 6.864 × 10−5

m3. Substituting into Eq. (5.2-11),

UNSTEADY-STATE HEAT CONDUCTION IN VARIOUS
GEOMETRIES

Introduction and Analytical Methods

In Section 5.2 we considered a simplified case of negligible internal resistance where the object has
a very high thermal conductivity. Now we will consider the more general situation where the internal
resistance is not small, and hence the temperature is not constant in the solid. The first case that
we shall consider is one where the surface convective resistance is negligible compared to the
internal resistance. This could occur because of a very large heat-transfer coefficient at the surface
or because of a relatively large conductive resistance in the object.
To illustrate an analytical method of solving this first case, we will derive the equation for unsteady-
state conduction in the x direction only in a flat plate of thickness 2H as shown in Fig. 5.3-1. The
initial profile of the temperature in the plate at t = 0 is uniform at T = T0. At time t = 0, the ambient
temperature is suddenly changed to T1 and held there. Since there is no convection resistance, the
temperature of the surface is also held constant at T1. Since this is conduction in the x direction,
Eq. (5.1-10) holds:

Equation 5.1-10. 
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Figure 5.3-1. Unsteady-state conduction in a flat plate with negligible surface resistance.

The initial and boundary conditions are

Equation 5.3-1. 

Generally, it is convenient to define a dimensionless temperature Y so that it varies between 0 and
1. Hence,

Equation 5.3-2. 

Substituting Eq. (5.3-2) into (5.1-10),

Equation 5.3-3. 

Redefining the boundary and initial conditions,

Equation 5.3-4. 
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A convenient procedure to use to solve Eq. (5.3-3) is the method of separation of variables, which
leads to a product solution

Equation 5.3-5. 

where A and B are constants and a is a parameter. Applying the boundary and initial conditions of
Eq. (5.3-4) to solve for these constants in Eq. (5.3-5), the final solution is an infinite Fourier series
(G1):

Equation 5.3-6. 

Hence from Eq. (5.3-6), the temperature T at any position x and time t can be determined. However,
these types of equations are very time-consuming to use, and convenient charts have been pre-
pared, which are discussed in Sections 5.3B, 5.3C, 5.3D, and 5.3E, where a surface resistance is
present.

Unsteady-State Conduction in a Semi-infinite Solid

In Fig. 5.3-2 a semi-infinite solid is shown that extends to ∞ in the +x direction. Heat conduction
occurs only in the x direction. Originally, the temperature in the solid is uniform at T0. At time t = 0,
the solid is suddenly exposed to or immersed in a large mass of ambient fluid at temperature T1,
which is constant. The convection coefficient h in W/m2 · K or btu/h · ft2 · °F is present and is constant;
that is, a surface resistance is present. Hence, the temperature TS at the surface is not the same
as T1.

Figure 5.3-2. Unsteady-state conduction in a semi-infinite solid.

The solution of Eq. (5.1-10) for these conditions has been obtained (S1) and is

Equation 5.3-7. 
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where x is the distance into the solid from the surface in m (SI units), t = time in s, α = k/ρcp in m2/
s. In English units, x = ft, t = h, and α = ft2/h. The function erfc is (1 − erf), where erf is the error
function and numerical values are tabulated in standard tables and texts (G1, P1, S1); Y is fraction
of unaccomplished change (T1 − T)/(T1 − T0); and 1 − Y is fraction of change.
Figure 5.3-3, calculated using Eq. (5.3-7), is a convenient plot used for unsteady-state heat con-
duction into a semi-infinite solid with surface convection. If conduction into the solid is slow enough
or h is very large, the top line with  is used.

Figure 5.3-3. Unsteady-state heat conducted in a semi-infinite solid with surface convection. Calculated from Eq. (5.3-7)(S1).

EXAMPLE 5.3-1. Freezing Temperature in the Ground
The depth in the soil of the earth at which freezing temperatures penetrate is often of importance in agriculture
and construction. On a certain fall day, the temperature in the earth is constant at 15.6°C (60°F) to a depth of
several meters. A cold wave suddenly reduces the air temperature from 15.6 to −17.8°C (0°F). The convective
coefficient above the soil is 11.36 W/m2 · K (2 btu/h · ft2 · °F). The soil properties can be assumed as α = 4.65
× 10−7 m2/s (0.018 ft2/h) and k = 0.865 W/m · K (0.5 btu/h · ft · °F). Neglect any latent heat effects. Use SI and
English units.

a. What is the surface temperature after 5 h?
b. To what depth in the soil will the freezing temperature of 0°C (32°F) penetrate in 5 h?

Solution: This is a case of unsteady-state conduction in a semi-infinite solid. For part (a), the value of x which
is the distance from the surface is x = 0 m. Then the value of  is calculated as follows for t = 5 h, α
= 4.65 × 10−7 m2/s, k = 0.865 W/m · °C, and h = 11.36 W/m2 · °C. Using SI and English units,

Also,
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Using Fig. 5.3-3, for  = 0 and , the value of 1 − Y = 0.63 is read off the curve.
Converting temperatures to K, T0 = 15.6°C + 273.2 = 288.8 K (60°F) and T1 = −17.8°C + 273.2 = 255.4 K (0°F).
Then

Solving for T at the surface after 5 h,

For part (b), T = 273.2 K or 0°C, and the distance x is unknown. Substituting the known values,

From Fig. 5.3-3 for (T − T0)/(T1 − T0) = 0.467 and , a value of 0.16 is read off the curve for
. Hence,

Solving for x, the distance the freezing temperature penetrates in 5 h,

Unsteady-State Conduction in a Large Flat Plate

A geometry that often occurs in heat-conduction problems is a flat plate of thickness 2x1 in the x
direction and having large or infinite dimensions in the y and z directions, as shown in Fig. 5.3-4.
Heat is being conducted only from the two flat and parallel surfaces in the x direction. The original
uniform temperature of the plate is T0; at time t = 0, the solid is exposed to an environment at
temperature T1 and unsteady-state conduction occurs. A surface resistance is present.

Figure 5.3-4. Unsteady-state conduction in a large flat plate.

The numerical results of this case are presented graphically in Figs. 5.3-5 and 5.3-6. Figure 5.3-5,
from Gurney and Lurie (G2), is a convenient chart for determining the temperatures at any position
in the plate and at any time t. The dimensionless parameters used in this and subsequent unsteady-
state charts in this section are given in Table 5.3-1 (x is the distance from the center of the flat plate,
cylinder, or sphere; x1 is one-half the thickness of the flat plate, radius of cylinder, or radius of sphere;
x = distance from the surface for a semi-infinite solid.)
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Table 5.3-1. Dimensionless Parameters for Use in Unsteady-State Conduction Charts

 

SI units: α = m2/s, T = K, t = s, x = m, x1 = m, k = W/m · K, h = W/m2 · K

English units: α = ft2/h, T = °F, t = h, x = ft, x1 = ft, k = btu/h · ft · °F, h = btu/h · ft2 · °F

Cgs units: α = cm2/s, T = °C, t = s, x = cm, x1 = cm, k = cal/s · cm · °C, h = cal/s · cm2 · °C
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Figure 5.3-5. Unsteady-state heat conduction in a large flat plate. [From H. P. Gurney and J. Lurie, Ind. Eng. Chem., 15,
1170 (1923).]
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Figure 5.3-6. Chart for determining temperature at the center of a large flat plate for unsteady-state heat conduction. [From
H. P. Heisler, Trans. A.S.M.E., 69, 227 (1947). With permission.]
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When n = 0, the position is at the center of the plate in Fig. 5.3-5. Often the temperature history at
the center of the plate is quite important. A more accurate chart for determining only the center
temperature is given in Fig. 5.3-6, the Heisler (H1) chart. Heisler (H1) has also prepared multiple
charts for determining the temperatures at other positions.

EXAMPLE 5.3-2. Heat Conduction in a Slab of Butter
A rectangular slab of butter which is 46.2 mm thick at a temperature of 277.6 K (4.4°C) in a cooler is removed
and placed in an environment at 297.1 K (23.9°C). The sides and bottom of the butter container can be con-
sidered to be insulated by the container side walls. The flat top surface of the butter is exposed to the envi-
ronment. The convective coefficient is constant at 8.52 W/m2 · K. Calculate the temperature in the butter at
the surface, at 25.4 mm below the surface, and at 46.2 mm below the surface at the insulated bottom after 5
h of exposure.

Solution: The butter can be considered as a large, flat plate with conduction vertically in the x direction. Since
heat is entering only at the top face and the bottom face is insulated, the 46.2 mm of butter is equivalent to a
half plate with thickness x1 = 46.2 mm. In a plate with two exposed surfaces, as in Fig. 5.3-4, the center at x
= 0 acts as an insulated surface, and both halves are mirror images of each other.

The physical properties of butter from Appendix A.4 are k = 0.197 W/m · K, cp = 2.30 kJ/kg · K = 2300 J/kg ·
K, and ρ = 998 kg/m3. The thermal diffusivity is

Also, x1 = 46.2/1000 = 0.0462 m.

The parameters needed for use in Fig. 5.3-5 are

For the top surface, where x = x1 = 0.0462 m,

Then, using Fig. 5.3-5,

Solving, T = 292.2 K (19.0°C).

At the point 25.4 mm from the top surface, or 20.8 mm from the center, x = 0.0208 m, and

From Fig. 5.3-5,

Solving, T = 288.3 K (15.1°C).

For the bottom point, or 0.0462 m from the top, x = 0 and
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Then, from Fig. 5.3-5,

Solving, T = 287.4 K (14.2°C). Alternatively, using Fig. 5.3-6, which is only for the center point, Y = 0.53 and
T = 286.8 K (13.6°C).

Unsteady-State Conduction in a Long Cylinder

Here we consider unsteady-state conduction in a long cylinder where conduction occurs only in the
radial direction. The cylinder is long so that either conduction at the ends can be neglected or the
ends are insulated. Charts for this case are presented in Fig. 5.3-7 for determining the temperatures
at any position and Fig. 5.3-8 for the center temperature only.
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Figure 5.3-7. Unsteady-state heat conduction in a long cylinder. [From H. P. Gurney and J. Lurie, Ind. Eng. Chem., 15, 1170
(1923).]
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Figure 5.3-8. Chart for determining temperature at the center of a long cylinder for unsteady-state heat conduction. [From
H. P. Heisler, Trans. A.S.M.E., 69, 227 (1947). With permission.]

EXAMPLE 5.3-3. Transient Heat Conduction in a Can of Pea Purée
A cylindrical can of pea purée (C2) has a diameter of 68.1 mm and a height of 101.6 mm and is initially at a
uniform temperature of 29.4°C. The cans are stacked vertically in a retort, and steam at 115.6°C is admitted.
For a heating time of 0.75 h at 115.6°C, calculate the temperature at the center of the can. Assume that the
can is in the center of a vertical stack of cans and that it is insulated on its two ends by the other cans. The
heat capacity of the metal wall of the can will be neglected. The heat-transfer coefficient of the steam is esti-
mated as 4540 W/m2 · K. Physical properties of purée are k = 0.830 W/m · K and α = 2.007 × 10−7 m2/s.

Solution: Since the can is insulated at the two ends, we can consider it as a long cylinder. The radius is x1 =
0.0681/2 = 0.03405 m. For the center with x = 0,

Also,

Using Fig. 5.3-8 from Heisler for the center temperature,

Solving, T = 104.4°C.

Unsteady-State Conduction in a Sphere

Figure 5.3-9 shows a chart by Gurney and Lurie for determining the temperatures at any position
in a sphere. Figure 5.3-10 is a chart by Heisler for determining only the center temperature in a
sphere.
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Figure 5.3-9. Unsteady-state heat conduction in a sphere. [From H. P. Gurney and J. Lurie, Ind. Eng. Chem., 15, 1170 (1923).]
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Figure 5.3-10. Chart for determining the temperature at the center of a sphere for unsteady-state heat conduction [From H.
P. Heisler, Trans. A.S.M.E., 69, 227 (1947). With Permission.]

Unsteady-State Conduction in Two- and Three-Dimensional Systems

The heat-conduction problems considered so far have been limited to one dimension. However,
many practical problems involve simultaneous unsteady-state conduction in two and three direc-
tions. We shall illustrate how to combine one-dimensional solutions to yield solutions for several-
dimensional systems.
Newman (N1) used the principle of superposition and showed mathematically how to combine the
solutions for one-dimensional heat conduction in the x, the y, and the z direction into an overall
solution for simultaneous conduction in all three directions. For example, a rectangular block with
dimensions 2x1, 2y1, and 2z1 is shown in Fig. 5.3-11. For the Y value in the x direction, as before,
Equation 5.3-8. 

Figure 5.3-11. Unsteady-state conduction in three directions in a rectangular block.

where Tx is the temperature at time t and position x distance from the center line, as before. Also,

n = x/x1, m = k/hx1, and , as before. Then for the y direction,
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Equation 5.3-9. 

and n = y/y1, m = k/hy1, and . Similarly, for the z direction,

Equation 5.3-10. 

Then, for simultaneous transfer in all three directions,

Equation 5.3-11. 

where Tx,y,z is the temperature at the point x, y, z from the center of the rectangular block. The value
of Yx for the two parallel faces is obtained from Figs. 5.3-5 and 5.3-6 for conduction in a flat plate.
The values of Yy and Yz are similarly obtained from the same charts.
For a short cylinder with radius x1 and length 2y1, the following procedure is followed. First Yx for
the radical conduction is obtained from the figures for a long cylinder. Then Yy for conduction be-
tween two parallel planes is obtained from Fig. 5.3-5 or 5.3-6 for conduction in a flat plate. Then,

Equation 5.3-12. 

EXAMPLE 5.3-4. Two-Dimensional Conduction in a Short Cylinder
Repeat Example 5.3-3 for transient conduction in a can of pea purée but assume that conduction also occurs
from the two flat ends.

Solution: The can, which has a diameter of 68.1 mm and a height of 101.6 mm, is shown in Fig. 5.3-12. The
given values from Example 5.3-3 are x1 = 0.03405 m, y1 = 0.1016/2 = 0.0508 m, k = 0.830 W/m · K, α = 2.007
× 10−7 m2/s, h = 4540 W/m2 · K, and t = 0.75(3600) = 2700 s.

Figure 5.3-12. Two dimensional conduction in a short cylinder in Example 5.3-4.

For conduction in the x (radial) direction as calculated previously,
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From Fig. 5.3-8 for the center temperature,

For conduction in the y (axial) direction for the center temperature,

Using Fig. 5.3-6 for the center of a large plate (two parallel opposed planes),

Substituting into Eq. (5.3-12),

Then,

This compares with 104.4°C obtained in Example 5.3-3 for only radial conduction.

Charts for Average Temperature in a Plate, Cylinder, and Sphere with Negligible
Surface Resistance

If the surface resistance is negligible, the curves given in Fig. 5.3-13 will give the total fraction of
unaccomplished change, E, for slabs, cylinders, or spheres for unsteady-state conduction. The
value of E is

Equation 5.3-13. 
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Figure 5.3-13. Unsteady-state conduction and average temperatures for negligible surface resistance. (From R. E. Treybal,
Mass Transfer Operations, 2nd ed. New York: McGraw-Hill Book Company, 1968. With permission.)

where T0 is the original uniform temperature, T1 is the temperature of the environment to which the
solid is suddenly subjected, and Tav is the average temperature of the solid after t hours.
The values of Ea, Eb, and Ec are each used for conduction between a pair of parallel faces, as in a
plate. For example, for conduction in the a and b directions in a rectangular bar,

Equation 5.3-14. 

For conduction from all three sets of faces,

Equation 5.3-15. 

For conduction in a short cylinder 2c long and radius a,

Equation 5.3-16. 
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NUMERICAL FINITE-DIFFERENCE METHODS FOR
UNSTEADY-STATE CONDUCTION

Unsteady-State Conduction in a Slab

Introduction

As discussed in previous sections of this chapter, the partial differential equations for unsteady-state
conduction in various simple geometries can be solved analytically if the boundary conditions are
constant at T = T1 with time. Also, in the solutions the initial profile of the temperature at t = 0 is
uniform at T = T0. The unsteady-state charts used also have these same boundary conditions and
initial condition. However, when the boundary conditions are not constant with time and/or the initial
conditions are not constant with position, numerical methods must be used.
Numerical calculation methods for unsteady-state heat conduction are similar to numerical methods
for steady state discussed in Section 4.15. The solid is subdivided into sections or slabs of equal
length and a fictitious node is placed at the center of each section. Then a heat balance is made for
each node. This method differs from the steady-state method in that we have heat accumulation in
a node for unsteady-state conduction. The methods are well suited for a spreadsheet calculation.

Equations for a slab

The unsteady-state equation for conduction in the x direction in a slab is
Equation 5.1-10. 

This can be set up for a numerical solution by expressing each partial derivative as an actual finite
difference in ΔT, Δt, and Δx. However, an alternative method will be used to derive the final result
by making a heat balance. Figure 5.4-1 shows a slab centered at position n, represented by the
shaded area. The slab has a width of Δx m and a cross-sectional area of A m2. The node at position
n having a temperature of Tn is placed at the center of the shaded section; this node represents the
total mass and heat capacity of the section or slab. Each node is imagined to be connected to the
adjacent node by a fictitious, small conducting rod. (See Fig. 4.15-3 for an example.)

Figure 5.4-1. Unsteady-state conduction in a slab.

Principles of Unsteady-State Heat Transfer 419

Chapter 5. Principles of Unsteady-State Heat Transfer. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



The figure shows the temperature profile at a given instant of time t s. Making a heat balance on
this node or slab, the rate of heat in – the rate of heat out = the rate of heat accumulation in Δt s:

Equation 5.4-1. 

where tTn is the temperature at point n at time t and t+ΔtTn is the temperature at point n at time t +
1 Δt later. Rearranging and solving for t+ΔtTn,

Equation 5.4-2. 

where

Equation 5.4-3. 

Note that in Eq. (5.4-2) the temperature t+ΔtTn at position or node n and at a new time t + Δt is
calculated from the three points which are known at time t, the starting time. This is called the explicit
method, because the temperature at a new time can be calculated explicitly from the temperatures
at the previous time. In this method the calculation proceeds directly from one time increment to the
next until the final temperature distribution is calculated at the desired final time. Of course, the
temperature distribution at the initial time and the boundary conditions must be known.
Once the value of Δx has been selected, then from Eq. (5.4-3) a value of M or the time increment
Δt may be picked. For a given value of M, smaller values of Δx mean smaller values of Δt. The value
of M must be as follows:

Equation 5.4-4. 

If M is less than 2, the second law of thermodynamics is violated. It also can be shown that for
stability and convergence of the finite-difference solution, M must be ≥2.
Stability means the errors in the solution do not grow exponentially as the solution proceeds but
damp out. Convergence means that the solution of the difference equation approaches the exact
solution of the partial differential equation as Δt and Δx go to zero with M fixed. Using smaller sizes
of Δt and Δx increases the accuracy in general but greatly increases the number of calculations
required. Hence, a digital computer is often ideally suited for this type of calculation using a spread-
sheet.

Simplified Schmidt method for a slab

If the value of M = 2, then a great simplification of Eq. (5.4-2) occurs, giving the Schmidt method:

Equation 5.4-5. 
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This means that when a time 1 Δt has elapsed, the new temperature at a given point n at t + Δt is
the arithmetic average of the temperatures at the two adjacent nodes n + 1 and n − 1 at the original
time t.

Boundary Conditions for Numerical Method for a Slab

Convection at the boundary

For the case where there is a finite convective resistance at the boundary and the temperature of
the environment or fluid outside is suddenly changed to Ta, we can derive the following for a slab.
Referring to Fig. 5.4-1, we make a heat balance on the outside half-element. The rate of heat in by
convection − the rate of heat out by conduction = the rate of heat accumulations in Δt s:

Equation 5.4-6. 

where tT1.25 is the temperature at the midpoint of the 0.5 Δx outside slab. As an approximation, the
temperature T1 at the surface can be used to replace that of T1.25. Rearranging,

Equation 5.4-7. 

where

Equation 5.4-8. 

Note that the value of M must be such that

Equation 5.4-9. 

Insulated boundary condition

In the case for the boundary condition where the rear face is insulated, a heat balance is made on
the rear  slab just as on the front  slab in Fig. 5.4-1. The resulting equation is the same as
Eqs. (5.4-6) and (5.4-7), but h = 0 or N = 0 and tTf−1 = tTf+1 because of symmetry.

Equation 5.4-10. 

Alternative convective condition

To use the equations above for a given problem, the same values of M, Δx, and Δt must be used.
If N gets too large, so that M may be inconveniently too large, another form of Eq. (5.4-7) can be
derived. By neglecting the heat accumulation in the front half-slab in Eq. (5.4-6),
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Equation 5.4-11. 

Here the value of M is not restricted by the N value. This approximation works fairly well when a
large number of increments in Δx are used so that the amount of heat neglected is small compared
to the total.

Procedures for use of initial boundary temperature

When the temperature of the environment outside is suddenly changed to Ta, the following proce-
dures should be used.

1. When M = 2 and a hand calculation of a limited number of increments is used, a special
procedure should be used in Eqs. (5.4-5) and (5.4-7) or (5.4-11). For the first time increment,
one should use an average value for 1Ta of (Ta + 0T1)/2, where 0T1 is the initial temperature
at point 1. For all succeeding Δt values, the value of Ta should be used (D1, K1). This special
procedure for determining the value of Ta to use for the first time increment increases the
accuracy of the numerical method, especially after a few time intervals. If Ta varies with time
t, a new value can be used for each Δt interval.

2. When M = 2 and many time increments are used with a digital computer, this special procedure
is not needed, and the same value of Ta is used for all time increments.

3. When M = 3 or more and a hand calculation of a limited number of increments or a digital-
computer calculation of many increments is used, only one value of Ta is used for all time
increments. Note that when M = 3 or more, many more calculations are needed compared to
the case for M = 2. The most accurate results are obtained when M = 4, which is the preferred
method, with slightly less accurate results for M = 3 (D1, K1, K2).

EXAMPLE 5.4-1. Unsteady-State Conduction and the Schmidt Numerical
Method

A slab of material 1.00 m thick is at a uniform temperature of 100°C. The front surface is suddenly exposed to
a constant environmental temperature of 0°C. The convective resistance is zero (h = ∞). The back surface of
the slab is insulated. The thermal diffusivity α = 2.00 × 10−5 m2/s. Using five slices each 0.20 m thick and the
Schmidt numerical method with M = 2.0, calculate the temperature profile at t = 6000 s. Use the special pro-
cedure for the first time increment.

Solution: Figure 5.4-2 shows the temperature profile at t = 0 and the environmental temperature of Tα = 0°C
with five slices used. For the Schmidt method, M = 2. Substituting into Eq. (5.4-3) with α = 2.00 × 10−5 and
Δx = 0.20 and solving for Δt,

Equation 5.4-3. 
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Figure 5.4-2. Temperature for numerical method, Example 5.4-1.

This means that (6000 s)/(1000 s/increment), or six time increments, must be used to reach 6000 s.

For the front surface, where n = 1, the temperature 1Ta to use for the first Δt time increment, as stated previously,
is

Equation 5.4-12. 

where 0T1 is the initial temperature at point 1. For the remaining time increments,

Equation 5.4-13. 

To calculate the temperatures for all time increments for the slabs n = 2 to 5, using Eq. (5.4-5),

Equation 5.4-14. 

For the insulated end for all time increments at n = 6, substituting M = 2 and f = 6 into Eq. (5.4-10),

Equation 5.4-15. 

For the first time increment of t + Δt, and calculating the temperature at n = 1 by Eq. (5.4-12),

For n = 2, using Eq. (5.4-14),
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Continuing for n = 3, 4, 5, we have

For n = 6, using Eq. (5.4-15),

For 2 Δt, using Eq. (5.4-13) for n = 1, and continuing for n = 2 to 6, using Eqs. (5.4-14) and (5.4-15),

For 3 Δt,
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For 4 Δt,

For 5 Δt,
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For 6 Δt (final time),

The temperature profiles for 3 Δt increments and the final time of 6 Δt increments are plotted in Fig. 5.4-2. This
example shows how a hand calculation can be done. To increase the accuracy, more slab increments and
more time increments are required. This, then, is ideally suited for computation using a spreadsheet with a
computer.

EXAMPLE 5.4-2. Unsteady-State Conduction Using the Digital Computer
Repeat Example 5.4-1 using the digital computer. Use Δx = 0.05 m. Write the spreadsheet program and com-
pare the final temperatures with Example 5.4-1. Use the explicit method of Schmidt for M = 2. Although not
needed for many time increments using the digital computer, use the special procedure for the value of 1Ta for
the first time increment. Thus a direct comparison can be made with Example 5.4-1 of the effect of the number
of increments on the results.

Solution: The number of slabs to use is 1.00 m/(0.05 m/slab) or 20 slabs. Substituting into Eq. (5.4-3) with α
= 2.00 × 10−5 m2/s, Δx = 0.05 m, and M = 2, and solving for Δt,

Hence, (6000/62.5) = 96 time increments to be used. The value of n goes from n = 1 to 21.

The equations to use to calculate the temperatures are again Eqs. (5.4-12)– (5.4-15). However, the only dif-
ferences are that in Eq. (5.4-14) n goes from 2 to 20, and in Eq. (5.4-15) n = 21, so that t+ΔtT21 = tT20.

The spreadsheet for these equations is easily written and is left up to the reader. The results are tabulated in
Table 5.4-1 for comparison with Example 5.4-1, where only five slices were used. The table shows that the
results for five slices are reasonably close to those for 20 slices, with values in both cases deviating by 2% or
less from each other.

Table 5.4-1. Comparison of Results for Examples 5.4-1 and 5.4-2

 Results Using Δx = 0.20 m Results Using Δx = 0.05 m
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Distance from Front Face  Temperature  Temperature

m n °C n °C

0 1 0.0 1 0.0

0.20 2 31.25 5 31.65

0.40 3 58.59 9 58.47

0.60 4 78.13 13 77.55

0.80 5 89.84 17 88.41

1.00 6 93.75 21 91.87

As a rule-of-thumb guide for hand calculations, using a minimum of five slices and at least 8–10
time increments should give sufficient accuracy for most purposes. Only when very high accuracy
is desired or several cases are to be solved is it desirable to solve the problem using a spreadsheet
calculation with a computer.

EXAMPLE 5.4-3. Unsteady-State Conduction with Convective Boundary
Condition

Use the same conditions as Example 5.4-1, but a convective coefficient of h = 25.0 W/m2 · K is now present
at the surface. The thermal conductivity k = 10.0 W/m · K.

Solution: Equations (5.4-7) and (5.4-8) can be used for convection at the surface. From Eq. (5.4-8), N = hΔ×/
k = 25.0(0.20)/10.0 = 0.50. Then 2N + 2 = 2(0.50) + 2 = 3.0. However, by Eq. (5.4-9), the value of M must be
equal to or greater than 2N + 2. This means that a value of M = 2 cannot be used. We will select the preferred
method where M = 4.0. [Another, less accurate alternative is to use Eq. (5.4-11) for convection, and then the
value of M is not restricted by the N value.]

Substituting into Eq. (5.4-3) and solving for Δt,

Hence, 6000/500 = 12 time increments must be used.

For the first Δt time increment and for all time increments, the value of the environmental temperature Ta to
use is Ta = 0°C since M > 3. For convection at the node or point n = 1 we use Eq. (5.4-7), where M = 4 and
N = 0.50:

Equation 5.4-16. 

For n = 2, 3, 4, 5, we use Eq. (5.4-2),

Equation 5.4-17. 

For n = 6 (insulated boundary), we use Eq. (5.4-10) and f = 6.

Equation 5.4-18. 
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For 1 Δt, for the first time increment of t + Δt, Ta = 0. Using Eq. (5.4-16) to calculate the temperature at node 1,

For n = 2, 3, 4, 5, using Eq. (5.4-17),

Also, in a similar calculation, T3, T4, and T5 = 100.0. For n = 6, using Eq. (5.4-18), T6 = 100.0.

For 2 Δt, Ta = 0. Using Eq. (5.4-16),

Using Eq. (5.4-17) for n = 2, 3, 4, 5,

Also, T4 and T5 = 100.0. For n = 6, using Eq. (5.4-18), T6 = 100.0.

For 3 Δt, Ta = 0. Using Eq. (5.4-16),

Using Eq. (5.4-17) for n = 2, 3, 4, 5,

Also, T5 = 100.0 and T6 = 100.0.

In a similar manner the calculations can be continued for the remaining time until a total of 12 Δt increments
have been used.

Other Numerical Methods for Unsteady-State Conduction

Unsteady-state conduction in a cylinder

In deriving the numerical equations for unsteady-state conduction in a flat slab, the cross-sectional
area was constant throughout. In a cylinder it changes radially. To derive the equation for a cylinder,
Fig. 5.4-3 is used, where the cylinder is divided into concentric hollow cylinders whose walls are
Δ× m thick. Assuming a cylinder 1 m long and making a heat balance on the slab at point n, the rate
of heat in − rate of heat out = rate of heat accumulation:

Equation 5.4-19. 
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Figure 5.4-3. Unsteady-state conduction in a cylinder.

Rearranging, the final equation is

Equation 5.4-20. 

where M = (Δ×)2/(α Δt) as before. Also, at the center where n = 0,

Equation 5.4-21. 

To use Equations (5.4-20) and (5.4-21),

Equation 5.4-22. 

Equations for convection at the outer surface of the cylinder have been derived (D1). If the heat
capacity of the outer half-slab is neglected,

Equation 5.4-23. 

where Tn is the temperature at the surface and Tn−1 the temperature at a position in the solid 1
Δ× below the surface.
Equations for numerical methods for two-dimensional unsteady-state conduction have been derived
and are available in a number of references (D1, K2).

Unsteady-state conduction and implicit numerical method

In some practical problems the restrictions imposed on the value M ≥ 2 by stability requirements
may prove inconvenient.Also, to minimize the stability problems, implicit methods using different
finite-difference formulas have been developed.An important one of these formulas is the Crank–
Nicolson method, which will be considered here.
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In deriving Eqs. (5.4-1) and (5.4-2), the rate at which heat entered the slab in Fig. 5.4-1 was taken
to be the rate at time t:

Equation 5.4-24. 

It was then assumed that this rate could be used during the whole interval from t to t + Δt. This is
an approximation, however since the rate changes during this Δt interval. A better value would be
the average value of the rate at t and at t + Δt, or

Equation 5.4-25. 

For the heat leaving, a similar type of average is used. The final equation is

Equation 5.4-26. 

This means that now a new value of t+ΔtTn cannot be calculated only from values at time t, as in
Eq. (5.4-2), but that all the new values of T at t + Δt at all points must be calculated simultaneously.
To do this, an equation similar to Eq. (5.4-26) is written for each of the internal points. Each of these
equations and the boundary equations are linear algebraic equations. These then can be solved
simultaneously by the standard methods, such as the Gauss–Seidel iteration technique, matrix in-
version technique, and so on (G1, K1).
An important advantage of Eq. (5.4-26) is that the stability and convergence criteria are satisfied for
all positive values of M. This means that M can have values less than 2.0. A disadvantage of the
implicit method is the larger number of calculations needed for each time step. Explicit methods are
simpler to use, but because of stability considerations, especially in complex situations, implicit
methods are often preferred.

CHILLING AND FREEZING OF FOOD AND BIOLOGICAL
MATERIALS

Introduction

Unlike many inorganic and organic materials which are relatively stable, food and other biological
materials decay and deteriorate more or less rapidly with time at room temperature. This spoilage
is due to a number of factors. Tissues of foods such as fruits and vegetables continue to undergo
metabolic respiration after harvesting, and ripen and eventually spoil. Enzymes of the dead tissues
of meats and fish remain active and induce oxidation and other deteriorating effects. Microorganisms
attack all types of foods by decomposing the foods so that spoilage occurs; chemical reactions also
occur, such as the oxidation of fats.
At low temperatures the growth rate of microorganisms will be slowed if the temperature is below
that which is optimum for growth. Enzyme activity and chemical reaction rates are also reduced at
low temperatures. The rates of most chemical and biological reactions in storage of chilled or frozen

foods and biological materials are reduced by factors of  to  for each 10 K (10°C) drop in tem-
perature.
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Water plays an important part in these rates of deterioration, and it is present to a substantial per-
centage in most biological materials. To reach a temperature low enough for most of these rates to
approximately cease, most of the water must be frozen. Materials such as food do not freeze at 0°C
(32°F), as pure water does, but at a range of temperatures below 0°C. However, because of some
of the physical effects of ice crystals and other effects, such as concentrating of solutions, chilling
of biological materials is often used for preservation instead of freezing.
Chilling of materials involves removing the sensible heat and heat of metabolism and reducing the
temperature, usually to a range of 4.4°C (40°F) to just above freezing. Essentially no latent heat of
freezing is involved. The materials can be stored for a week or so up to a few months, depending
on the product stored and the gaseous atmosphere. Each material has its optimum chill storage
temperature.
In the freezing of food and biological materials, the temperature is reduced so that most of the water
is frozen to ice. Depending on the final storage temperature, down to as low as −30°C, the materials
can be stored for up to a year or so. Often in the production of frozen foods, they are first treated
by blanching or scalding to destroy enzymes.

Chilling of Food and Biological Materials

In the chilling of food and biological materials, the temperature of the materials is reduced to the
desired chill storage temperature, which can be about −1.1°C (30°F) to 4.4°C (40°F). For example,
after slaughter, beef has a temperature of 37.8°C (100°F) to 40°C (104°F), and it is often cooled to
about 4.4°C (40°F). Milk from cows must be chilled quickly to temperatures just above freezing.
Some fish fillets at the time of packing are at a temperature of 7.2°C (45°F) to 10°C (50°F) and are
chilled to close to 0°C.
These rates of chilling or cooling are governed by the laws of unsteady-state heat conduction dis-
cussed in Sections 5.1 to 5.4. The heat is removed by convection at the surface of the material and
by unsteady-state conduction in the material. The fluid outside the foodstuff or biological materials
is used to remove this heat; in many cases it is air. The air has previously been cooled by refrigeration
to −1.1°C to +4.4°C, depending on the material and other conditions. The convective heat-transfer
coefficients, which usually include radiation effects, can also be predicted by the methods in Chapter
4; for air the coefficient varies from about 8.5 to 40 W/m2 · K (1.5 to 7 btu/h · ft2 · °F), depending
primarily on air velocity.
In some cases the fluid used for chilling is a liquid flowing over the surface, and the values of h can
vary from about 280 to 1700 W/m2 · K (50–300 btu/h · ft2 · °F). In other cases, a contact or plate
cooler is used, where chilled plates are in direct contact with the material. Then the temperature of
the surface of the material is usually assumed to be equal or close to that of the contact plates.
Contact freezers are used for freezing biological materials.
Where the food is packaged in boxes or the material is tightly covered by a film of plastic, this
additional resistance must be considered. One method for doing this is to add the resistance of the
package covering to that of the convective film:

Equation 5.5-1. 

where RP is the resistance of covering, RC the resistance of the outside convective film, and RT the
total resistance. Then, for each resistance,

Equation 5.5-2. 
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Equation 5.5-3. 

Equation 5.5-4. 

where hc is the convective gas or liquid coefficient, A is the area, Δ× is the thickness of the covering,
k is the thermal conductivity of the covering, and h is the overall coefficient. The overall coefficient
h is the one to use in the unsteady-state charts. This assumes a negligible heat capacity of the
covering, which is usually the case. Also, it assumes that the covering closely touches the food
material so there is no resistance between the covering and the food.
The major sources of error in using the unsteady-state charts are inadequate data on the density,
heat capacity, and thermal conductivity of the foods and the prediction of the convective coefficient.
Food materials are irregular anisotropic substances, whose physical properties are often difficult to
evaluate. Also, if evaporation of water occurs on chilling, latent heat losses can affect the accuracy
of the results.

EXAMPLE 5.5-1. Chilling Dressed Beef
Hodgson (H2) gives physical properties of beef carcasses during chilling of ρ = 1073 kg/m3, cp = 3.48 kJ/kg ·
K, and k = 0.498 W/m · K. A large slab of beef 0.203 m thick and initially at a uniform temperature of 37.8°C
is to be cooled so that the center temperature is 10°C. Chilled air at 1.7°C (assumed constant) with an h = 39.7
W/m2 · K is used. Calculate the time needed.

Solution: The thermal diffusivity α is

Then, for the half-thickness x1 of the slab,

For the center of the slab,

Also,

Using Fig. 5.3-6 for the center of a large flat plate,
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Solving, t = 6.95 × 104 s (19.3 h).

Freezing of Food and Biological Materials

Introduction

In the freezing of food and other biological materials, the removal of sensible heat in chilling occurs
first and then the removal of the latent heat of freezing. The latent heat of freezing water of 335 kJ/
kg (144 btu/lbm) is a substantial portion of the total heat removed on freezing. Other slight effects,
such as the heats of solution of salts and so on, may be present but are quite small. Actually, when
materials such as meats are frozen to −29°C, only about 90% of the water is frozen to ice, with the
rest thought to be bound water (B1).
Riedel (R1) gives enthalpy–temperature–composition charts for the freezing of many different foods.
These charts show that freezing does not occur at a given temperature but extends over a range of
several degrees. As a consequence, there is no one freezing point with a single latent heat of freez-
ing.
Since the latent heat of freezing is present in the unsteady-state process of freezing, the standard
unsteady-state conduction equations and charts given in this chapter cannot be used for prediction
of freezing times. A full analytical solution of the rate of freezing of food and biological materials is
very difficult because of the variation of physical properties with temperature, the amount of freezing
varying with temperature, and other factors. An approximate solution by Plank is often used.

Approximate solution of Plank for freezing

Plank (P2) has derived an approximate solution for the time of freezing which is often sufficient for
engineering purposes. The assumptions in the derivation are as follows. Initially, all the food is at
the freezing temperature but is unfrozen. The thermal conductivity of the frozen part is constant. All
the material freezes at the freezing point, with a constant latent heat. The heat transfer by conduction
in the frozen layer occurs slowly enough that it is under pseudo-steady-state conditions.
In Fig. 5.5-1 a slab of thickness a m is cooled from both sides by convection. At a given time t s, a
thickness of x m of frozen layer has formed on both sides. The temperature of the environment is
constant at T1 K and the freezing temperature is constant at Tf. An unfrozen layer in the center at
Tf is present.
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Figure 5.5-1. Temperature profile during freezing.

The heat leaving at time t is q W. Since we are at pseudo-steady state, at time t, the heat leaving
by convection on the outside is

Equation 5.5-5. 

where A is the surface area. Also, the heat being conducted through the frozen layer of x thickness
at steady state is

Equation 5.5-6. 

where k is the thermal conductivity of the frozen material. In a given time dt s, a layer dx thick of
material freezes. Then multiplying A times dx times ρ gives the kg mass frozen. Multiplying this by
the latent heat λ in J/kg and dividing by dt,

Equation 5.5-7. 

where ρ is the density of the unfrozen material.
Next, to eliminate TS from Eqs. (5.5-5) and (5.5-6), Eq. (5.5-5) is solved for TS and substituted into
Eq. (5.5-6), giving

Equation 5.5-8. 

Equating Eq. (5.5-8) to (5.5-7),

Equation 5.5-9. 
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Rearranging and integrating between t = 0 and x = 0, to t = t and x = a/2,

Equation 5.5-10. 

Integrating and solving for t,

Equation 5.5-11. 

To generalize the equation for other shapes,

Equation 5.5-12. 

where a is the thickness of an infinite slab (as in Fig. 5.5-1), diameter of a sphere, diameter of a
long cylinder, or smallest dimension of a rectangular block or brick. Also,

For a rectangular brick having dimensions a by β1a by β2a, where a is the shortest side, Ede (B1)
has prepared a chart to determine the values of P and R to be used to calculate t in Eq. (5.5-12).
Equation (5.5-11) can also be used for calculation of thawing times by replacing the k of the frozen
material by the k of the thawed material.

EXAMPLE 5.5-2. Freezing of Meat
Slabs of meat 0.0635 m thick are to be frozen in an air-blast freezer at 244.3 K (−28.9°C). The meat is initially
at the freezing temperature of 270.4 K (−2.8°C). The meat contains 75% moisture. The heat-transfer coefficient
is h = 17.0 W/m2 · K. The physical properties are ρ = 1057 kg/m3 for the unfrozen meat and k = 1.038 W/m ·
K for the frozen meat. Calculate the freezing time.

Solution: Since the latent heat of fusion of water to ice is 335 kJ/kg (144 btu/lbm), for meat with 75% water,

The other given variables are a = 0.0635 m, Tf = 270.4 K, T1 = 244.3 K, ρ = 1057 kg/m3, h = 17.0 W/m2 · K,
k = 1.038 W/m · K. Substituting into Eq. (5.5-11),
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Other methods for calculating freezing times

Neumann (C1, C2) has derived a complicated equation for freezing in a slab. He assumes the
following conditions. The surface temperature is the same as the environment, that is, no surface
resistance. The temperature of freezing is constant. This method suffers from the limitation that a
convection coefficient cannot be used at the surface, since it assumes no surface resistance. How-
ever, the method does include the effect of cooling from an original temperature, which may be
above the freezing point.
Plank's equation does not make provision for an original temperature, which may be above the
freezing point. An approximate method for calculating the additional time necessary to cool from
temperature T0 down to the freezing point Tf is as follows. Using the unsteady-state charts calculate
the time for the average temperature in the material to reach Tf, assuming that no freezing occurs
and using the physical properties of the unfrozen material. If there is no surface resistance, Fig.
5.3-13 can be used directly for this. If a resistance is present, the temperature at several points in
the material will have to be obtained from the unsteady-state charts and the average temperature
calculated from these point temperatures. This may be partially trial and error, since the time is
unknown and must be assumed. If the average temperature calculated is not at the freezing point,
a new time must be assumed. This is an approximate method since some material will actually
freeze.

DIFFERENTIAL EQUATION OF ENERGY CHANGE

Introduction

In Sections 3.6 and 3.7 we derived a differential equation of continuity and a differential equation of
momentum transfer for a pure fluid. These equations were derived because overall mass, energy,
and momentum balances made on a finite volume in the earlier parts of Chapter 2 did not tell us
what goes on inside a control volume. In the overall balances performed, a new balance was made
for each new system studied. However, it is often easier to start with the differential equations of
continuity and momentum transfer in general form and then simplify the equations by discarding
unneeded terms for each specific problem.
In Chapter 4 on steady-state heat transfer and Chapter 5 on unsteady-state heat transfer, new
overall energy balances were made on a finite control volume for each new situation. To progress
further in our study of heat or energy transfer in flow and nonflow systems, we must use a differential
volume to investigate in greater detail what goes on inside this volume. The balance will be made
on a single phase and the boundary conditions at the phase boundary will be used for integration.
In the next section we derive a general differential equation of energy change: the conservation-of-
energy equation. Then this equation is modified for certain special cases that occur frequently.
Finally, applications of the uses of these equations are given. Cases for both steady-state and
unsteady-state energy transfer are studied using this conservation-of-energy equation, which is
perfectly general and holds for steady- or unsteady-state conditions.

Derivation of Differential Equation of Energy Change

As in the derivation of the differential equation of momentum transfer, we write a balance on an
element of volume of size Δ×, Δy, Δz which is stationary. We then write the law of conservation of
energy, which is really the first law of thermodynamics for the fluid in this volume element at any
time. The following is the same as Eq. (2.7-7) for a control volume given in Section 2.7.
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Equation 5.6-1. 

As in momentum transfer, the transfer of energy into and out of the volume element is by convection
and molecular transport or conduction. There are two kinds of energy being transferred. The first is
internal energy U in J/kg (btu/lbm) or any other set of units. This is the energy associated with random
translational and internal motions of the molecules plus molecular interactions. The second is kinetic
energy ρν2/2, which is the energy associated with the bulk fluid motion, where ν is the local fluid
velocity, m/s (ft/s). Hence, the total energy per unit volume is (ρU + ρν2/2). The rate of accumulation
of energy in the volume element in m3 (ft3) is then

Equation 5.6-2. 

The total energy entering by convection in the x direction at x minus that leaving at x + Δx is

Equation 5.6-3. 

Similar equations can be written for the y and z directions using velocities νy and νz, respectively.
The net rate of energy entering the element by conduction in the x direction is

Equation 5.6-4. 

Similar equations can be written for the y and z directions, where qx, qy, and qz are the components
of the heat flux vector q, which is in W/m2 (btu/s · ft2) or any other convenient set of units.
The net work done by the system on its surroundings is the sum of the following three parts for the
x direction. For the net work done against the gravitational force,

Equation 5.6-5. 

where gx is gravitational force. The net work done against the static pressure p is

Equation 5.6-6. 

where p is N/m2 (lbf/ft2) or any other convenient set of units. For the net work against the viscous
forces,
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Equation 5.6-7. 

In Section 3.7 these viscous forces are discussed in more detail.
Writing equations similar to (5.6-3)–(5.6-7) in all three directions; substituting these equations and
Eq. (5.6-2) into (5.6-1); dividing by Δx, Δy, and Δz; and letting Δx, Δy, and Δz approach zero, we
obtain

Equation 5.6-8. 

For further details of this derivation, see (B2).
Equation (5.6-8) is the final equation of energy change relative to a stationary point. However, it is
not in a convenient form. We first combine Eq. (5.6-8) with the equation of continuity, Eq. (3.6-23),
with the equation of motion, Eq. (3.7-13), and express the internal energy in terms of fluid temper-
ature T and heat capacity. Then writing the resultant equation for a Newtonian fluid with constant
thermal conductivity k, we obtain

Equation 5.6-9. 

This equation utilizes Fourier's second law in three directions, where

Equation 5.6-10. 

The viscous-dissipation term μφ is generally negligible except where extremely large velocity gra-
dients exist. It will be omitted in the discussions to follow. Equation (5.6-9) is the equation of energy
change for a Newtonian fluid with constant k in terms of the fluid temperature T.

Special Cases of the Equation of Energy Change

The following special forms of Eq. (5.6-9) for a Newtonian fluid with constant thermal conductivity
are commonly encountered. First, Eq. (5.6-9) will be written in rectangular coordinates without the
μφ term:
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Equation 5.6-11. 

Fluid at constant pressure

The equations below can be used for constant-density fluids as well as for constant pressure.

Equation 5.6-12. 

In rectangular coordinates,

Equation 5.6-13. 

In cylindrical coordinates,

Equation 5.6-14. 

In spherical coordinates,

Equation 5.6-15. 

For definitions of cylindrical and spherical coordinates, see Section 3.6. If the velocity ν is zero, DT/
Dt becomes ∂T/∂t.

Fluid at constant density

Equation 5.6-16. 

Note that this is identical to Eq. (5.6-12) for constant pressure.

Solid

Here we consider ρ is constant and ν = 0.
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Equation 5.6-17. 

This is often referred to as Fourier's second law of heat conduction. This also holds for a fluid with
zero velocity at constant pressure.

Heat generation

If there is heat generation in the fluid by electrical or chemical means, then  can be added to the
right side of Eq. (5.6-17).

Equation 5.6-18. 

where  is the rate of heat generation in W/m3 (btu/h · ft3) or other suitable units. Viscous dissipation
is also a heat source, but its inclusion greatly complicates problem solving because the equations
for energy and motion are then coupled.

Other coordinate systems

Fourier's second law of unsteady-state heat conduction can be written as follows.
For rectangular coordinates,

Equation 5.6-19. 

where α = k/pcp, thermal diffusivity in m2/s (ft2/h).
For cylindrical coordinates,

Equation 5.6-20. 

For spherical coordinates,

Equation 5.6-21. 

Uses of Equation of Energy Change

In Section 3.8 we used the differential equations of continuity and motion to set up fluid-flow prob-
lems. We did this by discarding the terms that are zero or near zero and using the remaining equa-
tions to solve for the velocity and pressure distributions. This was done instead of making new mass
and momentum balances for each new situation. In a similar manner, to solve problems of heat
transfer, the differential equations of continuity, motion, and energy will be used, with the unneeded
terms being discarded. Several examples will be given to illustrate the general methods used.
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EXAMPLE 5.6-1. Temperature Profile with Heat Generation

A solid cylinder in which heat generation is occurring uniformly as  W/m3 is insulated on the ends. The
temperature of the surface of the cylinder is held constant at Tw K. The radius of the cylinder is r = R m. Heat
flows only in the radial direction. Derive the equation for the temperature profile at steady state if the solid has
a constant thermal conductivity.

Solution: Equation (5.6-20) will be used for cylindrical coordinates. The term /ρcp for generation will be added
to the right side, giving

Equation 5.6-22. 

For steady state ∂T/∂t = 0. Also, for conduction only in the radial direction, ∂2T/∂z2 = 0 and ∂2T/∂θ2 = 0. This
gives the following differential equation:

Equation 5.6-23. 

This can be rewritten as

Equation 5.6-24. 

Note that Eq. (5.6-24) can be rewritten as follows:

Equation 5.6-25. 

Integrating Eq. (5.6-25) once,

Equation 5.6-26. 

where K1 is a constant. Integrating again,

Equation 5.6-27. 

where K2 is a constant. The boundary conditions are when r = 0, dT/dr = 0 (by symmetry), and when r = R, T
= Tw. The final equation is

Equation 5.6-28. 

This is the same as Eq. (4.3-29), which was obtained by another method.
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EXAMPLE 5.6-2. Laminar Flow and Heat Transfer Using Equation of Energy
Change

Using the differential equation of energy change, derive the partial differential equation and boundary condi-
tions needed for the case of laminar flow of a constant-density fluid in a horizontal tube which is being heated.
The fluid is flowing at a constant velocity νz. At the wall of the pipe where the radius r = r0, the heat flux is
constant at q0. The process is at steady state and it is assumed at z = 0 at the inlet that the velocity profile is
established. Constant physical properties will be assumed.

Solution: From Example 3.8-3, the equation of continuity gives ∂νz/∂z = 0. Solution of the equation of motion
for steady state using cylindrical coordinates gives the parabolic velocity profile:

Equation 5.6-29. 

Since the fluid has a constant density, Eq. (5.6-14) in cylindrical coordinates will be used for the equation of
energy change. For this case νr = 0 and νθ = 0. Since this will be symmetrical, ∂T/∂θ and ∂2T/∂θ2 will be zero.
For steady state, ∂T/∂t = 0. Hence, Eq. (5.6-14) reduces to

Equation 5.6-30. 

Usually conduction in the z direction (∂2T/∂z2 term) is small compared to the convective term νz ∂T/∂z and can
be dropped. Finally, substituting Eq. (5.6-29) into (5.6-30), we obtain

Equation 5.6-31. 

The boundary conditions are

For details on the actual solution of this equation, see Siegel et al. (S2).

BOUNDARY-LAYER FLOW AND TURBULENCE IN HEAT
TRANSFER

Laminar Flow and Boundary-Layer Theory in Heat Transfer

In Section 3.10C an exact solution was obtained for the velocity profile for isothermal laminar flow
past a flat plate. The solution of Blasius can be extended to include the convective heat-transfer
problem for the same geometry and laminar flow. In Fig. 5.7-1 the thermal boundary layer is shown.
The temperature of the fluid approaching the plate is T∞ and that of the plate is TS at the surface.
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Figure 5.7-1. Laminar flow of fluid past a flat plate and thermal boundary layer.

We start by writing the differential energy balance, Eq. (5.6-13):

Equation 5.7-1. 

If the flow is in the x and y directions, νz = 0. At steady state, ∂T/∂t = 0. Conduction is neglected in
the x and z directions, so ∂2T/∂x2 = ∂2T/∂z2 = 0. Conduction occurs in the y direction. The result is

Equation 5.7-2. 

The simplified momentum-balance equation used in the velocity boundary-layer derivation is very
similar:

Equation 3.10-5. 

The continuity equation used previously is

Equation 3.10-3. 

Equations (3.10-5) and (3.10-3) were used by Blasius for solving the case for laminar boundary-
layer flow. The boundary conditions used were

Principles of Unsteady-State Heat Transfer 443

Chapter 5. Principles of Unsteady-State Heat Transfer. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



Equation 5.7-3. 

The similarity between Eqs. (3.10-5) and (5.7-2) is obvious. Hence, the Blasius solution can be
applied if k/ρcp = μ/ρ. This means the Prandtl number cpμ/k = 1. Also, the boundary conditions must
be the same. This is done by replacing the temperature T in Eq. (5.7-2) by the dimensionless variable
(T − TS)/(T∞ − TS). The boundary conditions become

Equation 5.7-4. 

We see that the equations and boundary conditions are identical for the temperature profile and the
velocity profile. Hence, for any point x, y in the flow system, the dimensionless velocity variables νx/
ν∞ and (T − TS)/(T∞ − TS) are equal. The velocity-profile solution is the same as the temperature-
profile solution.
This means that the transfer of momentum and heat are directly analogous, and the boundary-layer
thickness δ for the velocity profile (hydrodynamic boundary layer) and the thermal boundary-layer
thickness δT are equal. This is important for gases, where the Prandtl numbers are close to 1.
By combining Eqs. (3.10-7) and (3.10-8), the velocity gradient at the surface is

Equation 5.7-5. 

where NRe,x = xν∞ρ/μ. Also,

Equation 5.7-6. 

Combining Eqs. (5.7-5) and (5.7-6),
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Equation 5.7-7. 

The convective equation can be related to the Fourier equation by the following, where qy is in J/s
or W (btu/h):

Equation 5.7-8. 

Combining Eqs. (5.7-7) and (5.7-8),

Equation 5.7-9. 

where NNu,x is the dimensionless Nusselt number and hx is the local heat-transfer coefficient at point
x on the plate.
Pohlhausen (K1) was able to show that the relation between the hydrodynamic and thermal boun-
dary layers for fluids with Prandtl number >0.6 gives approximately

Equation 5.7-10. 

As a result, the equation for the local heat-transfer coefficient is

Equation 5.7-11. 

Also,

Equation 5.7-12. 

The equation for the mean heat-transfer coefficient h from x = 0 to x = L for a plate of width b and
area bL is

Equation 5.7-13. 
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Integrating,

Equation 5.7-14. 

Equation 5.7-15. 

As pointed out previously, this laminar boundary layer on smooth plates holds up to a Reynolds
number of about 5 × 105. In using the results above, the fluid properties are usually evaluated at the
film temperature Tf = (TS + T∞)/2.

Approximate Integral Analysis of the Thermal Boundary Layer

As discussed in the analysis of the hydrodynamic boundary layer, the Blasius solution is accurate
but limited in its scope. Other, more complex systems cannot be solved by this method. The ap-
proximate integral analysis used by von Kármán to calculate the hydrodynamic boundary layer was
covered in Section 3.10. This approach can be used to analyze the thermal boundary layer.
This method will be outlined briefly. First, a control volume, as previously given in Fig. 3.10-5, is
used to derive the final energy integral expression:

Equation 5.7-16. 

This equation is analogous to Eq. (3.10-48) combined with Eq. (3.10-51) for the momentum analysis,
giving

Equation 5.7-17. 

Equation (5.7-16) can be solved if both a velocity profile and temperature profile are known. The
assumed velocity profile used is Eq. (3.10-50):

Equation 3.10-50. 

The same form of temperature profile is assumed:

Equation 5.7-18. 

Substituting Eqs. (3.10-50) and (5.7-18) into the integral expression and solving,
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Equation 5.7-19. 

This is only about 8% greater than the exact result in Eq. (5.7-11), which indicates that this approx-
imate integral method can be used with confidence in cases where exact solutions cannot be ob-
tained.
In a similar fashion, the integral momentum analysis method used for the turbulent hydrodynamic
boundary layer in Section 3.10 can be used for the thermal boundary layer in turbulent flow. Again,

the Blasius -power law is used for the temperature distribution. These give results that are quite
similar to the experimental equations given in Section 4.6.

Prandtl Mixing Length and Eddy Thermal Diffusivity

Eddy momentum diffusivity in turbulent flow

In Section 3.10F the total shear stress  for turbulent flow was written as follows when the mo-
lecular and turbulent contributions are summed together:

Equation 5.7-20. 

The molecular momentum diffusivity μ/ρ in m2/s is a function only of the fluid molecular properties.
However, the turbulent momentum eddy diffusivity εt depends on the fluid motion. In Eq. (3.10-29)
we related εt to the Prandtl mixing length L as follows:

Equation 3.10-29. 

Prandtl mixing length and eddy thermal diffusivity

We can derive the eddy thermal diffusivity αt for turbulent heat transfer in a similar manner, as
follows. Eddies or clumps of fluid are transported a distance L in the y direction. At this point L the

clump of fluid differs in mean velocity from the adjacent fluid by the velocity , which is the fluc-
tuating velocity component discussed in Section 3.10F. Energy is also transported the distance L

with a velocity  in the y direction together with the mass being transported. The instantaneous
temperature of the fluid is  where  is the mean value and  the deviation from

the mean value. This fluctuating  is similar to the fluctuating velocity . The mixing length is
small enough that the temperature difference can be written as

Equation 5.7-21. 

The rate of energy transported per unit area is qy/A and is equal to the mass flux in the y direction
times the heat capacity times the temperature difference:
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Equation 5.7-22. 

In Section 3.10F we assumed  and that

Equation 5.7-23. 

Substituting Eq. (5.7-23) into (5.7-22),

Equation 5.7-24. 

According to Eq. (3.10-29) the term  is the momentum eddy diffusivity εt. When this
term is in the turbulent heat-transfer equation (5.7-24), it is called αt, eddy thermal diffusivity. Then
Eq. (5.7-24) becomes

Equation 5.7-25. 

Combining this with the Fourier equation written in terms of the molecular thermal diffusivity α,

Equation 5.7-26. 

Similarities among momentum, heat, and mass transport

Equation (5.7-26) is similar to Eq. (5.7-20) for total momentum transport. The eddy thermal diffusivity
αt and the eddy momentum diffusivity εt have been assumed equal in the derivations. Experimental
data show that this equality is only approximate. An eddy mass diffusivity for mass transfer has been
defined in a similar manner using the Prandtl mixing length theory and is assumed equal to αt and εt.

PROBLEMS

5.2-1. Temperature Response in Cooling a Wire. A small copper wire with
a diameter of 0.792 mm and initially at 366.5 K is suddenly im-
mersed in a liquid held constant at 311 K. The convection coefficient
h = 85.2 W/m2 · K. The physical properties can be assumed con-
stant and are k = 374 W/m · K, cp = 0.389 kJ/kg · K, and ρ = 8890
kg/m3.
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a. Determine the time in seconds for the average temperature
of the wire to drop to 338.8 K (one-half the initial temperature
difference).

b. Do the same but for h = 11.36 W/m2 · K.
c. For part (b), calculate the total amount of heat removed for a

wire 1.0 m long.
A1: Ans. (a) t = 5.66 s
5.2-2. Quenching Lead Shot in a Bath. Lead shot having an average di-

ameter of 5.1 mm is at an initial temperature of 204.4°C. To quench
the shot it is added to a quenching oil bath held at 32.2°C and falls
to the bottom. The time of fall is 15 s. Assuming an average con-
vection coefficient of h = 199 W/m2 · K, what will be the temperature
of the shot after the fall? For lead, ρ = 11 370 kg/m3 and cp = 0.138
kJ/kg · K.

5.2-3. Unsteady-State Heating of a Stirred Tank. A vessel is filled with
0.0283 m3 of water initially at 288.8 K. The vessel, which is well
stirred, is suddenly immersed in a steam bath held at 377.6 K. The
overall heat-transfer coefficient U between the steam and water is
1136 W/m2 · K and the area is 0.372 m2. Neglecting the heat ca-
pacity of the walls and agitator, calculate the time in hours to heat
the water to 338.7 K. [Hint: Since the water is well stirred, its tem-
perature is uniform. Show that Eq. (5.2-3) holds by starting with Eq.
(5.2-1).]

5.3-1. Temperature in a Refractory Lining. A combustion chamber has a
2-in.-thick refractory lining to protect the outer shell. To predict the
thermal stresses at start-up, the temperature 0.2 in. below the sur-
face is needed 1 min after start-up. The following data are available.
The initial temperature T0 = 100°F, the hot gas temperature T1 =
3000°F, h = 40 btu/h · ft2 · °F, k = 0.6 btu/h · ft · °F, and α = 0.020
ft2/h. Calculate the temperature at a 0.2-in. depth and a 0.6-in.
depth. Use Fig. 5.3-3 and justify its use by seeing if the lining acts
as a semi-infinite solid during this 1-min period.

A4: Ans. For x = 0.2 in., (T − T0)/(T1 − T0) = 0.28 and T = 912°F (489°C);
for x = 0.6 in., (T − T0)/(T1 − T0) = 0.02 and T = 158°F (70°C)

5.3-2. Freezing Temperature in the Soil. The average temperature of the
soil to a considerable depth is approximately 277.6 K (40°F) during
a winter day. If the outside air temperature suddenly drops to 255.4
K (0°F) and stays there, how long will it take for a pipe 3.05 m (10
ft) below the surface to reach 273.2 K (32°F)? The convective co-
efficient is h = 8.52 W/m2 · K (1.5 btu/h · ft2 · °F). The soil physical
properties can be taken as 5.16 × 10−7 m2/s (0.02 ft2/h) for the ther-
mal diffusivity and 1.384 W/m · K (0.8 btu/h · ft · °F) for the thermal
conductivity. (Note: The solution is trial and error, since the un-
known time appears twice in the graph for a semi-infinite solid.)

5.3-3. Cooling a Slab of Aluminum. A large piece of aluminum that can
be considered a semi-infinite solid initially has a uniform tempera-
ture of 505.4 K. The surface is suddenly exposed to an environment
at 338.8 K with a surface convection coefficient of 455 W/m2 · K.
Calculate the time in hours for the temperature to reach 388.8 K at
a depth of 25.4 mm. The average physical properties are α = 0.340
m2/h and k = 208 W/m · K.
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5.3-4. Transient Heating of a Concrete Wall. A wall made of concrete
0.305 m thick is insulated on the rear side. The wall at a uniform
temperature of 10°C (283.2 K) is exposed on the front side to a gas
at 843°C (1116.2 K). The convection coefficient is 28.4 W/m2 · K,
the thermal diffusivity is 1.74 × 10−3 m2/h, and the thermal conduc-
tivity is 0.935 W/m · K.

a. Calculate the time for the temperature at the insulated face to
reach 232°C (505.2 K).

b. Calculate the temperature at a point 0.152 m below the sur-
face at this same time.

A7:
Ans. (a) ,t =13.4 h

5.3-5. Cooking a Slab of Meat. A slab of meat 25.4 mm thick originally at
a uniform temperature of 10°C is to be cooked from both sides until
the center reaches 121°C in an oven at 177°C. The convection co-
efficient can be assumed constant at 25.6 W/m2 · K. Neglect any
latent heat changes and calculate the time required. The thermal
conductivity is 0.69 W/m · K and the thermal diffusivity 5.85 ×
10−4 m2/h. Use the Heisler chart.

A8: Ans. 0.80 h (2880 s)
5.3-6. Unsteady-State Conduction in a Brick Wall. A flat brick wall 1.0 ft

thick is the lining on one side of a furnace. If the wall is at a uniform
temperature of 100°F and one side is suddenly exposed to a gas at
1100°F, calculate the time for the furnace wall at a point 0.5 ft from
the surface to reach 500°F. The rear side of the wall is insulated.
The convection coefficient is 2.6 btu/h · ft2 · °F and the physical
properties of the brick are k = 0.65 btu/h · ft · °F and α = 0.02 ft2/h.

5.3-7. Cooling a Steel Rod. A long steel rod 0.305 m in diameter is initially
at a temperature of 588 K. It is immersed in an oil bath maintained
at 311 K. The surface convective coefficient is 125 W/m2 · K. Cal-
culate the temperature at the center of the rod after 1 h. The average
physical properties of the steel are k = 38 W/m · K and α = 0.0381
m2/h.

A10: Ans. T = 391 K
5.3-8. Effect of Size on Heat Processing Meat. An autoclave held at

121.1°C is being used to process sausage meat 101.6 mm in di-
ameter and 0.61 m long which is originally at 21.1°C. After 2 h the
temperature at the center is 98.9°C. If the diameter is increased to
139.7 mm, how long will it take for the center to reach 98.9°C? The
heat-transfer coefficient to the surface is h = 1100 W/m2 · K, which
is very large, so the surface resistance can be considered negligi-
ble. (Show this.) Neglect the heat transfer from the ends of the cyl-
inder. The thermal conductivity k = 0.485 W/m · K.

A11: Ans. 3.78 h
5.3-9. Temperature of Oranges on Trees During Freezing Weather. In

orange-growing areas, the freezing of the oranges on the trees dur-
ing cold nights is of serious economic concern. If the oranges are
initially at a temperature of 21.1°C, calculate the center temperature
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of the orange if exposed to air at −3.9°C for 6 h. The oranges are
102 mm in diameter and the convective coefficient is estimated as
11.4 W/m2 · K. The thermal conductivity k is 0.431 W/m · K and α
is 4.65 × 10−4 m2/h. Neglect any latent heat effects.

A12: Ans. (T1 − T)/(T1 − T0) = 0.05, T = −2.65°C
5.3-10. Hardening a Steel Sphere. To harden a steel sphere having a di-

ameter of 50.8 mm, it is heated to 1033 K and then dunked into a
large water bath at 300 K. Determine the time for the center of the
sphere to reach 366.5 K. The surface coefficient can be assumed
as 710 W/m2 · K, k = 45 W/m · K, and α = 0.0325 m2/h.

5.3-11. Unsteady-State Conduction in a Short Cylinder. An aluminum cyl-
inder is initially heated to a uniform temperature of 204.4°C. Then
it is plunged into a large bath held at 93.3°C, where h = 568 W/m2

· K. The cylinder has a diameter of 50.8 mm and is 101.6 mm long.
Calculate the center temperature after 60 s. The physical properties
are α = 9.44 × 10−5 m2/s and k = 207.7 W/m · K.

5.3-12. Conduction in Three Dimensions in a Rectangular Block. A rec-
tangular steel block 0.305 m by 0.457 m by 0.61 m is initially at
315.6°C. It is suddenly immersed in an environment at 93.3°C. De-
termine the temperature at the center of the block after 1 h. The
surface convection coefficient is 34 W/m2 · K. The physical proper-
ties are k = 38 W/m · K and α = 0.0379 m2/h.

5.4-1. Schmidt Numerical Method for Unsteady-State Conduction. A ma-
terial in the form of an infinite plate 0.762 m thick is at an initial
uniform temperature of 366.53 K. The rear face of the plate is in-
sulated. The front face is suddenly exposed to a temperature of
533.2 K. The convective resistance at this face can be assumed as
zero. Calculate the temperature profile after 0.875 h using the
Schmidt numerical method with M = 2 and slabs 0.1524 m thick.
The thermal diffusivity is 0.0929 m2/h.

A16: Ans. Δt = 0.125 h, seven time increments needed
5.4-2. Unsteady-State Conduction with Nonuniform Initial Temperature

Profile. Use the same conditions as in Problem 5.4-1 but with the
following change. The initial temperature profile is not uniform but
is 366.53 K at the front face and 422.1 K at the rear face with a linear
variation between the two faces.

5.4-3. Unsteady-State Conduction Using the Digital Computer. Repeat
Problem 5.4-2 but use the computer and a spreadsheet. Use slabs
0.03048 m thick and M = 2.0. Calculate the temperature profile after
0.875 h.

5.4-4. Chilling Meat Using Numerical Methods. A slab of beef 45.7 mm
thick and initially at a uniform temperature of 283 K is being chilled
by a surface contact cooler at 274.7 K on the front face. The rear
face of the meat is insulated. Assume that the convection resistance
at the front surface is zero. Using five slices and M = 2, calculate
the temperature profile after 0.54 h. The thermal diffusivity is 4.64
× 10−4 m2/h.

A19: Ans. Δt = 0.090 h, six time increments

Principles of Unsteady-State Heat Transfer 451

Chapter 5. Principles of Unsteady-State Heat Transfer. Transport Processes and Separation Process Principles (Includes Unit Operations) Fourth Edition, ISBN: 013101367X
Prepared for badria.als@gmail.com, badria al shihi
© 2010 Safari Books Online, LLC. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from the
copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.



5.4-5. Cooling Beef with Convective Resistance. A large slab of beef is
45.7 mm thick and is at an initial uniform temperature of 37.78°C.
It is being chilled at the front surface in a chilled air blast at −1.11°C
with a convective heat-transfer coefficient of h = 38.0 W/m2 · K. The
rear face of the meat is insulated. The thermal conductivity of the
beef is k = 0.498 W/m · K and α = 4.64 × 10−4 m2/h. Using a nu-
merical method with five slices and M = 4.0, calculate the temper-
ature profile after 0.27 h. [Hint: Since there is a convective resist-
ance, the value of N must be calculated. Also, Eq. (5.4-7) should
be used.]

A20: Ans. 17.16°C (n = 1), 28.22°C (2), 34.48°C (3), 37.00°C (4),
37.67°C (5), 37.77°C (6)

5.4-6. Cooling Beef Using the Digital Computer. Repeat Problem 5.4-5
using the digital computer. Use 20 slices and M = 4.0. Use a
spreadsheet calculation.

5.4-7. Convection and Unsteady-State Conduction. For the conditions of
Example 5.4-3, continue the calculations for a total of 12 time in-
crements. Plot the temperature profile.

5.4-8. Alternative Convective Boundary Condition for Numerical
Method. Repeat Example 5.4-3 but instead use the alternative
boundary condition, Eq. (5.4-11). Also, use M = 4. Calculate the
profile for the full 12 time increments.

5.4-9. Numerical Method for Semi-infinite Solid and Convection. A semi-
infinite solid initially at a uniform temperature of 200°C is cooled at
its surface by convection. The cooling fluid at a constant tempera-
ture of 100°C has a convective coefficient of h = 250 W/m2 · K. The
physical properties of the solid are k = 20 W/m · K and α = 4 ×
10−5 m2/s. Using a numerical method with Δx = 0.040 m and M =
4.0, calculate the temperature profile after 50 s total time.

A24: Ans. T1 = 157.72, T2 = 181.84, T3 = 194.44, T4 = 198.93, T5 =
199.90°C

5.5-1. Chilling Slab of Beef. Repeat Example 5.5-1, where the slab of beef
is cooled to 10°C at the center, but use air of 0°C at a lower value
of h = 22.7 W/m2 · K.

A25: Ans. (T1 − T)/(T1 − T0) = 0.265, X = 0.92, t = 19.74 h
5.5-2. Chilling Fish Fillets. Codfish fillets originally at 10°C are packed to

a thickness of 102 mm. Ice is packed on both sides of the fillets and
wet-strength paper separates the ice and fillets. The surface tem-
perature of the fish can be assumed as essentially 0°C. Calculate
the time for the center of the fillets to reach 2.22°C and the tem-
perature at this time at a distance of 25.4 mm from the surface. Also,
plot temperature versus position for the slab. The physical proper-
ties are (B1) k = 0.571 W/m · K, ρ = 1052 kg/m3, and cp = 4.02 kJ/
kg · K.

5.5-3. Average Temperature in Chilling Fish. Fish fillets having the same
physical properties given in Problem 5.5-2 are originally at 10°C.
They are packed to a thickness of 102 mm with ice on each side.
Assuming that the surface temperature of the fillets is 0°C, calculate
the time for the average temperature to reach 1.39°C. (Note: This
is a case where the surface resistance is zero. Can Fig. 5.3-13 be
used for this case?)
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5.5-4. Time to Freeze a Slab of Meat. Repeat Example 5.5-2 using the
same conditions except that a plate or contact freezer is used where
the surface coefficient can be assumed as h = 142 W/m2 · K.

A28: Ans. t = 2.00 h
5.5-5. Freezing a Cylinder of Meat. A package of meat containing 75%

moisture and in the form of a long cylinder 5 in. in diameter is to be
frozen in an air-blast freezer at −25°F. The meat is initially at the
freezing temperature of 27°F. The heat-transfer coefficient is h =
3.5 btu/h · ft2 · °F. The physical properties are ρ = 64 lbm/ft3 for the
unfrozen meat and k = 0.60 btu/h · ft · °F for the frozen meat. Cal-
culate the freezing time.

5.6-1. Heat Generation Using Equation of Energy Change. A plane wall
with uniform internal heat generation of  W/m3 is insulated at four
surfaces, with heat conduction only in the x direction. The wall has
a thickness of 2L m. The temperature at one wall at x = +L and at
the other wall at x = −L is held constant at Tw K. Using the differential
equation of energy change, Eq. (5.6-18), derive the equation for the
final temperature profile.

A30:

Ans. 
5.6-2. Heat Transfer in a Solid Using Equation of Energy Change. A solid

of thickness L is at a uniform temperature of T0 K. Suddenly the
front surface temperature of the solid at z = 0 m is raised to T1 at t
= 0 and held there, and at z = L at the rear to T2 and held constant.
Heat transfer occurs only in the z direction. For constant physical
properties and using the differential equation of energy change, do
as follows:

a. Derive the partial differential equation and the boundary con-
ditions (B.C.) for unsteady-state energy transfer.

b. Do the same for steady state and integrate the final equation.
A31: Ans. (a) ∂T/∂t = α ∂2T/∂z2; B.C.(1): t = 0, z = z, T = T0; B.C.(2): t =

t, z = 0, T = T1; B.C.(3): t = t, z = L, T = T2; (b) T = (T2 − T1)z/L + T1
5.6-3. Radial Temperature Profile Using the Equation of Energy

Change. Radial heat transfer is occurring by conduction through a
long, hollow cylinder of length L with the ends insulated.

a. What is the final differential equation for steady-state conduc-
tion? Start with Fourier's second law in cylindrical coordinates,
Eq. (5.6-20).

b. Solve the equation for the temperature profile from part (a) for
the boundary conditions given as follows: T = Ti for r = ri, T =
To for r = ro.

c. Using part (b), derive an expression for the heat flow q in W.
A32:

Ans. 
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5.6-4. Heat Conduction in a Sphere. Radial energy flow is occurring in a
hollow sphere with an inside radius of ri and an outside radius of
ro. At steady state the inside surface temperature is constant at Ti
and constant at To on the outside surface.

a. Using the differential equation of energy change, solve the
equation for the temperature profile.

b. Using part (a), derive an expression for the heat flow in W.
5.6-5. Variable Heat Generation and Equation of Energy Change. A plane

wall is insulated so that conduction occurs only in the x direction.
The boundary conditions which apply at steady state are T = T0 at
x = 0 and T = TL at x = L. Internal heat generation per unit volume

is occurring and varies as , where  and ß are
constants. Solve the general differential equation of energy change
for the temperature profile.

5.7-1. Thermal and Hydrodynamic Boundary Layer Thicknesses. Air at
294.3 K and 101.3 kPa with a free stream velocity of 12.2 m/s is
flowing parallel to a smooth, flat plate held at a surface temperature
of 383 K. Do the following:

a. At the critical NRe,L = 5 × 105, calculate the critical length x =
L of the plate, the thickness δ of the hydrodynamic boundary
layer, and the thickness δT of the thermal boundary layer.
Note that the Prandtl number is not 1.0.

b. Calculate the average heat-transfer coefficient over the plate
covered by the laminar boundary layer.

5.7-2. Boundary-Layer Thicknesses and Heat Transfer. Air at 37.8°C and
1 atm abs flows at a velocity of 3.05 m/s parallel to a flat plate held
at 93.3°C. The plate is 1 m wide. Calculate the following at a position
0.61 m from the leading edge:

a. The thermal boundary-layer thickness δT and the hydrody-
namic boundary-layer thickness δ.

b. Total heat transfer from the plate.
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