Heat Conduction Equation Steady-State Conduction with Thermal Energy Generation

The University of Jordan

Chemical Engineering Department

Summer 2022

Prof. Yousef Mubarak

Implications of Energy Generation

- > Involves a local (volumetric) source of thermal energy due to conversion from another form of energy in a conducting medium.
- > The source may be uniformly distributed, as in the conversion from electrical to thermal energy (Ohmic heating):

Volumetric generation rate

$$\dot{q} \equiv \frac{\dot{E}_g}{V} = \frac{I^2 R_e}{V} \quad (W/m^3)$$

or it may be non-uniformly distributed, as in the absorption of radiation passing through a semi-transparent medium.

> Generation affects the temperature distribution in the medium and causes the heat rate to vary with location, thereby precluding inclusion of the medium in a thermal circuit.

The Plane Wall

- > Consider one-dimensional, steady-state conduction in a plane wall of constant k, uniform generation, and asymmetric surface conditions:
- > Heat Equation:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \dot{q} = 0 \qquad \qquad \frac{d^2 T}{dx^2} + \frac{\dot{q}}{k} = 0$$

$$\frac{d^2T}{dx^2} + \frac{\dot{q}}{k} = 0$$

> General Solution:
$$T = \frac{-\dot{q}}{2k}x^2 + C_1x + C_2$$

> Boundary conditions

$$T(-L) = T_{s,1} \quad and \quad T(L) = T_{s,2}$$

$$C_1 = \frac{T_{S,2} - T_{S,1}}{2L}$$
 and $C_2 = \frac{\dot{q}}{2k}L^2 + \frac{T_{S,1} + T_{S,2}}{2}$

$$T(x) = \frac{\dot{q}L^2}{2k} \left(1 - \frac{x^2}{L^2} \right) + \frac{T_{s,2} - T_{s,1}}{2} \frac{x}{L} + \frac{T_{s,1} + T_{s,2}}{2}$$

Asymmetrical boundary conditions

The Plane Wall

 \rightarrow Is the heat flux q'' independent of x?

Answer is required

Symmetric Surface Conditions or One Surface Insulated:

Boundary conditions

$$at x = \pm L \quad T_{s,1} = T_{s,2} \equiv T_s$$

$$T(x) = \frac{\dot{q}L^2}{2k} \left(1 - \frac{x^2}{L^2} \right) + T_S$$

- \rightarrow At the mid-plane, $\times = 0.0$
- > The maximum temperature exists

$$\left| \left(\frac{dT}{dx} \right)_{x=0} = 0 \right|$$

$$T(0) \equiv T_0 = \frac{\dot{q}L^2}{2k} + T_S$$

Prof. Y. Mubarak

Symmetrical boundary conditions

Adiabatic surface at midplane

Chem. Eng. Dept.

The Plane Wall

> Hence, the temperature distribution, may be expressed as

$$T_0 - T_S = \frac{\dot{q}L^2}{2k}$$

$$T_0 - T_s = \frac{\dot{q}L^2}{2k}$$

$$\frac{T(x) - T_0}{T_s - T_0} = \left(\frac{x}{L}\right)^2$$

- If the temperature of an adjoining fluid T_{∞} is known and not T_{∞}
 - ➤ Surface energy balance →

$$\left. -k \frac{dT}{dx} \right|_{x=L} = h(T_S - T_\infty) \qquad \longrightarrow \qquad T_S = T_\infty + \frac{\dot{q}L}{h}$$

ightharpoonup Overall energy balance on the wall ightharpoonup

$$\dot{E}_g = \dot{E}_{out} \qquad \qquad \dot{q}L = h(T_S - T_{\infty})$$

 \rightarrow How do we determine the heat rate at x = L? Merge equations

Cylindrical Systems

Cylindrical (Tube) Wall

Solid Cylinder (Circular Rod)

Heat Equations:

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) + \frac{\dot{q}}{k} = 0$$

 \triangleright Separating variables and assuming uniform generation and constant k

$$r\frac{dT}{dr} = -\frac{\dot{q}}{2k}r^2 + C_1 \qquad \rightarrow \qquad T(r) = -\frac{\dot{q}}{4k}r^2 + C_1 \ln r + C_2$$

Cylindrical Systems (Solid)

> Boundary conditions

$$\left. \frac{dT}{dr} \right|_{r=0} = 0 \quad and \quad T(r_0) = T_s$$

$$C_1 = 0$$
 and

$$C_1 = 0 \qquad \text{and} \qquad C_2 = T_S + \frac{\dot{q}}{4k} r_o^2$$

> The temperature distribution

$$T(r) = \frac{\dot{q}r_o^2}{4k} \left(1 - \frac{r^2}{r_0^2}\right) + T_s$$

$$at r = 0 T(0) = T_0 \qquad \rightarrow \qquad T_0 = \frac{\dot{q}R^2}{4k} + T_s$$

The temperature distribution in non-dimensional form

$$\frac{T(r) - T_S}{T_0 - T_S} = 1 - \left(\frac{r}{r_0}\right)^2$$

Cylindrical Systems

Surface Temperature

Overall energy balance:

$$\dot{E}_g = \dot{E}_{out}$$

$$\dot{q}(\pi r_0^2 L) = h(2\pi r_0 L)(T_S - T_\infty)$$

surface energy balance:

$$\left| -k \frac{dT}{dr} \right|_{r=r_0} = h(T_S - T_\infty)$$

$$T_S = T_{\infty} + \frac{\dot{q}r_0}{2h}$$

> A summary of temperature distributions is provided in Appendix C for plane, cylindrical and spherical walls, as well as for solid cylinders and spheres. Note how boundary conditions are specified and how they are used to obtain surface temperatures.

Cylindrical Systems (Hollow)

> For a hollow cylinder with uniformly distributed heat sources the appropriate boundary conditions would be

$$T = T_i$$
 at $r = r_i$ (inside surface)
 $T = T_0$ at $r = r_0$ (outside surface)

> The general solution is still

$$T(r) = -\frac{\dot{q}}{4k}r^2 + C_1 \ln r + C_2$$

where

$$C_1 = \frac{T_i - T_0 + \dot{q}(r_i^2 - r_0^2)/4k}{\ln{(r_i/r_0)}}$$

> For a hollow cylinder with uniformly distributed heat sources and the external surface is insulated the the appropriate boundary conditions would be:

$$\left. \frac{dT}{dr} \right|_{r=ro} = 0 \quad and \quad T(r_0) = T_s$$

$$C_1 = \frac{\dot{q}}{2k} r_o^2 \qquad C_2$$

$$C_1 = \frac{\dot{q}}{2k}r_o^2$$
 $C_2 = T_S + \frac{\dot{q}}{4k}r_o^2 - \frac{\dot{q}}{2k}r_o^2 lnr_o$

$$T(r) = T_{S} + \frac{\dot{q}}{4k} (r_{o}^{2} - r^{2}) - \frac{\dot{q}}{2k} r_{o}^{2} ln \frac{r_{o}}{r}$$

> For a hollow cylinder with uniformly distributed heat sources and the internal surface is insulated the the appropriate boundary conditions would be:

$$\left. \frac{dT}{dr} \right|_{r=ri} = 0 \quad and \quad T(r_0) = T_s$$

$$= 0 \quad and \quad T(r_0) = T_S \qquad T(r) = T_S + \frac{\dot{q}}{4k} (r_0^2 - r^2) + \frac{\dot{q}}{2k} r_i^2 ln \frac{r}{r_0}$$

Spheres

Spherical Wall (Shell)

Solid Sphere

> Heat Equations:

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) + \frac{\dot{q}}{k} = 0$$

Spheres

> Temperature Distribution

$$T = -\frac{qr^2}{6k} + \frac{C_1}{r} + C_2$$

✓ B.C 1:

$$\left. \frac{dT}{dr} \right|_{r=0} = 0 \to C_1 = 0$$

✓ B.C 2:

$$T(r_0) = T_S \to C_2 = T_S + \frac{\dot{q}r_0^2}{6k}$$

$$T(r) = \frac{\dot{q}r_0^2}{6k} \left(1 - \frac{r^2}{r_0^2} \right) + T_S$$

Spheres

Surface Temperature

> Overall energy balance:

$$-k \frac{dT}{dr} \bigg|_{r=r_0} = h(T_S - T_\infty)$$

$$\rightarrow T_S = T_\infty + \frac{\dot{q}r_i^3}{3hr_o^2}$$

Or from a surface energy balance:

$$\dot{E}_{in} - \dot{E}_{out} = 0$$

$$\rightarrow q_{cond} (r_0) = q_{conv}$$

$$\rightarrow T_S = T_\infty + \frac{\dot{q}r_i^3}{3hr_o^2}$$