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TRANSPORT 1

CHAPTER 3
Continuity Equation



INTRODUCTION

 Continuity equation represents that the product of cross-sectional area of the pipe

and the fluid speed at any point along the pipe is always constant.

 This product is equal to the volume flow per second or simply the flow rate.

 The continuity equation is given as:

where:

 R is the volume flow rate

 A is the flow area

 v is the flow velocity
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BERNOULLI’S PRINCIPLE

 Bernoulli’s principle formulated by Daniel Bernoulli states that as the speed of a
moving fluid increases (liquid or gas), the pressure within the fluid decreases.

 The total mechanical energy of the moving fluid comprising the gravitational
potential energy of elevation, the energy associated with the fluid pressure and the
kinetic energy of the fluid motion, remains constant.

 Bernoulli’s equation formula is a relation between pressure, kinetic energy, and
gravitational potential energy of a fluid in a container.

 The formula for Bernoulli’s principle is given as follows:

ଶ

 Where p is the pressure exerted by the fluid,  is the velocity of the fluid, ρ is the
density of the fluid and h is the height of the container.
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ASSUMPTION OF CONTINUITY EQUATION

Following are the assumptions of continuity equation:

 The tube is having a single entry and single exit

 The fluid flowing in the tube is non-viscous

 The flow is incompressible

 The fluid flow is steady
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DERIVATION

 Consider the following diagram:

 Now, consider the fluid flows for a short

interval of time in the tube.

 So, assume that short interval of time as Δt.

 In this time, the fluid will cover a distance

of Δx1 with a velocity v1 at the lower end of the

pipe.

 At this time, the distance covered by the fluid

will be:

ଵ ଵ
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 Now, at the lower end of the pipe, the volume of the fluid that will flow into the pipe

will be:

ଵ ଵ ଵ ଵ

 It is known that mass (m) = Density (ρ) × Volume (V). So, the mass of the fluid

in Δx1 region will be:

ଵ

ଵ ଵ ଵ ଵ

 Now, the mass flux has to be calculated at the lower end.

 Mass flux is simply defined as the mass of the fluid per unit time passing through

any cross-sectional area.
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 For the lower end with cross-sectional area A1, mass flux will be:

ଵ
ଵ ଵ ଵ

 Similarly, the mass flux at the upper end will be:

ଶ
ଶ ଶ ଶ

 Here, v2 is the velocity of the fluid through the upper end of the pipe i.e.

through Δx2 , in Δt time and A2, is the cross-sectional area of the upper end.
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 In this, the density of the fluid between the lower end of the pipe and the upper

end of the pipe remains the same with time as the flow is steady.

 So, the mass flux at the lower end of the pipe is equal to the mass flux at the

upper end of the pipe i.e. Equation 2 = Equation 3.

 Thus:

ଵ ଵ ଵ ଶ ଶ ଶ

 This can be written in a more general form as:

 The equation proves the law of conservation of mass in fluid dynamics. Also, if the

fluid is incompressible, the density will remain constant for steady flow.
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 So, ρ1 = ρ2

 Thus, Equation 4 can be now written as:

ଵ ଵ ଶ ଶ

 This equation can be written in general form as:

 Now, if R is the volume flow rate, the above equation can be expressed as:

 This was the derivation of continuity equation.
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 Following is the continuity equation in cylindrical coordinates:

 Steady Flow Continuity Equation

Following is the continuity equation in cylindrical coordinates:

CONTINUITY EQUATION IN CYLINDRICAL COORDINATES
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1. Partial time derivative

 Various types of time derivatives are used in the derivations to follow.

 The most common type of derivative is the partial time derivative.

 For example, suppose that we are interested in the mass concentration or

density  in kg/m3 in a flowing stream as a function of position x, y, z and time t.

 The partial time derivative of
డఘ

డ௧

 This is the local change of density with time at a fixed point x, y, and z.

TYPES OF TIME DERIVATIVES AND VECTOR NOTATION
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2. Total time derivative

 Suppose that we want to measure the density in the stream while we are moving

about in the stream with velocities in the x, y, and z directions of

ௗ௫

ௗ௧

ௗ௬

ௗ௧

ௗ௭

ௗ௧
respectively.

 The total derivative
ௗఘ

ௗ௧
is:

ௗఘ

ௗ௧

డఘ

డ௧

డఘ

డ௫

ௗ௫

ௗ௧

డఘ

డ௬

ௗ௬

ௗ௧
+

డఘ

డ௭

ௗ௭

ௗ௧

 This means that the density is a function of t and of the velocity components

ௗ௫

ௗ௧

ௗ௬

ௗ௧

ௗ௭

ௗ௧
at which the observer is moving.
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3. Substantial time derivative

 Another useful type of time derivative is obtained if the observer floats along with

the velocity v of the flowing stream and notes the change in density with respect to

time.

 This is called the derivative that follows the motion, or the substantial time

derivative,
ୈఘ

ୈ௧
.

ୈఘ

ୈ௧

డఘ

డ௧ ௫
డఘ

డ௫ ௬
డఘ

డ௬
+ ௭

డఘ

డ௭

డఘ

డ௧

where vx, vy, and vz are the velocity components of the stream velocity v, which is a

vector.

 This substantial derivative is applied to both scalar and vector variables.
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4- Scalars

 The physical properties encountered in momentum, heat, and mass transfer can

be placed in several categories: scalars, vectors, and tensors.

 Scalars are quantities such as concentration, temperature, length, volume, time,

and energy.

 They have magnitude but no direction and are considered to be zero-order

tensors.

 The common mathematical algebraic laws hold for the algebra of scalars.

 For example, , and so on.
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5. Vectors 

 Velocity, force, momentum, and acceleration are considered vectors

since they have magnitude and direction.

 They are regarded as first-order tensors and are written in boldface

letters in this text, such as v for velocity.

 The addition of the two vectors by parallelogram construction

and the subtraction of two vectors is shown.

 The vector B is represented by its three projections ௫, ௬, and ௭ on

the x, y, and z axes and

௫ ௬ ௭

where i, j, and k are unit vectors along the axes x, y, and z, respectively.



Prof. Y. Mubarak                     Transport Phenomena 1             Chem. Eng. Dept. 16

6. Differential operations with scalars and vectors

 The gradient or "grad" of a scalar field is

where  is a scalar such as density.

• The divergence or "div" of a vector v is

௫ ௬ ௭

where v is a function of ௫, ௬, and ௭.

 The Laplacian of a scalar field is

ଶ
ଶ

ଶ

ଶ

ଶ

ଶ

ଶ
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 Integral analysis allows us to compute overall (global)

flow behavior without concern for the detailed flow

inside a device.

 Integral analysis requires careful integration at a

system boundaries (velocity profile at exits must be

given or assumed)

 Differential analysis is required when we need to

know the detailed flow behavior at points inside a

system ( velocity profiles are computed directly).

WHY DIFFERENTIAL ANALYSIS?
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 The control volume technique

It is useful when we are interested in the overall features of a flow,

such as mass flow rate into and out of the control volume or net

forces applied to bodies.

 Differential analysis

Involves application of differential equations of fluid motion to any

and every point in the flow field over a region called the flow

domain.

 Boundary conditions for the variables must be specified at all

boundaries of the flow domain, including inlets, outlets, and walls.

 If the flow is unsteady, we must march our solution along in time as

the flow field changes.

In control volume analysis, the 
interior of the control volume 

is treated like a black box

in differential analysis, all the 
details of the flow are solved at 

every point within the flow domain
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 The net rate of change of mass within the control volume is

equal to the rate at which mass flows into the control volume

minus the rate at which mass flows out of the control

volume.

 Conservation of mass for a CV:

(rate of mass accumulation) = (rate of mass in) (rate of mass 

out)

න
𝜕𝜌

𝜕𝑡
𝑑𝑉 = ෍ �̇� − ෍ �̇�

௢௨௧௜௡஼௏

CONSERVATION OF MASS—THE CONTINUITY EQUATION 

To derive a differential 
conservation equation, we 
imagine shrinking a control 
volume to infinitesimal size
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 In the x direction the rate of mass entering the face

at x having an area of y  z m2 is

𝜌𝑣௫ ௫∆𝑦∆𝑧 kg/s and that leaving at x + x is

𝜌𝑣௫ ௫ା∆௫∆𝑦∆𝑧 .

The term 𝜌𝑣௫  is a mass flux in kg/s.m2

• Mass entering and that leaving in the y and the z

directions are also shown in the figure.
 The rate of mass accumulation in the volume x y 

 z is

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = ∆𝑥∆𝑦∆𝑧
𝜕𝜌

𝜕𝑡

 Substituting all these expressions into the mass

balance equation and dividing both sides by x y  z,
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௫ ௫ ௫ ௫ା∆௫
௬ ௬ ௬ ௬ା∆௬ ௭ ௭ ௭ ௭ା∆௭

 Taking the limit as x, y, and  z approach zero, we obtain the equation of continuity

or conservation of mass for a pure fluid:

𝜕𝜌

𝜕𝑡
= −

𝜕 𝜌𝑣௫ ௫

𝜕𝑥
+

𝜕 𝜌𝑣௬ ௬

𝜕𝑦
+

𝜕 𝜌𝑣௭ ௭

𝜕𝑧
= − 𝛻. 𝜌𝑣

 The vector notation on the right side comes from the fact that v is a vector.

 This equation tells us how density  changes with time at a fixed point resulting from the

changes in the mass velocity vector  v.
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We can convert the last equation into another form by carrying out the actual partial 

differentiation:

𝜕𝜌

𝜕𝑡
= −𝜌

𝜕𝑣௫

𝜕𝑥
+

𝜕𝑣௬

𝜕𝑦
+

𝜕𝑣௭

𝜕𝑧
− 𝑣௫

𝜕𝜌

𝜕𝑥
+ 𝑣௬

𝜕𝜌

𝜕𝑦
+ 𝑣௭

𝜕𝜌

𝜕𝑧

Rearranging

𝜕𝜌

𝜕𝑡
+ 𝑣௫

𝜕𝜌

𝜕𝑥
+ 𝑣௬

𝜕𝜌

𝜕𝑦
+ 𝑣௭

𝜕𝜌

𝜕𝑧
= −𝜌

𝜕𝑣௫

𝜕𝑥
+

𝜕𝑣௬

𝜕𝑦
+

𝜕𝑣௭

𝜕𝑧

The left-hand side of this equation is the same as the substantial derivative in slide 13. Hence, 

this equation becomes:

𝐷𝜌

𝐷𝑡
= −𝜌

𝜕𝑣௫

𝜕𝑥
+

𝜕𝑣௬

𝜕𝑦
+

𝜕𝑣௭

𝜕𝑧
= −𝜌 𝛻. 𝑣
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 Often in engineering with liquids that are relatively incompressible, the density  is

essentially constant.

 Then  remains constant for a fluid element as it moves along a path following the

fluid motion, or
ୈఘ

ୈ௧

 Hence, the continuity equation becomes for a fluid of constant density at steady or

unsteady state

௫ ௬ ௭

 At steady state, డఘ

డ௧

EQUATION OF CONTINUITY FOR CONSTANT DENSITY
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 The coordinate system as related to rectangular

coordinates is shown in the figure.

 The relations between rectangular x, y, z and cylindrical r,

 , z coordinates are:

ଶ ଶ  ିଵ

Using these relations, the equation of continuity in

cylindrical coordinates is

௥ ఏ ௭

CONTINUITY EQUATION IN CYLINDRICAL AND SPHERICAL COORDINATES
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For spherical coordinates the variables r, , and  are related 
to x, y, z by the following as shown in figure.

ଶ ଶ ଶ  ିଵ
ଶ ଶ 

ିଵ

Using these relations, the equation of continuity in

cylindrical coordinates is

ଶ

ଶ
௥ ఏ

௭

Continuity equation in cylindrical and spherical coordinates
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DERIVATION OF EQUATIONS OF MOMENTUM TRANSFER

 The equation of motion is really the equation for
the conservation-of-momentum which we can
write as:

(rate of momentum in) - (rate of momentum out) +
(sum of forces acting on system) = (rate of
momentum accumulated)

 We will make a balance on an element.

 First we shall consider only the x component of
each term in the momentum equation.

 The y and z components can be described in an
analogous manner.
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 The rate at which the x component of momentum enters the face at x in the x

direction by convection is ௫ ௫ ௫ , and the rate at which it leaves at x + x is

௫ ௫ ௫ା∆௫ .

 The quantity ௫ is the concentration in momentum/m3 or (kg·m/s)/m3, and it is 

multiplied by ௫ to give the momentum flux as momentum/s· m2

 The x component of momentum entering the face at y is ௬ ௫ ௬
, and leaving

at y + y is ௬ ௫ ௬ା∆௬
.

 For the face at z we have ௭ ௫ ௭ , and leaving at z + z is ௭ ௫ ௭ା∆௭ .
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 The net convective x momentum flow into the volume element is

௫ ௫ ௫ ௫ ௫ ௫ା∆௫ ௬ ௫ ௬ ௬ ௫ ௬ା∆௬ ௭ ௫ ௭

௭ ௫ ௭ା∆௭

 Momentum flows in and out of the volume element by the mechanisms of

convection or bulk flow as given by the above equation and also by molecular

transfer.

 The rate at which the x component of momentum enters the face at x by

molecular transfer is ௫௫ ௫ , and the rate at which it leaves the surface at

x + x is ௫௫ ௫ ∆௫

 The same thing can be done for faces y and z.
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 The net x component of momentum by molecular transfer is

௫௫ ௫ ௫௫ ௫ା∆௫

௬௫ ௬ ௬௫ ௬ା∆௬ ௭௫ ௭ ௭௫ ௭ା∆௭

 These molecular fluxes of momentum may be considered as shear stresses 

and normal stresses

 Hence, ௬௫ is the x direction shear stress on the y face and ௭௫ the shear 

stress on the z face. Also, ௫௫ is the normal stress on the x face.

 The net fluid pressure force acting on the element in the x direction is the

difference between the force acting at x and x + x.

௫ ௫ା∆௫
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 The gravitational force gx acting on a unit mass in the x direction is multiplied by

the mass of the element to give

௫

 The rate of accumulation of x momentum in the element is

௫

 By substitution in the conservation-of-momentum equation, then x component of 

the differential equation of motion:

௫ ௫ ௫ ௬ ௫ ௭ ௫ ௫௫ ௬௫
+ ௭௫

௫
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 The y and z components of the differential equation of motion are, respectively

௬ ௫ ௬ ௬ ௬ ௭ ௬ ௫௬ ௬௬
+

௭௬
௬

௭ ௫ ௭ ௬ ௭ ௭ ௭ ௫௭ ௬௭
+ ௭௭

௭

 Using the x component of the differential equation of motion and

డఘ

డ௧

డ ఘ௩ೣ ೣ

డ௫

డ ఘ௩೤ ೤

డ௬

డ ఘ௩೥ ೥

డ௭

we obtain the equation of motion for the x component:

௫
௫

௫
௬

௫
௭

௫ ௫௫ ௬௫
+ ௭௫

௫



Prof. Y. Mubarak                     Transport Phenomena 1             Chem. Eng. Dept. 32

 The equation of motion for y and z are:

௬
௫

௬
௬

௬
௭

௬ ௫௬ ௬௬
+

௭௬
௬

௭
௫

௭
௬

௭
௭

௭ ௫௭ ௬௭
+ ௭௭

௭

 Adding vectorially, we obtain an equation of motion for a pure fluid:
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EQUATIONS OF MOTION FOR NEWTONIAN FLUIDS WITH VARYING DENSITY AND 
VISCOSITY

 In order to use the previous equations to determine velocity distributions,

expressions

 must be used for the various stresses in terms of velocity gradients and fluid

properties.

 For Newtonian fluids the expressions for the stresses have been related to the

velocity gradients and the fluid viscosity .
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1- Shear-stress components for Newtonian fluids in rectangular coordinates

௫௫
௫

௬௬
௬

௭௭
௭

௫௬ ୷௫
௫ ௬

௬௭ ୸୷
௬ ௭

௭௫ ୶୸
௭ ௫

௫ ௬ ௭
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2. Shear-stress components for Newtonian fluids in cylindrical coordinates

୰୰
௥

ఏఏ
ఏ ௥

௭௭
௭

௥ఏ ஘௥
ఏ ௥

ఏ௭ ୸ఏ
ఏ ௭

௭௥ ୰୸
ఏ ௥

௥ ఏ ௭
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୰୰
௥

ఏఏ
ఏ ௥

థథ
థ ௥ ఏ

௥ఏ ஘௥
ఏ ௥

ఏథ மఏ
ఏ థ

థ௥ ୰ம
௥ థ

ଶ

ଶ
௥ ఏ థ

3. Shear-stress components for Newtonian fluids in spherical coordinates
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4. Equation of Motion for Newtonian fluids with varying density and viscosity

௫ ௫ ௫ ௬ ௭ ௫
௫
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EQUATIONS OF MOTION FOR NEWTONIAN FLUIDS WITH CONSTANT 
DENSITY AND VISCOSITY

 The equations above are seldom used in their complete forms.

 When the density  and the viscosity  are constant where , the equations

are simplified and we obtain the equations of motion for Newtonian fluids.

 These equations are also called the Navier-Stokes equations
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1. Equation of motion in rectangular coordinates

௫
௫

௫
௬

௫
௭

௫
ଶ

௫

ଶ

ଶ
௫

ଶ

ଶ
௫

ଶ ௫

௬
௫

௬
௬

௬
௭

௬
ଶ

௬

ଶ

ଶ
௬

ଶ

ଶ
௬

ଶ ௬

௭
௫

௭
௬

௭
௭

௭
ଶ

௭

ଶ

ଶ
௭

ଶ

ଶ
௭

ଶ ௭

Combining the three equations for the three components, we obtain

ଶ
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2. Equation of motion in cylindrical coordinates
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USE OF DIFFERENTIAL EQUATIONS OF CONTINUITY AND MOTION

 To apply these equations to any viscous-flow problem.

 For a given specific problem, the terms that are zero or near zero are simply

discarded and the remaining equations used in the solution to solve for the

velocity, density, and pressure distributions.

 It is necessary to know the initial conditions and the boundary conditions to solve

the equations
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Differential Equations of Continuity and Motion for Flow between Parallel Plates

 Fluid with constant viscosity which is flowing between two flat and parallel plates

 The velocities ௬ and ௭ are then zero. The plates are a distance 2yo apart

 The continuity equation becomes

௫ ௬ ௭

since ௬ and ௭ are constants, then

௫

 The Navier-Stokes equations becomes
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௫
௫

௫
௬

௫
௭

௫
ଶ

௫

ଶ

ଶ
௫

ଶ

ଶ
௫

ଶ ௫

 The following terms equal zero


డ ௩ೣ

డ௧
steady state

 ௬ and ௭


డ௩ೣ

డ௫
also 

డమ௩ೣ

డ௫మ


డ ௩ೣ

డ௭
since there is no change of ௫ with z.  Also, 

డమ௩ೣ

డ௭మ

 ௫ for the present case of a horizontal pipe

 This will simplify the general equation to:     
డ௣

డ௫

డమ௩ೣ

డ௬మ
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డ௣

డ௫
is a constant in this problem since Vx is not a function of x.

Then, 
డ௣

డ௫

డమ௩ೣ

డ௬మ becomes an ordinary differential equation
ଶ

௫

ଶ  
The conditions given in this question are:

௫

௫ ଴

Solving the nonhomogeneous 2nd order differential equation (
ௗమ௩ೣ

ௗ௬మ

ଵ

ఓ 
ୢ௣

ୢ௫
) will give

௚ ଵ ଶ 

ே
ଶ

Apply the conditions, the final solution will be 𝒙
𝟏

𝟐𝝁

𝒅𝒑

𝒅𝒙
𝟐

𝟎
𝟐

The maximum velocity occurs when y = 0,  𝒎𝒂𝒙
𝟏

𝟐𝝁

𝒅𝒑

𝒅𝒙 𝟎
𝟐



Prof. Y. Mubarak                     Transport Phenomena 1             Chem. Eng. Dept. 45

Laminar Flow Between Vertical Plates with One Plate Moving

A Newtonian fluid is confined between two parallel and vertical plates as shown in the

Fig. The surface on the left is stationary and the other is moving vertically at a

constant velocity Vo. Assuming that the flow is laminar, solve for the velocity profile

Assumption:

 At steady state, 
డ ௩೤

డ௧
. 

 The velocities ௬ and ௭ are zeros.


డ ௩೤

డ௬
from the continuity equation


డ ௩೤

డ௭
, and 

 ௬
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Navier-Stokes equation for the y coordinate

௬
௫

௬
௬

௬
௭

௬
ଶ

௬

ଶ

ଶ
௬

ଶ

ଶ
௬

ଶ ௬

Substitution of the assumption into Navier equation:

ଶ
௬

ଶ ௬

The pressure gradient 
ୢ௣

ୢ௬
is constant

The general solution for this equation is

௬

ଶ

ଵ ଶ
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The boundary conditions are:

At ௬

At ௬ ଴

𝐲
𝟐

𝟎
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Laminar Flow in a Circular Tube

Derive the equation for steady-state viscous flow in a horizontal tube of radius ro,

where the fluid is far from the tube inlet. The fluid is incompressible and  is a

constant. The flow is driven in one direction by a constant pressure gradient.
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The cylindrical coordinates equation can be used for the z component and the
terms that are zero discarded.

௭
௥

௭ ఏ ௭
௭

௭

௭

ଶ

ଶ
௭

ଶ

ଶ
௭

ଶ ௭

As before:

డ ௩೥

డ௧

డ௩೥

డఏ

డ௩೥

డ௭

also 
డమ௩೥

డమ ௥

The boundary conditions at , 
డ௩೥

డ௥

Also, at ଴, ௭
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Substitute all of these terms in the general momentum equation for cylindrical coordinates:

1

𝜇

d𝑝

dz
= constant =

𝑑ଶ𝑣௭

𝑑𝑟ଶ
+

1

𝑟

𝑑 𝑣௭

𝑑𝑟
=

1

𝑟

𝑑

𝑑𝑟
𝑟

𝑑 𝑣௭

𝑑𝑟

Rearrange the equation:

𝑑ଶ𝑣௭

𝑑𝑟ଶ
+

1

𝑟

𝑑 𝑣௭

𝑑𝑟
=

1

𝜇

d𝑝

dz
= constant

This is a 2nd order non-homogeneous ordinary differential equation of Eulers form

𝑟ଶ
𝑑ଶ𝑣௭

𝑑𝑟ଶ
+ 𝑟

𝑑 𝑣௭

𝑑𝑟
=

𝑟ଶ

𝜇

d𝑝

dz
The general solution of this equation has a form of:

𝑣௭ீ = 𝑣௭ு + 𝑣௭ே

For 𝑣௭ு, solve this homogeneous equation 𝑟ଶ ௗమ௩೥

ௗ௥మ + 𝑟
ௗ ௩೥

ௗ௥
= 0 by assuming the solution has a form of 

𝑣௭ு = 𝑣௠

The root m is repeated and is 𝑚ଵ = 𝑚ଶ = 0; the 𝑣௭ு = 𝐶ଵ + 𝐶ଶ𝑙𝑛 𝑟
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For ௭ே, since the non-homogeneous term has the form of ଶ, then the form 
of ௭ே will be:

௭ே
ଶ

Substitute in the differential equation and equate the two sides of the equation, one will 
get:

௭ு
ଶ

௭ீ ௭ு ௭ே ଵ ଶ
ଶ

Apply the two conditions to this general solution, we get:

ଶ and ଵ
ଵ

ସఓ

ௗ௉

ௗ௭ ଴
ଶ

௭
ଶ

଴
ଶ
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The maximum velocity will be in the center of the tube where 

௭ ௠௔௫ ଴
ଶ

Converting ௭to the maximum velocity:

௭ ௭ ௠௔௫

ଶ

଴
ଶ

The pressure drop ଵ ଶ can be obtained by integrating ௭
ଵ

ସఓ

ௗ௉

ௗ௭
ଶ

଴
ଶ w.r.t. 

z, Integrating to obtain the pressure drop from ଵ ଶ

and using the average velocity ௭ ௔௩௚
௥బ

మ

଼ఓ

ௗ௉

ௗ௭
:

ଵ ଶ
௭ ௔௩௚

଴
ଶ

௭ ௔௩௚

ଶ

Where ଴


