Mass Balance



Mass balance for flow system

* For flow problem, apply mass conservation over all
the system or part of it.

input = output + accumulation

* In case of flow problems, we usually deal with flow
rates and steady state condition,

rate of input = rate of output (steady state)



Look to the following flow system

Ay
A
Avg velocity f

5 = process Y}

Fig. 1
Mass Balance:

n = pl Al Ul = pz A2 v: Check units

Note:
Mass velocity or mass flux G
G=pv withunits kg/s m?



Control Volume

Control volume for flow through a conduit.

Uy, Py

control surface

control volume Flg 2

a region fixed in space through which the fluid flows.

Note:
In most problems the control surface is taken as the wall of the
conduit.




Mass balance Eq. over a control
volume

In deriving the general equation for the overall balance of the property mass, the law of
conservation of mass may be stated as follows for a control volume where no mass is

being generated.

rate of mass output rate of mass input
from control volume from control volume

(rate of mass accumulation

. =0 (rate of mass generation)
in control volume



Assume a general control volume as shown below, and focus
on a differential element dA.

Flow through a differential area dA on a control surface

streamlines of
fluid stream

control volume

normal to surface

control surface

the rate of mass efflux from this element = (pv)dA cos «), where (dA cos a) 1s the

area dA projected in a direction normal to the velocity vector v, a is the angle between the
velocity vector v and the outward-directed unit normal vector n to dA



From vector algebra we recognize that (pv{dA cos «) is the scalar or dot product
p(v-n)dA. If we now integrate this quantity over the entire control surface A we have the
net outflow of mass across the control surface, or the net mass efflux in kg/s from the

entire control volume V: pL = Mass Scalar or dot product

velocity G ‘flux’  (v-n)=[lv||{In]| cosa
=v.1cosa =v cosa

net mass efflux
= vp cos a dA = p(v-n) dA
from control volume
Rate of accumulation

rate of mass accumulation %, dM
. = — pdV =—
in control volume ot dt

Substituting Eq.® (2) and (3) into (1) leads to general form of overall mass
balance.



JJP(V.H)dA+§jJJp AV = () srreeereessresssseniiin. (4)

* Apply this eq. to Fig. 2

where all the flow inward is normal to A, and outward normal to 4,
When the velocity v, leaving is normal toA4,, the

angle o, between the normal to the control surface and the direction of the velocity is 0°

and cos a, = 1.0. Where v, is directed inward, o; > n/2 «,1s 180°(cosa,; = —1.0)

Since a, is 0° and «, is 180°, using Eq.(4)

»”vp cos adA JTUP cos o, dA + ”-vp cos a; dA

A Az Ay

=U,p, A2 — vy py Ay
For steady state, dM/dt = 0in Eq.(3) And (4) becomes
m=pvy A =pyv; 4,



Notes: material balance can be
done over species or components

dM
moy, —m; +—— = R‘. ...................... (5a)
| dt
out In
accu gener
mulat ation
ion

i means componentiin
multicomponent
system



Average Velocity to Use in Overall Mass Balance

I the velocity is not constant but varies across the surface area,
an average or bulk velocity is defined by

{
v,, = — ij dA
A
A

[or a surface over which v1s normal to A and the density p is assumed constant.



Example 1

For the case of imcompressible flow (p is constant) through a circular pipe of
radius R, the velocity profile is parabolic [or laminar flow as follows:

e[

where v_._is the maximum velocity at the center where r =.0 and v 1s the
velocity at a radial distance r [rom the center. Derive an expression for the
average or bulk velocity v,, to use in the overall mass-balance equation.



Solution

The average velocity is represented by

i
0,y =— jjv dA
A
A

In Cartesian coordinates dA is dx dy.

However, using polar coordinates which are more
appropriate for a pipe, dA = r dr df,

where 8 is the angle in polar coordi-

nates. Substitutingd4 = r dr d6, and A = nR?

9: 4 &
and v in above equation and integrating
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9.
D == vmax Ficure 2,12 Differential control volume, dr *r d¢ * dz, for conduction analysis in

av 2 cylindrical coordinates (r, ¢. 2).



OVERALL ENERGY BALANCE

* Apply the principle of energy conservation to the
control volume in the same manner as mass
conservation. Begin with 15t law of Thermodynamics

AE =Q — W

where E s the total energy per unit mass of fluid,
Q is the heat absorbed per unit mass of fluid,

and W is the work of all kinds done per unit mass of fluid
upon the surroundings.



Derivation of Overall Energy-Balance Equation

rate of entity output — rate of entity input

+ rate of entity accumulation =0

The energy E present within a system can be classified in three ways.

Energy E




The total energy of the fluid per unit mass is then

2
v
E=U+ By + zg (ST)
rate of energy accumulation % v*
, = — U+ —+zglpdV
in control volume Ct 2
Y ——— (7)

Notes:

# The mass added or removed from the system carries internal, kinetic, and
potential energy.

# In addition, energy is transferred when mass flows into and out of the control volume.

# pressure-volume work per unit mass fluid 1s pV.

H=U+ pV

# the total energy carried with a unit mass is(H + v*/2 + zg)
# For a small area dA4 on the control surface the rate of energy efflux is
(H + v?/2 + zgXpvXdA cos 2)



net energy efflux . > 5
from control volume/ + 5 + zg {pv) cos «

A

To obtain the overall energy balance, we substitute Egs. (8) And (7) into (6)
and equate the resulting equation tog — Ws

Il

A

2

H+—+2
+2+g

)(pv) cos x dA + — JJ (U +

2

—-—i-zg)pdV-—q—Ws




Overall Energy Balance for Steady-State Flow System

Consider the following figure 4 with the following assumptions:
e Steady-state system.
* Single inlet and outlet.

* Ignore inlet a and exit height z, density p and enthalpy H
variations. Eg. 9 becomes

* 1-d flow cross the boundary. @
i
" heater —— 2 P2
. —1l D2
pump or - !
@ turbine T
0
Uy P 2
P T
Figure 4

reference plane




To determine the overall energy balance for
the common system shown in figure 4, we
can consider the following: since the angle
between the velocity vector and unit normal
vector iIs a= 0 and since the accumulation

term is O at steady state, Eq. 9 can be
reduced to

2 0 2 | :
”‘(H-i-%+zg)(pv)cosxd14+—0,;JJJ(U +%+zg)pdV=q-—Ws

A v




3 3
Mo Ml miz =g — W

— 242 i1 — — S
L'L’av 2”! av

[_]2 niz - ]'Il'nl +

I~ |

For steady state, m;, = p,v,,. A, = m, = m.

Dividing through by m so that the equationis on a unit mass basts,

L[ (r3),, (v1).,
H,—H, +—[( L ]+€I(Zz — 1) =0—Ws
2 UZ av vl B ieereeeeseesessarsrannse (10)

The term (¢°),,/(2¢,.) can be replaced by v2,/2x.

where x 1s the kinetic-energy velocity
correction factor and is equal to 2 /(¢>),

Eq. 10 can be rewritten as

1
Hy — H\ + - (b3 — L)+ 9z, —2) =0 — W
“2

2 av



Note: Kinetic energy term

A
Assume p = cons. And set cos a = 1.

Then multiplying the numerator and denominator by v,, A
noting thatm = py“A Eq.(11) becomes

I
) ” 3)dA_(v3),v=v2“
2x (13)




and (v°),, is defined as follows:

1
(03)3,, = — J:[(:f) dA
A (14)

Do

The local velocity b varies across the cross-sectional area of a pipe. To evaluate(y”) and
hence, the value of 2, we must have an equation relating v as a function of position in the
cross-sectional area.



For laminar regime

. 2
 Combine o = ”f;“ and v = umu[1 —(—}’-J

=15 ]
R
Substitute in eq. 14 and noting that A = zR? and dA
= rdrdf

1 2r ('R r2 3 '
v?),, = — 2v (l — ——) r dr do
M TCRZ 0 JO - Rz

@), (RRE =) 169 J ®

R : RS rdr = T (R* — r®)’r dr

LY

0

* On integration and rearrangement



1602
(v"’)av—- Cav J(R6—3rR + 3r*R?* — rr dr

160>, (R® 3 1 1

— av ___R8+_R8__R8
R® (2 4 2 8 )

= 2v),

*. o becomes
v, 0>

= = —+ = 0.50
(vJ)av 2039

Hence, for laminar flow the value of x to use in
the kinetic-energy term of Eq. (10) is 0.5

Note: for turbulent flow a is taken 1 for details see the text.



Example

[nitially, a tank contatns 500 kg of salt solution containing 10% salt. At
point (1) in the control volume 1n Fig. 4 , astream enters at a constant
flow rate of 10 kg/h containing 20% salt. A stream leaves at point (2) at a
constant rate of S kg/h. The tank is well stirred. Derive an equation relating
the weight fraction w,, of the salt in the tank at any time t 1n hours.

(1) it |
| || initial 500 kg salt
10 kg/h | | ~ solution (¢ = 0, 10% salt)
(20% salt)

control - [ .
volume 2 / (2) Fig. 4
tZZ / 5 kg/h



Solution

J]vp cos a dA =my, —m; =5— 10 = —5 kg solution/h

i | -

* Hence the total mass pal. eq. becomes:



* Now, make component bal., bal over salt
’.

J vp cos a dA = (S)WA — 10(0.20) = 5w, — 2 kg salt/h

o [ d Md dM
il [JPdV:Z(MWA)_: tw“+w4—dt—kgsalt/h
v

d

* Hence salt bal. eq. becomes {component Bal. Eq.}

dw dM b
I +WA dt =0  cececsssscccccscccnns ( )

e Substitute M from eq.(a) in eq. (b)
dw d(500 + 5¢)
PTG dt

* On rearrangement and integration

Sw, — 2 + (500 + 5¢) =0




Sw

—2+(500+5t)d

T+ Sw, =0
4 dw, |’ dt
wa=0.10 2 — 10w, B =0 00 + 5t

-—-I-In 2 — 10w, _}_m 500 + 5t
10 1 -5 500

. 1 2
w,= —0.1 (10000 ) + 0.20




v'Overall or macroscopic material (or energy or
momentum) gives an idea about the system from
outside the enclosure.

v'Therefore, overall balances (material; energy;
momentum) do not tell us the details of what
happens inside the system.

v'The previous discussion is useful for the next step
“momentum balance and shell momentum
balance’.

v’ The shell momentum balance will be made in
order to obtain the details of what happens inside
the system.



1 Scalars and Vectors

A scalar quantity has only magnitude.
A vector quantity has both magnitude and direction.

Scalar Quantities Vector Quantities
length, area, volume displacement
speed velocity
mass, density acceleration
pressure momentum
temperature force

energy, entropy lift , drag , thrust

work, power weight




