
Inside pipes & Falling film



•

• Consider a flow of fluid inside a circular conduit or pipe.

• Assume a control volume as shown in the figure.

• Assume fully developed flow i.e velocity,  = f(r)  f(x). No net 
momentum flux across the annular  volume at x and x+ x 
since x = x+x. Assumptions:

 incompressible Newtonian fluid.

 one-dimensional flow.

 steady-state, laminar flow.

 the flow is fully developed.



(3) previous slides.
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Note: 
The net momentum flux across the annular  volume at x and x+ x = 0.
Now, substituting eqs. (2) and (3) into eq. (1) and making rearrangement

Hence, 
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as shown in the following figure.
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in the previous equation,

We obtain

…………………. (10)

This result shows that the velocity distribution is parabolic as 
indicated in the previous figure.



To obtain avg velocity

• Use the average concept equation as given earlier.  

• Note:

• Combining eqs. (10) and (11) and integrating

• This eq. is called                                                which relates the 
pressure drop and the average velocity for laminar flow in a 
horizontal pipe.  
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Max velocity can be found from eq. 10 at r = 0

………………………. (13)

Combining eqs. (13) and (12), we obtain

………………………. (13)



• Meaning: a flow of a fluid as a film in laminar flow down a vertical 
surface.

• Applications: various phenomena in mass transfer; coatings on 
surfaces; condensation as filmwise condensation .. etc.  

• Control volume: shown in figure (1).

Shell thickness = x
Length: L in z-direction
Width: W in y-direction
 Total thickness of film

y

figure (1)



•

•

Assume Control volume is far from entrance and exit (no entrance and exit 
effects on shell flow), hence vz(x) is independent of z-direction.

.      

• Then substitute in momentum conservation eq. at steady 
state:
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• Rearranging and letting x  0 
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(1) and the max value at the wall.
Using Newton’s Law of viscosity: 
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• Combining eqs. (20) and (21)

•

• Using BC. At wall, x = ; z = 0. hence,

• Then

• The max velocity occurs at x = 0; hence, 
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• Avg velocity as before

• Substituting e. (24) into (26) and integrating

• Combing eqs. (25) and (27) we obtain,

• The volumetric flow rate, q, can be obtained by 
multiplying the avg velocity times the cross-sectional area  
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Ac = W



Note
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• Substituting into the definition of 

• Check Re

• Avg velocity


