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Partial time derivative

The most common type of derivative is the partial time derivative. For
example, suppose that we are interested in the mass concentration or density p inkg/m’

in a flowing stream as a function of position x, , z and time t. The partial time derivative:
of p1s dp/at. Thisis the local change of density with time at a fixed point x, , and z.
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Total fime derivative

Suppose that we want to measure the density in the stream
while we are moving about in the stream with velocities in the x, y, and z directions of

dx/dt, dy/dt and dz/dt, respectively. The total derivative dp/dt is
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This means that the density is a function of ¢ and of the velocity components dx/dt, dy/dt,
and dz/dt at which the observer is moving.




Substantial fime derivative

Another useful type of time derivative 1s obtained if the
observer floats along with the velocity v of the flowing stream and notes the change 1n
density with respect to time. This is called the derivative that follows the motion, or the
substantial time derivative, Dp/Dt.
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where v_, v, and v, are the velocity components of the stream
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velocity v, which is avector. This substantial derivative is applied
to both scalar and vector variables.



Coordinate systems

A.Cartesian coordinate system
B.Cvylindrical coordinate system
C.Spherical coordinate system




Relation between Cylindrical system
and Cartesian system

The relations between rectangular x, y, z and
cylindrical r, 8, z coordinates are

+Jx*+y* b= tan~! 2
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General notes on tensors

Temperature and mass are scalar quantities. The gradients of these (VT
or YC,) and the flux terms (q/A or J/A or Ny/A) are vectors. In marked

contrast, the velocity tself 1s a vector, and the gradient of this (VU) 1S a
second-order tensor

orrespondingly, the momentum flux or shear stress is also a second
order tensor. Instead of a simple vector equation as given before, the
momentum equation in three dimensions is a tensor relation, which
for an incompressible fluid is

T = _u[vv 4 (VU)T] ................ (1)




®» The previous equation shows that the stress tensor t is a function of
the shear rate tensor YU and its tfranspose (VU)T.

» Velocity, which is a vector quantity, has three components. Any
one of these components can vary in three directions.
Consequently, there are three components taken three ways, or
nine possible terms. In the form of an array, these terms are

oU,/ ax 3U,/dx 9JU,/ox
vu=| au,/9y 8U,/3y oU,/dy
U, /8z dU,[3z 3dU,/éz




» The franspose tensor (VU)Tis just the previous equation with the
rows and columns exchanged;

3U,/ox dU,[dy 8U,/dz
(VU)"=| 8U,/ax 3U,/3y 3U,/3z
3U,/ax 3U,/3y 3U.,|dz

» Since Eq. (i) must be homogeneous, the left hand side must also
be a second-order tensor, i.e.,
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Look !

» FEach row of the tensor has three terms. In the first row of Ea. (ii) there is one
normal stress Txx , and two tangential stresses, 'l'x). and sz

» The three normal stresses in Eq. (i) (the diagonal elements) act in the x, v,
and z directions, and each is the force per unit area on a plane
perpendicular to the direction in which it acfs.




Summary: As already indicated, Eq. (i) is o

shorthand representation for nine equations. Several of
these are’

v=—u[VU + (VU)']
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T, = —p(0U;/3x + 3U,/3x) = =24 (U, /3x) ...........{IlI)
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» [or the one-dimensional problem of Eq. given in the beginning of
fhe semester, U,, varies in the y direction only, and both U, and U,
are zero. Thus, most derivatives in VU are zero:

U, /ox =3U, [3z =0
oU,/ox = dU,[3y = 3U,[8z =0
dU,/3z=3U,[dy =3U,[/3z=0

®» From the nine equations represented in shorthand by Eq. (i) only two
equations remain, Egs. (iv) and (v), both of which are identical to
Eq. given for viscosity law since aU,/8x is zero and %y equals ,, . It
therefore follows that for the one-dimensional problem where given
EqQ. before is valid, there are only two non-zero shear stress terms,
which are T, and T, .




The momentum flux 7,..
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Stress tensor on the yZ plane The xy component as a momentum flux




The momentum flux T, _
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Flat plate piate

Stress tensor on the xz plane The yx component as a momentum flux
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