Conservation Equations



Differential equations of the
conservation

I. Differential equations of the conservation
of mass (equation of continuity)

ii. Differential equations of the conservation
of momentum

The conservation equations are usually
called equations of change because they show
the variations of properties with time and
position.
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Differential Equation of Continuity

* Consider the following differential volume element Ax Ay Az which
is fixed in space. The mass balance for a pure fluid thatis flowing
through this element is:

(rate of mass in) — (rate of mass out) = (rate of mass accumulation)

. (1)
* Let p is the density or conc. Of fluid kg/m?3

* For x-dir. Mass entering the face at

(Pv_v)y+Ay (PV2)z+4
x is (pv,), Ay Az kg/s and leaving at S ]
§ |
X + AX is (pv,),+a, Ay Az. And so to N\ | ;
r
other directions. (pode | T { (p0x)xax
A |
* Note {pv,) means the mass flux < \\
Y
in kg/s.m2. ’ >« t \>
(x, »:2) \t )
(pv;), (pvy)y




The rate of mass accumulation in the volume Ax Ay Azis

0
rate of mass accumulation = Ax Ay Az -£

. ceeererreeerereeenenes (2)
After substituting previous expressions in eq. (1) and d|V|d|ng on
the volume Ax Ay Az, we obtain

[(pvx)x — ( x + A.r] [(pU ) pU )2 + Ay] [(pvz)z T (.pvz)z + Az] ap
Ax Ay Az ot

Taking the limit as Ax, Ay, and Az approach zero, we obtain the equation of continuity
or conservation of mass for a pure fluid.

o _ _[_a_(_pv_,.,) Apv,) a(pv,)]

+ +
ot Ox 0y o 0z (4)

The vector notation on the right side of Eq. (4)

comes from the fact that v is a vector..

Eq. (4) tells us how density p changes with time at a fixed point
resulting from the changes in the mass velocity vector pyv.



* Eg. (4) can be expanded to give another form like
this

dp v, Ov, Ov, dp ap dp
— = —pl — + + _ — —_ L —
ot p(ax dy az) (UI ox 0 dy T,

. (5)
e Rearranging eq. (5) vields
ap ap ap op (6ux dv, v,
—_— — — 4 L = — +
ot e TGy T e T TP Gx T ey T 2z
................................... (6)
ap ap ap dp
s - — 4+ p.— = —p(V -
ot T e Ty T T TPV e (7)
* Or




Equation of continuity for constant density

* This situation often meets when the fluid is
compressible where the density p is constant.

* Therefore, the term Dp/Dt in eq. (8) is zero; hence,
eq. (8) becomes at steady or unsteady state with p
= constant.




Relation between Cylindrical or
system and Cartesian system

The relations between rectangular x, y, z and x
cylindrical r, 8, z coordinates are

x=r cos 8 y=rsin@ z=z

X

Using relations of eq.(10), the continuity eq. (4)
for cylindrical coordinates becomes op _ d(pv,) dlpv) a(pu,)]

3 _ a( ) 3 ot ox Ay . 0z
dp.- 1 olprv,) 1 0d(pvg) d(pv,)
ot g r Or K r 06 i 0z

= 0

See next slides for derivations
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Differential control volume, dr *r d¢ * dz. for conduction analysis in
cylindrical coordinates (r, ¢. z).




Cylindrical Coordinates

. . . . . (puz)z +Az
The continuity eq. in cylindrical
coordinates can be derived from o l
a mass balance performed on (PV_ Ir:..:'""i “““““
cylindrical element. The result is N r/'(p‘)e)e%
Az oy :

similar to the continuity eq. (4) (pUe)e/i) PN

but for cylindrical coordinates. ix‘};\iﬁ;ﬂ__}*\pur)m
0., Lolpro)  1opv) 3pv) o (pu),

at r Or r 00 0z



g 4+ do
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Differential control volume, dr* rsin 6 d * r d6. for conduction analysis in
spherical coordinates (r. ¢. 6).



Spherical Coordinate

Applying eq.1 to the spherical differential volume element, we
obtain the continuity equation in spherical coordinates.

(PLg)o+ a0

VRN Z rsing do

dp 1 dpriv,) N I d(pvg sin ) L dpvy)
2

ot r or r sin 0 a0 rsin 0 d¢




The momentum Equation or the Equation
of Motion
Derivation of Equations of Momentum Transfer

A momentum balance written for a control volume Ax by Ay by Az is

(P”y)y+Ay (Pv;);4n2

N T
(Pvy )y \t
A

z !
e
¥ y | 3

Ay\
(x,7.2) —/ BA \‘

(pvz)z (va)y
rate of rate of
momentum In momentum out

. (sum of forces ) B (rate of momcntum)

acting on system accumulation

(wa)x;Ax




Note

Mechanism of
Momentum flows

Molecular
Transfer due to
velocity gradients

Convection or
bulk flow




* It is known from Newton’s Law that Eq. 13 can be
written for a particular —x, y, or z. Eq. 13 is thus a
vector eq. having three component equations.

* We are going to derive the x-directed momentum
components and forces; similar derivations for y
and z directions can be handled analogously.

e The rate at which the x component of momentum enters
the face at x in the x direction by convection is (pv,_v,), Ay Az
and the rate at which it leaves at x + Ax i1s(pv, v.), +4. Ay Az

e The x component of momentum entering the face at y is

(pv,v.), Ax Az, and leaving at y + Ayis (pv,v,.), ., Ax Az

* For the face at z we have (pv_v.), Ax Ay entering, and at

z + Az we have (pv,v.),,,. Ax Ay leaving.
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 Now, the net convective x-momentum flow into the volume
element Ax Ay Az is

[(pvev)s — (P02 Vx4 ac)BY Bz + [(pv,v,), — (p,0,), +4,]8x Az
+ [(puz Ux): — (PUZ Ux)v+dz]Ax Ay

’ oo . (14)
* Eqg. 14 represents the mechanism of convectlon momentum

flow due to bulk-fluid flow.

* Molecular mechanism: velocity gradients exist in the fluid due
to forces exerted on the fluid (see viscosity definition).

* The rate at which the x component of momentum
enters the face at x by molecular transfer is(t_.), Ay Az,

and the rate at which it leaves:the surface at x + Ax is (t,), 44, Ay Az

e Similar expressions can be written for the other faces.



* The net x component of momentum by molecular transfer is

[_(Txx)x - (Txx)erAx]Ay Az + [(Iyx)y _ (Tyx)y+Ay]Ax Az + [(sz)z o (T:x):ﬂ&:}Ax Ay
................................... (15)

Note

These molecular fluxes of momentum may be considered as shear stresses and
normal stresses. Hence, 7, 1s the x direction shear stress on the

y face and 7_, the shear stress on the z face. Also, 7. 15 the normal stress on the x face.

LIRS & ¢

z
|
|
1

Stress tensor on the YZ plane Stress tensor on the xz plane



Forces acting on the fluid element

* There are a number of forces acting on the fluid
element, such as
1. Pressure force
2. Gravity force
3. Surface tension
4. Magnetic effects

* In general, and in fluid mechanics it is common to
consider only pressure and gravity forces.

* For x-direction these are
(P, — Pr+adAy Az 4 pg, Ax Ay Az e (16)

where g, 1s the x component of the gravitational vector g.



e The rate of accumulation of x momentum in the element is

I(pv,)
Ax Ay Az a[" TR ()

 Substituting equations 14-17 into eq.13 dividing on Ax
Ay Az and taking the limits as Ax, Ay, and Az approach
zero, we obtain

opv) _[dlpows) dlpvyvs)  3(pvowy)
d! dx oy dz
oT aT oT d
. xx 4 yX 4 x _ __)2 " 0g.
0x ay 02 ax

* Eg. 18 is the x component of the equation of motion.



The y and z components of the differential equation of motion are, respectively,

a(pvy)  [alpu,v,) , Apvyvy) d(pwvy)
at ax ady az
oT Jd7 0T d
_ Sl L) _£+ 00,
ax dy 0Z dy (19)
3(pv,) 3(pvv,) ,3ovyvd) 3(pv,v,)
at B ] dx ay 0Z
0Ty, 0Ty, 0T, dap
= i & o= — —— = D
ax dy 0z 0z i



Notes for next slide

p a[pu a(pv a(pu:] Continuity eq.
o + N
ot 0x dy . 0z

Sl Teeeeeeeerssrnreneeeesennenns (4)

Expand this term Expand this term

opvy) _[dlpows) dlpvyvd)  3(pvowy)

ot ax dy 9z
oT aT oT 0
— = =X =) iid + pg.
0Xx dy 9z ox

. (18)

Then you will get eq. (21)



 Combining continuity eq.(4) and eq. (18) we obtain
an eqg. of motion for the x component and we can
also do the same for y and z components as
follows:

dv, dVy 0V, dvy 0Tey 0Ty 0Ty ap

pl—tv, —*tv, —TFv, T~ + + +pg, — —

dat T oox dy 0z 0X dy 4z Cox
.............................. (21)

v du Jv du 0T a7 d7. ap

p—y-+vx-—z+vy——z+vz——y = Y +pgy —

dt dx dy 02 dx ay az dy
PSP (22)

—+v, —+v,—+v, —|=— + + + -
P\ ar Toax Y 9y * 9z PIz



Note

Adding vectonally, we obtain an equation of motion for a pure fluid.

cevverreennenes (24)

We should note that Egs.(18) — (24) are valid for any continuous
medium.



Equations of Motion for Newtonian fluids with
varying density and viscosity

* Equations (18) to (24) are used to obtain velocity distributions.

* To use these egs. you need expressions for stress in terms of
velocity gradients and fluid properties.

* For Newtonian fluids the expressions for the stresses are (for
rectangular coordinates)

, v, 2 Vo) dv, duv,
Tax = "2p — + o p(Vey Ty = Toy =~ +
ox 3N (25) e T T T G T gy 29)
dv 2
Tyy = _2#a_y+_3_#(v v) ;= = __P'(avz_}_ avx)
Zx xZ ax BZ
(26) (30)
5 5 e
T = _2#_1}? +—pu(V-v) dvy dvy, dv,
oz 3 L (27) (V-v) = . + 5 + P
ey Bl e ———————i (31)
TX)' = Tyx = —u al —+- )') B —p(aU,/8x+ aUx/ax)= —Zy(aU,/ax)
0y 9% ) .. (28) T - —HI(U3y) . (3U,/6x)]

| I

Tay —p[(aU,/ax) * (aUx/ay)]



Equation of Motion for Newtonian fluids with varying
density and viscosity After
x-component of momentum
rectangular coordinates

* When eqgs. (25) to (31) are combined with ea. (21).

dv, dv, dv, v, 0T, 03T, 3}
the result p(iﬂ‘r;f_wy_v_ﬂzi):_{f# T, 07
ot dx dy dz x  dy oz
Dv, d - du, 2 0 duy 0dUy
= — — = Vv +— +
P Dt  ox - dx 3 o ) dy a dy dx
d dv, OdU, op o
+ — + - — +
o7 7 Py y o Px e (31)

Similar equations are obtained for the y and z components of momentum



Equations of Motion for Newtonian Fluids with
Constant Density and Viscosity
®* The equations above are seldom used in their complete forms

® When the density p and the viscosity w are constantwhere (V-v) = 0

the equations are simplified and we obtain the equations of motion for

Newtonian fluids. "

* These equations are also called the Navier—Stokes equations.

® FEquation of motion in rectangular coordinates. for x-component

v, v, ov, dv, 3*v, 9%v, d%v,.\ ap
—+t v, —+v,—tv,—}|=n + + - —+ pg,

equations

>

t ax Y ay %oz ax%:  ay? 9zl

-

Novier-Slokes
w
N



* We do the same for y and z components, respectively.

§ duy,  dv, dv, v, a%v, a%v, d%v,\ ap
S pl—24v, 2+, —+uv, —| = + + -+
% p(ar Tax T ey R az) ”(axz oy ezl ) ay T
%} .................... (33)
0:5 2 2 2
§ avz+ 6vz+ avz+ du, B d vz+a v, d°v, ap+
3 P\ar 7 "Tox v”ay "5z axt  ay? a4z’ oz 1I¢
.................... (34)
« Combining the three equations for the three components, we obtain
Dv .
p—= —Vp+pg+ uV-y RSO (- 1)

Dt



Equation of motion in cylindrical coordinates.

* We do the same procedure as before for coordinate system.
e These equations are as follows for Newtonian fluids for constant p and w

for the r, 8, and z components, respectively.

ov, dv, Uy du, vg v, ap
p + v, ————tu, = - —
at ar r 06 r .0Z or
g a (1 d(rv,))\ 1 9%, 2 dug 9d%v, (36)
. + — | - + = - — + o a7 7 ¢
~l§ H ar \r or rt 96 r?ooe ’ 9z’ P3r
s dv g dug Vg aUG VU,Uy avg 1 ap
pl—+ v, —+——+ ty, —|= —-—
8 at ar r 90 r 0z r aé
§ a1 d(rvg) 1 Bzvg 2 dv, azvg (37)
+ —f - + = —+ = + e 0 ¥ ¢
SS Hlar\r  ar P2 302 s2a0 8zt | PYe
S dv, du, vy dv, dv, ap
D (g, gl L
ot or r 06 0Z az

+ &

1 9 [ av,\ 1%, 0%,
__(, )+ LU e (38)

ror\ or) r*ae’ a7’



Recommended Method

**The continuity and Navier-Stokes Equations can be
used to set up descriptive equations for various
problems.

It is possible to formulate an equation for each flow
problem, but it is safer to begin with the general
equations and cancel terms that do not apply. This is
the recommended method in this course.

**The solution technique involves obtaining the
descriptive equation for the system, and solving (if
possible) subjected to the boundary conditions.

**For a majority of problems, especially in turbulent flow,
the equations cannot be solved exactly, due to the
presence of the nonlinear acceleration terms.



**A number of solutions exist for laminar-flow (also
called viscous-flow) problems in which the
acceleration terms vanish from the differential
equation of motion.



