
Conservation Equations



Differential equations of the 
conservation 

i. Differential equations of the conservation
of mass (equation of continuity)

ii. Differential equations of the conservation
of momentum

The conservation equations are usually
called equations of change because they show
the variations of properties with time and
position.





Coordinate systems

Cylindrical Coordinates:  , ,T r z

Spherical Coordinates:  , ,T r  

z

y

x

Cartesian coordinates: T (x, y, z) T (x, y, z)



• Consider the following differential volume element x y z which 
is fixed in space. The mass balance for a pure fluid  that is flowing 
through this element is:

• Let  is the density or conc. Of fluid kg/m3

• For x-dir. Mass entering the face at

x is                            and leaving at 

is                         . And so to 

other directions. 

• Note            means the mass flux

in kg/s.m2. 

……………………………..  (1)



……………………………..  (2)
After substituting previous expressions  in eq.(1) and dividing on 
the volume x y z, we obtain 

……………………………..  (3)

……………………………..  (4)
(4)

Eq. (4)



• Eq. (4) can be expanded to give another form like 
this

• Rearranging eq. (5) yields

• Or

……………………………..  (5)

……………………………..  (6)

……………………………..  (7)

……………………………..  (8)



• This situation often meets when the fluid is 
compressible where the density  is constant.

• Therefore, the term D/Dt in eq. (8) is zero; hence, 
eq. (8) becomes at steady or unsteady state with 
= constant.    

……………………………..  (9)



Relation between Cylindrical or 
system and Cartesian system

……………………………..  (10)

Using relations of eq.(10), the continuity eq. (4) 
for cylindrical coordinates becomes

……………………………..  (11)
See next slides for derivations





Cylindrical Coordinates

(r)r+r

(r)r

()+

()

z

r

The continuity eq. in cylindrical
coordinates can be derived from
a mass balance performed on
cylindrical element. The result is

……………………………..  (11)

r

similar to the continuity eq. (4) 
but for cylindrical coordinates.





Spherical Coordinate
Applying eq.1 to the spherical differential volume element, we 
obtain the continuity equation in spherical coordinates. 

……………………………..  (12)
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The momentum Equation or the Equation 
of Motion 

• A momentum balance written for a control volume x by y by z is 

……………………………..  (13)



Note

Mechanism of 
Momentum flows

Convection or 
bulk flow

Molecular 
Transfer due to 

velocity gradients



• It is known from Newton’s Law that Eq. 13 can be
written for a particular –x, y, or z. Eq. 13 is thus a
vector eq. having three component equations.

• We are going to derive the x-directed momentum
components and forces; similar derivations for y
and z directions can be handled analogously.

•

•

•
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• Now, the net convective x-momentum flow into the volume 
element x y z is

• Eq. 14 represents the mechanism of  convection momentum 
flow due to bulk-fluid flow. 

• Molecular mechanism: velocity gradients exist in the fluid due 
to forces exerted on the fluid (see viscosity definition).

•

• Similar expressions can be written for the other faces.   

……………………………..  (14)



• The net x component of momentum by molecular transfer is

Note

……………………………..  (15)



Forces acting on the fluid element
• There are a number of forces acting on the fluid 

element, such as
1. Pressure force 

2. Gravity force

3. Surface tension

4. Magnetic effects

• In general, and in fluid mechanics it is common to 
consider only pressure and gravity forces.

• For x-direction these are

where                                        

+ ……………………..  (16)



•

• Substituting equations 14-17 into eq.13 dividing on x 
y z and taking the limits as x, y, and z approach 
zero, we obtain

• Eq. 18 is the x component of the equation of motion.

….……………………..  (17)

….……………………..  (18)

_



….……………………..  (19)

….……………………..  (20)
z



Notes for next slide

….……………………..  (18)

….……………………..  (4)

Expand this termExpand this term

Substitute 

Then you will get eq. (21)

Continuity eq. 

_



• Combining continuity eq.(4) and eq. (18) we obtain 
an eq. of motion for the x component and we can 
also do the same for y and z components as 
follows: 

….……………………..  (21)

….……………………..  (23)

….……………………..  (22)



Note

(18) – (24) are valid for any continuous

….……………………..  (24)

medium.



Equations of Motion for Newtonian fluids with 
varying density and viscosity

• Equations (18) to (24) are used to obtain velocity distributions.

• To use these eqs. you need expressions for stress in terms of  
velocity gradients and fluid properties.  

• are (for 
rectangular coordinates) 

….……..  (25)

….……..  (26)

….……..  (27)

….……..  (28)

….……..  (29)

….……..  (30)

….……..  (31)



• When eqs. (25) to (31) are combined with eq. (21), 
the result 

……..….……..  (31)

y



•

•

•

• for x-component 

……..….……..  (32)
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• We do the same for y and z components, respectively.

•

……..….……..  (34)
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• We do the same procedure as before for coordinate system.

•

…………..….……..  (38)

………....….……..  (37)

….……..….……..  (36)
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Recommended Method

The continuity and Navier-Stokes Equations can be
used to set up descriptive equations for various
problems.

It is possible to formulate an equation for each flow
problem, but it is safer to begin with the general
equations and cancel terms that do not apply. This is
the recommended method in this course.

The solution technique involves obtaining the
descriptive equation for the system, and solving (if
possible) subjected to the boundary conditions.

For a majority of problems, especially in turbulent flow,
the equations cannot be solved exactly, due to the
presence of the nonlinear acceleration terms.



A number of solutions exist for laminar-flow (also 
called viscous-flow) problems in which the 
acceleration terms vanish from the differential 
equation of motion.


