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Heat diffusion Equations 

methodology

1. Equations of heat diffusion can be obtained by
applying the energy balance equation over a
differential element or a differential control
volume.

2. Solving these differential equations subjected to
certain boundary conditions will lead to the
temperature distribution in a medium.

3. Once this distribution is known, the conduction
heat flux at any point in the medium or on its
surface could be computed from Fourier’s law.



Heat Transfer_ Basic information 

• Heat transfer is A vector 
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Heat transfer has direction plus magnitude 

and therefore it is a vector quantity



Indicating direction for heat transfer (+ve in the +ve 

direction and –ve in the –ve direction)



The various distance and angles involved when 

describing the location of a point in different 

coordinate system



The heat transfer vector is always normal to an isothermal 

surface and can be resolved into its components like any 

other vector 

Top; Bottom

Side left; side right









Fourier’s Law

• A rate equation that allows determination of the conduction heat 

flux from knowledge of the temperature distribution in a medium

Fourier’s Law

• Its most general (vector) form for multidimensional conduction is:
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Implications:

– Heat transfer is in the direction of decreasing temperature 

(basis for minus sign).

– Direction of heat transfer is perpendicular to lines of constant 

temperature (isotherms).

– Heat flux vector may be resolved into orthogonal components.

– Fourier’s Law serves to define the thermal conductivity of the

medium
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Heat Flux Components

(2.22)
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• Cylindrical Coordinates:  , ,T r z
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• Spherical Coordinates:  , ,T r  

• Cartesian Coordinates:  , ,T x y z

T T T
q k i k j k k

x y z

     
    

  

xq yq zq

(2.3)

z

y

x

.



Energy Balance:
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This is the general thermal 

diffusion equation for 

Cartesian coordinate system.



Heat Equation

Summary: The Heat Equation
• A differential equation whose solution provides the temperature distribution in a

stationary medium.

• Based on applying conservation of energy to a differential control volume 

through which energy transfer is exclusively by conduction.

• Cartesian Coordinates:

Net transfer of thermal energy into the 

control volume (inflow-outflow)
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•

Thermal energy

generation
Change in thermal

energy storage



Heat Equation (Radial Systems)
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•

• Spherical Coordinates:

• Cylindrical Coordinates:
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Heat Equation (Special Case)

• One-Dimensional Conduction in a Planar Medium with 

Constant Properties and No Generation
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Boundary Conditions

Boundary and Initial Conditions
• For transient conduction, heat equation is first order in time, requiring 

specification of an initial temperature distribution:    
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• Since heat equation is second order in space, two boundary conditions

must be specified.  Some common cases: 
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Problem 1

Consider steady-state conditions for one-dimensional

conduction in a plane wall having a thermal conductivity, k =
50 W/m K and a thickness, L = 0.25 m, with no internal heat

generation.

Determine the heat flux and the unknown quantity for each

case and sketch the temperature distribution, indicating the

direction of the heat flux



SOLUTION




