Discussion Heat

Applications on Heat Diffusion
Equations
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Constant Surface Temperature:
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In case convection B. C.5

Follow the same procedure
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Equivalent thermal circuit
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Overall Heat transfer Coefficient ‘U’
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The Plane Wall

Consider one-dimensional, steady-state conduction in a plane wall of
constant k, with uniform generation, and asymmetric surface conditions:

« Heat diffusion equation (eq. 2.3) :
d’T ¢
07,4
dx< k
General Solution after taking double integration:
T=—dx2icx+C,
4

Boundary Conditions:

TED =T, T(L) =Ts,

[.5',1

T

Tw,l’hl

|4

T(x)

X
+L

T_\'_.Q

N

TM,E d h2



Temperature Profile
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* When both surfaces are maintained at a common

Symmetrical Distribution

temperature,
* Previous equation becomes

=T,

=T,

T(X)=——
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? What iIs the location of the maximum T T T
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Symmetrical Distribution

» Note that at the plane of symmetry:

|

ar
dx

j =0 :>q"\X:O =0
Xx=0

“ Equivalent to adiabatic surface
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Calculation of surface temperature T,

In previous two equations the surface temperature, T, is needed.
» Boundary condition at the wall:

dT g )
—k— =h(T,-T,) -
d S % Io I 1
X X= L Al T(x) 11
A |

Substituting ( T/dx),-, from equation | ::T\- ”

of temp. digtibution i.e g i~ > 9oy

A 1 cond i1

2 2 Al L T T T
o e E o

1__ +Ts A i T..h

Note: You can obtain the same results by
applying energy balance;

L .
S Ts=T, +qh gAL =hA(T, -T,)




Example 1

A plane wall of thickness 0.1 m and thermal
conductivity 25 W/m'K having uniform volumetric
heat generation of 0.3 MW/m?3 is insulated on one
side, while the other side is exposed to a fluid at
92°C. The convection heat transfer coefficient
between the wall and the fluid is 500 W/m:Z.K.
Determine the maximum temperature in the wall.



Solution

KNOWN: Plane wall with internal heat generation which is insulated at the inner surface
and subjected to a convection process at the outer surface.

FIND: Maximum temperature in the wall.

SCHEMATIC:
k=25W/m-K

I 9-0.3x10°W)mn3

T o
Insulation TTT‘ 10,=92°C
, h =500 Wfm*-K
I—yx L =G.Im

ASSUMPTIONS: (1) Steady-state conditions, {2) One-dimensional conduction with uniform
volumetric heat generation, (3) Inner surface is adiabatic.

ANALYSIS:  From previous equations for symmetrical wall, the max temp. is:

To = 'fl[—f2 /2k+Ts.  ButT, not given




The outer surface temperature tollows from  Previous equation of symmetrical

Apply Overall heat balance
Tg =Ty + qUh Sr— t’i)n - Eout + Egz =€y " Egen=Eou =0 con
T, =92°C+0.3x10° E}x 0. Tm/500W/m~ -K=92"C+60°C=152"C.

m

It follows that

Ty = 0.3x10° W/m® x(0.1m)* / 2% 25W/m - K+152°C

T, = 60°C+152°C=212"C.



Exercise
How can you find the heat flux leaving the wall?

Method 1




Radial Systems
Cylindrical (Tube) Wall Spherical Wall (Shell)

J G Iy

F

Solid Sphere




Hollow cylinder no generation only r-
direction

Cylindrical (Tube) Wall

Find the temp.
distribution and
the heat rate.

Follow the same
procedure.




To obtain temp. distribution

e Solve the previous eq. and applying suitable B.Cs.

* Assuming the value of k to be constant. Double integration
gives the general solution:

Ir)=Cilnr+
I(ry)=T.;, and T(r) =T,

Applying these conditions to the general solution. we then obtain

I.1=Cilnry+C, and T,,=Cilnrn+ G

Solving for C; and C; and substituting into the general solution. we then obtain
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Apply Fourier’s Law

dT
g, = —kd—"= —k(27rL)
_ 2"’TLk(T.s,l - s,2)
= In(ry/ry)

The thermal resistance is

111 (7'2 7'1)
2Lk

Rr.cond =
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Note

a Toy— Twg
™ 1 L In(r/r) | In(sin) | In(ry/r;) L1 (a)
2ariLhy  2whkyL 27hkgL 2wkcL  27ryLhy

Overall heat transfer coefficient, U, Is obtained

as follows

S
g, = R = UA(T»; — Two) (b)
tot

If Uis defined in terms of the inside area, A, = 2nrL,
the above egs. (a) and (b) yield

1T r) 1 1
1 1 "
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Look!!

This definition Is arbitrary, and the overall coefficient
may also be defined in terms of the outside surface
area, A, or any of the intermediate areas. Note that

Ud, = Usdy = Usds = Updy = (3R)

and the specific forms of U,, U;, and U, may be
Inferred from Equations (a) and (b).



Radial Systems

Heat diffusion equation in li kr d_T 14=0
the r-direction for steady- r dr dr 4=
state conditions:
Assume k = constant j

| T:—ir2+CInr+C
General Solution: 4k 1 2

" . dT
Boundary Conditions:  —| =0 T (r,) =T,
dr r=0

Temperature profile:

2 2
Al r
T(r)= 1-— |+T,| (36

2
I

« Calculation of surface temperature:

Ir
g(nrZl) =h@mrL)(T,~T,) and |Ts=T. +g—rc; (3.7




For Spherical shape

* Fourier’s law, for steady-state, one-dimensional
conditions with no heat generation

q, = —AJ(/—T— — k(4™ (/T

dr (/7

e where A4 =4r/2is the area normal to the

direction of heat transfer / -
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* Assuming k = cons.
. 4W£*(T5_1 - Is-l)
{ l __._-rl) . {1 -"“r:)

q,
e Thermal resistance

1 (1 1
'RT_CDﬂd Ak (m'-"ul 7o )

* For temp. distribution follow the common
procedure as explained before.




Summary

One-dimensional. stezuly—state solutions to the heat
equation with no generation

Plane Wall Cylindrical Wall* Spherical Wall”
. d’T _ 1d{( . dr 1d|[ »dT)\ _
Heat equation PRl 0 r ar ( ar ) 0 2 dr (.1 7 ) =0
Temperature ATY + AT 0ry) In (#/ry) I, —A T[ 1— (?‘1/")]
distribution . Tf In (r\/r,) ’ 1 = (ry/ry)
" AT kAT kAT
Heat flux k= —
@) L rin(ry/ry) r2[(1/ry) — (1/1y)]
_ AT 2wlk AT 4k AT
Heat rate (g) kA~ In (ry/ry) (r,) — (Ury)
Thermal L In (r5/ry) (1/ry) — (1/ry)

resistance (R, conq) kA 2mwLk 47k




