Discussion _ Heat

Applications on Heat Diffusion Equations

apply BCA(1) $Ts,_1 = C_2$ $C_2 - Ts,_1$ (4)apply BC(2) $Ts,_2 = C_1 L + Ts,_1$ $C_1 = (Ts,_2 - Ts,_1)/L$ (5)Temp. distribution $T(x) = (Ts,_2 - Ts,_1) \times Ts,_1$ co linear distribution of the previous conditions.

To obtain H.T. R

apply Fourier's Law

$$Q_x = -k A \frac{dT}{dx} = -k A \frac{dT}{dx} = -\frac{|T_{5,2} - \overline{1}_{51}|}{|T_{5,2} - \overline{1}_{51}|}$$

$$= -k A \frac{T_{5,2} - \overline{1}_{51}}{|T_{5,2} - \overline{1}_{51}|} = \frac{k}{L} (\overline{1}_{5,1} - \overline{1}_{52})$$

$$Q_x'' = \frac{Q_x}{A} = \frac{k}{L} (\overline{1}_{5,2} - \overline{1}_{51}) = \frac{k}{L} (\overline{1}_{5,1} - \overline{1}_{52})$$

In case convection B. C.s

Follow the same procedure

Thermal resistance

For Convection Heat Transfer; Newton's Law $Q = h A (Ts - Too) = \frac{(Ts - Too)}{\frac{1}{h}A} = \frac{(Ts - Too)}{R_{t,conv}}$

Rt, conv = 1/hA

Find the Equivalent thermal circuit 'Network'

Equivalent thermal circuit

Overall temperature difference

Note

Themal vesis. for rad. could be defined via

Strad = hr A (Ts-Tsur) = (Ts-Tsur) Ts-Tsur

Thr A Rtrad

Where Rt, rad = Thr A

Beauning in mind that Rt, rad and Rt, conv

a ct in parallel.

Composite Wall

Overall Heat transfer Coefficient 'U'

Overall Heat Transfer Coeff. U
* I can be defined by an expression
a natogons to Newton's law of Cooling
Q = UA DT
Where
DT: overall temp diff.
A: Surface area
U overall is related to the total Resis thermal
résistance, Re Which given in the prévions
Egs 1. P
$ \frac{T_{X} = \Delta T - T_{X,1} - T_{X,2}}{T_{X,1} + T_{X,1}} = \frac{11}{2} $ $ \frac{T_{X,1} - T_{X,2}}{T_{X,1} - T_{X,2}} = \frac{11}{2} $
If Rotal ZR+

rupare the previous egs Rtotal A [1/h, + LA/RA + LB/RB + LK + 1/h2

Note

The Plane Wall

Consider one-dimensional, steady-state conduction in a plane wall of constant k, with uniform generation, and asymmetric surface conditions:

Heat diffusion equation (eq. 2.3):

$$\frac{d^2T}{dx^2} + \frac{\dot{q}}{k} = 0$$

General Solution after taking double integration:

$$T = -\frac{\dot{q}}{2k}x^2 + C_1x + C_2$$

Boundary Conditions:

$$T(-L) = T_{s,1}, T(L) = T_{s,2}$$

Temperature Profile

$$T(x) = \frac{\dot{q}L^2}{2k} \left(1 - \frac{x^2}{L^2} \right) + \frac{(T_{s,2} - T_{s,1})}{2} \frac{x}{L} + \frac{T_{s,1} + T_{s,2}}{2}$$

- Profile is parabolic.
- Heat flux is not independent of x

Symmetrical Distribution

- When both surfaces are maintained at a common temperature, $T_{s,1} = T_{s,2} = T_s$
- Previous equation becomes

$$T(x) = \frac{\dot{q}L^2}{2k} \left(1 - \frac{x^2}{L^2} \right) + T_s$$

? What is the location of the maximum temperature?

$$\left| \therefore \frac{T(x) - T_{\text{max}}}{T_s - T_{\text{max}}} = \left(\frac{x}{L}\right)^2 \right|$$

Symmetrical Distribution

➤ Note that at the plane of symmetry:

$$\left(\frac{dT}{dx}\right)_{x=0} = 0 \quad \Rightarrow q''|_{x=0} = 0$$

Equivalent to adiabatic surface

Calculation of surface temperature T_s

In previous two equations the surface temperature, T_s is needed.

Boundary condition at the wall:

$$-k \frac{dT}{dx}\bigg|_{x=L} = h(T_s - T_\infty)$$

Substituting $(dT/dx)_{x=L}$ from equation of temp. distribution i.e

$$T(x) = \frac{\dot{q}L^2}{2k} \left(1 - \frac{x^2}{L^2} \right) + T_s$$

$$T_s = T_\infty + \frac{\dot{q}L}{h}$$

Note: You can obtain the same results by applying energy balance;

$$\stackrel{\bullet}{q} AL = hA(T_s - T_{\infty})$$

$$T_s = \frac{qL}{h} + T_{\infty}$$

Example 1

A plane wall of thickness 0.1 m and thermal conductivity 25 W/m·K having uniform volumetric heat generation of 0.3 MW/m³ is insulated on one side, while the other side is exposed to a fluid at 92°C. The convection heat transfer coefficient between the wall and the fluid is 500 W/m².K. Determine the maximum temperature in the wall.

Solution

KNOWN: Plane wall with internal heat generation which is insulated at the inner surface and subjected to a convection process at the outer surface.

FIND: Maximum temperature in the wall.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction with uniform volumetric heat generation, (3) Inner surface is adiabatic.

ANALYSIS: From previous equations for symmetrical wall, the max temp. is:

$$T_o = \dot{q}L^2/2k + T_s$$
. But T_s not given

Solution Continue

The outer surface temperature follows from Previous equation of symmetrical

$$T_S = T_{\infty} + \dot{q}L/h$$
 Apply Overall heat balance
$$T_S = 92^{\circ}C + 0.3 \times 10^{6} \frac{W}{m^3} \times 0.1 m/500 W/m^2 \cdot K = 92^{\circ}C + 60^{\circ}C = 152^{\circ}C.$$

It follows that

$$T_0 = 0.3 \times 10^6 \,\text{W/m}^3 \times (0.1 \,\text{m})^2 / 2 \times 25 \,\text{W/m} \cdot \text{K} + 152^{\circ} \text{C}$$

$$T_0 = 60^{\circ} C + 152^{\circ} C = 212^{\circ} C.$$

Exercise How can you find the heat flux leaving the wall?

Radial Systems

Cylindrical (Tube) Wall

Solid Cylinder (Circular Rod)

Spherical Wall (Shell)

Solid Sphere

Hollow cylinder no generation only r-direction

Cylindrical (Tube) Wall

Find the temp. distribution and the heat rate.

Follow the same procedure.

$$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \rho}\left(k\frac{\partial T}{\partial \phi}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \rho c_p\frac{\partial T}{\partial t}$$

$$\frac{1}{r}\frac{d}{dr}\left(kr\frac{dT}{dr}\right) = 0$$

To obtain temp. distribution

- Solve the previous eq. and applying suitable B.Cs.
- Assuming the value of k to be constant. Double integration gives the general solution:

$$T(r) = C_1 \ln r + C_2$$

$$T(r_1) = T_{s,1}$$
 and $T(r_2) = T_{s,2}$

Applying these conditions to the general solution, we then obtain

$$T_{s,1} = C_1 \ln r_1 + C_2$$
 and $T_{s,2} = C_1 \ln r_2 + C_2$

Solving for C_1 and C_2 and substituting into the general solution, we then obtain

$$T(r) = \frac{T_{s,1} - T_{s,2}}{\ln(r_1/r_2)} \ln\left(\frac{r}{r_2}\right) + T_{s,2}$$

Apply Fourier's Law

$$q_r = -kA\frac{dT}{dr} = -k(2\pi rL)\frac{dT}{dr}$$

$$q_r = \frac{2\pi Lk(T_{s,1} - T_{s,2})}{\ln(r_2/r_1)}$$

The thermal resistance is

$$R_{t,\text{cond}} = \frac{\ln\left(r_2/r_1\right)}{2\pi Lk}$$

Composite cylindrical wall

Note

$$q_r = \frac{T_{\infty,1} - T_{\infty,4}}{\frac{1}{2\pi r_1 L h_1} + \frac{\ln(r_2/r_1)}{2\pi k_A L} + \frac{\ln(r_3/r_2)}{2\pi k_B L} + \frac{\ln(r_4/r_3)}{2\pi k_C L} + \frac{1}{2\pi r_4 L h_4}}$$
(a)

Overall heat transfer coefficient, U, is obtained as follows

$$q_r = \frac{T_{\infty,1} - T_{\infty,4}}{R_{\text{tot}}} = UA(T_{\infty,1} - T_{\infty,4})$$
 (b)

If *U* is defined in terms of the inside area, $A_1 = 2\pi r_1 L$, the above eqs. (a) and (b) yield

$$U_1 = \frac{1}{\frac{1}{h_1} + \frac{r_1}{k_{\rm A}} \ln \frac{r_2}{r_1} + \frac{r_1}{k_{\rm B}} \ln \frac{r_3}{r_2} + \frac{r_1}{k_{\rm C}} \ln \frac{r_4}{r_3} + \frac{r_1}{r_4} \frac{1}{h_4}}$$

Look!!

This definition is *arbitrary*, and the overall coefficient may also be defined in terms of the outside surface area, A_4 or any of the intermediate areas. Note that

$$U_1A_1 = U_2A_2 = U_3A_3 = U_4A_4 = (\Sigma R_t)^{-1}$$

and the specific forms of U_2 , U_3 , and U_4 may be inferred from Equations (a) and (b).

Radial Systems

 Heat diffusion equation in the r-direction for steadystate conditions:

$$\frac{1}{r}\frac{d}{dr}\left(kr\frac{dT}{dr}\right) + \dot{q} = 0$$

• Assume k = constant

$$T = -\frac{q}{4k}r^2 + C_1 \ln r + C_2$$

General Solution:

• Boundary Conditions:
$$\frac{dT}{dr} = 0$$
, $T(r_o)$

Temperature profile:

$$T(r) = \frac{\dot{q}r_o^2}{4k} \left(1 - \frac{r^2}{r_o^2} \right) + T_s$$
 (3.6)

Calculation of surface temperature:

$$\dot{q}(\pi r_o^2 L) = h(2\pi r_o L)(T_s - T_\infty)$$
 and

$$T_s = T_\infty + \frac{\dot{q}r_o}{2h} \tag{3.7}$$

For Spherical shape

 Fourier's law, for steady-state, one-dimensional conditions with no heat generation

$$q_r = -kA \frac{dT}{dr} = -k(4\pi r^2) \frac{dT}{dr}$$

• where $A = 4\pi r^2$ is the area normal to the direction of heat transfer

$$\frac{q_r}{4\pi} \int_{r_1}^{r_2} \frac{dr}{r^2} = - \int_{T_{s,1}}^{T_{s,2}} k(T) dT$$

Assuming k = cons.

$$q_r = \frac{4\pi k (T_{s,1} - T_{s,2})}{(1/r_1) - (1/r_2)}$$

Thermal resistance

$$R_{t,\text{cond}} = \frac{1}{4\pi k} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

 For temp. distribution follow the common procedure as explained before.

Summary

One-dimensional, steady-state solutions to the heat equation with no generation

	Plane Wall	Cylindrical Wall ^a	Spherical Wall ^a
Heat equation	$\frac{d^2T}{dx^2} = 0$	$\frac{1}{r}\frac{d}{dr}\bigg(r\frac{dT}{dr}\bigg) = 0$	$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) = 0$
Temperature distribution	$T_{s,1} - \Delta T \frac{x}{L}$	$T_{s,2} + \Delta T \frac{\ln{(r/r_2)}}{\ln{(r_1/r_2)}}$	$T_{s,1} - \Delta T \left[\frac{1 - (r_1/r)}{1 - (r_1/r_2)} \right]$
Heat flux (q'')	$k rac{\Delta T}{L}$	$\frac{k\Delta T}{r\ln\left(r_2/r_1\right)}$	$\frac{k\Delta T}{r^2[(1/r_1)-(1/r_2)]}$
Heat rate (q)	$kA\frac{\Delta T}{L}$	$\frac{2\pi Lk\Delta T}{\ln\left(r_2/r_1\right)}$	$\frac{4\pi k \Delta T}{(1/r_1) - (1/r_2)}$
Thermal resistance $(R_{t,cond})$	$\frac{L}{kA}$	$\frac{\ln{(r_2/r_1)}}{2\pi Lk}$	$\frac{(1/r_1) - (1/r_2)}{4\pi k}$