
Discussion _ Heat 

Applications on Heat Diffusion 
Equations 









Convection on both sides

In case convection B. C.s

Follow the same procedure



Thermal resistance 





Find the Equivalent thermal circuit
‘Network’



Equivalent thermal circuit



Overall temperature difference

Note



Composite Wall



Overall Heat transfer Coefficient ‘U’





Note 



The Plane Wall
Consider one-dimensional, steady-state conduction in a plane wall of
constant k, with uniform generation, and asymmetric surface conditions:

• Heat diffusion equation (eq. 2.3) :
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• Boundary Conditions:
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• General Solution after taking double integration:
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Temperature Profile
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 Profile is parabolic. 

 Heat flux is not independent of x



Symmetrical Distribution
• When both surfaces are maintained at a common 

temperature, Ts,1= Ts,2 = Ts

• Previous equation becomes
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? What is the location of the maximum 

temperature?
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Chapter 3

Symmetrical Distribution

 Note that at the plane of symmetry:
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 Equivalent to adiabatic surface



Calculation of surface temperature Ts
In previous two equations the surface temperature, Ts is needed.
 Boundary condition at the wall: 
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of temp. distribution i.e
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Note: You can obtain the same results by 
applying energy balance;
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Example 1

A plane wall of thickness 0.1 m and thermal
conductivity 25 W/m.K having uniform volumetric
heat generation of 0.3 MW/m3 is insulated on one
side, while the other side is exposed to a fluid at
92°C. The convection heat transfer coefficient
between the wall and the fluid is 500 W/m2.K.
Determine the maximum temperature in the wall.



Solution

From previous equations for symmetrical wall, the max temp. is: 

But Ts not given



Solution Continue

Previous equation of symmetrical 
Apply Overall heat balance
Ein - Eout + Egen = Est          Egen = Eout = q con



Exercise 
How can you find the heat flux leaving the wall?

Method 1

Method 2



Radial Systems
Cylindrical (Tube) Wall Spherical Wall (Shell)

Solid Cylinder (Circular Rod)
Solid Sphere



Hollow cylinder no generation only r-
direction 

Cylindrical (Tube) Wall

Find the temp. 
distribution and 
the heat rate.

Follow the same 
procedure.
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To obtain temp. distribution
• Solve the previous eq. and applying suitable B.Cs. 

• Assuming the value of k to be constant. Double integration 
gives the general solution:



Apply Fourier’s Law

The thermal resistance is



Composite cylindrical wall



Note

Overall heat transfer coefficient, U, is obtained 

as follows

If U is defined in terms of the inside area, A1 = 2r1L, 

the above eqs. (a) and (b) yield

(a)

(b)



Look!!
This definition is arbitrary, and the overall coefficient 

may also be defined in terms of the outside surface 

area, A4 or any of the intermediate areas. Note that

and the specific forms of U2, U3, and U4 may be 

inferred from Equations (a) and (b).



Radial Systems
• Heat diffusion equation in 

the r-direction for steady-
state conditions:
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• Boundary Conditions:
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• Temperature profile:
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• Calculation of surface temperature:

and

(3.6)

(3.7)

• General Solution: 21
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• Assume k = constant



For Spherical shape

• Fourier’s law, for steady-state, one-dimensional 
conditions with no heat generation

• where A = 4r2 is the area normal to the 
direction of heat transfer



• Assuming k = cons.

• Thermal resistance

• For temp. distribution follow the common 
procedure as explained before.



Summary


