

TRANSIENT CONDUCTION

The lumped capacitance Method

INTRODUCTION

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

This term accounts the variation of temperature with time for unsteady state problems

Examples

Examples and comparison

T=f(t, dis)

(b) Roast beef

Analysis and general formulation

Basic assumption:

The lumped capacitance method assumes that the temperature of solid is <u>spatially</u> uniform at any instant of time. This means negligible temp gradients within the solid. $E_{out} = \mathbf{q}_{con}$

Energy balance:

Control volume

$$-\dot{E}_{\rm out} = \dot{E}_{\rm st}$$

or

$$-hA_s(T-T_{\infty}) = \rho V c \frac{dT}{dt}$$

Introducing the temperature difference

$$\theta = T - T_{\infty} \qquad \dots (2)$$

and recognizing that $(d\theta/dt) = (dT/dt)$ if T_{∞} is constant, it follows that

$$\frac{\rho Vc}{hA_s} \frac{d\theta}{dt} = -\theta \tag{3}$$

Separating variables and integrating from the initial condition, for which t = 0 and $T(0) = T_i$, we then obtain

$$\frac{\rho Vc}{hA_s} \int_{\theta_i}^{\theta} \frac{d\theta}{\theta} = -\int_0^t dt \tag{4}$$

where

Evaluating the integrals, it follows that

THE RESERVE OF THE PARTY OF THE

$$\frac{\rho Vc}{hA_s} \ln \frac{\theta_i}{\theta} = 1 \qquad (6)$$

Or

$$\frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}} = \exp\left[-\left(\frac{hA_s}{\rho Vc}\right)t\right] \qquad (7)$$

Note

The temp. of a lumped system approaches the environment temp. as time gets larger. This is can be checked by the previous exponential equation (eq.7).

Thermal time constant,

$$\tau_t = \left(\frac{1}{hA_s}\right)(\rho Vc) = R_t C_t \tag{9}$$

Where R_t is the resistance to convection heat transfer and C_t is the lumped thermal capacitance of the solid.

Transient temperature response of lumped capacitance solids for different thermal time constants τ_t .

Total energy transfer Q

The Total energy transfer Q occurring up to some time t can be obtained from:

$$Q = \int_0^t q \, dt = hA_s \int_0^t \theta \, dt \qquad (10)$$

Use the eq. (7) of θ

$$\frac{\theta}{\theta_i} = \exp\left[-\left(\frac{hA_s}{\rho Vc}\right)t\right] \tag{7}$$

Integrating the previous equation yields

$$Q = (\rho Vc)\theta_i \left[1 - \exp\left(-\frac{t}{\tau_i}\right) \right] \qquad \dots (11)$$

The quantity Q is, of course, related to the change in the internal energy of the solid,

Q +ve
$$Q + Ve - Q = \Delta E_{st}$$

For quenching Q is positive and the solid experiences a decrease in energy. Equa-For heating Q is negative and the solid experiences an $(\theta < 0)$, increase in the internal energy of the solid.

Maximum heat quantity

$$t = 0 \qquad \qquad h \qquad \qquad t \to \infty$$

$$T_i \qquad T_i \qquad T_i \qquad T_i \qquad T_\infty \qquad T_\infty$$

$$T_\infty \qquad T_\infty \qquad T_\infty$$

$$T_\infty \qquad T_\infty \qquad T_\infty$$

$$T_\infty \qquad T_\infty$$

$$T_\infty \qquad T_\infty$$

Validity of the Lumped Capacitance Method

To develop a suitable criterion consider steady-state conduction through the plane wall of area A (Fig. A). Although we are assuming steady-state conditions, this criterion is readily extended to transient processes. One surface is maintained at a temperature $T_{s,1}$ and the other surface is exposed to a fluid of temperature $T_{\infty} < T_{s,1}$. The temperature of this surface will be some intermediate value, $T_{s,2}$, for which $T_{\infty} < T_{s,2} < T_{s,1}$. Hence under steady-state conditions the surface energy balance, is

Notes

- Biot number plays a fundamental role in conduction problems that involve surface convection effect.
- Biot number provides a measure of the temperature drop in the solid relative to the temperature difference between the solid's surface and the fluid.
- Biot number may be interpreted as a ratio of thermal resistances.
- if Bi << 1, the resistance to conduction within the solid is much less than the resistance to convection across the fluid boundary layer. Hence, the assumption of a uniform temperature distribution within the solid is reasonable if the Biot number is small.

The Biot number can be viewed as the ratio of the convection at the surface to conduction within the body

Transient temperature distributions for different Biot numbers in a plane wall symmetrically cooled by convection.

Conclusion

If the following condition is satisfied

$$Bi = \frac{hL_c}{k} < 0.1 \tag{13}$$

the error associated with using the lumped capacitance method is small.

Where L_c is the characteristic length. It is defined as the ratio of the solid's volume to surface area,

$$L_c = V/A_s$$

Note

For symmetrical heated or cooled plane wall of thickness 2L, $L_c=L$.

For a long cylinder $L_c=r_o/2$ and for a sphere, $L_c=r_o/3$

Example: small bodies with high thermal conductivities and low convection coefficients are most likely to satisfy the criterion for lumped system analysis

Spherical copper ball
$$k = 401 \text{ W/m}^{\circ}\text{C}$$

$$D = 12 \text{ cm}$$

$$L_c = \frac{V}{A_s} = \frac{\frac{1}{6} \pi D^3}{\pi D^2} = \frac{1}{6} D = 0.02 \text{ m}$$

$$Bi = \frac{hL_c}{k} = \frac{15 \times 0.02}{401} = 0.00075 < 0.1$$

♦ Using $L_c = V/A_s$, the exponent of the eq. 7 may be written as $\frac{\theta}{\theta_t} = \frac{T - T_x}{T_t - T_x} = \exp\left[-\left(\frac{hA_s}{\rho Vc}\right)t\right]$

$$\frac{hA_s t}{\rho V c} = \frac{ht}{\rho c L_c} = \frac{hL_c}{k} \frac{k}{\rho c} \frac{t}{L_c^2} = \frac{hL_c}{k} \frac{\alpha t}{L_c^2} \tag{14}$$

or

$$\frac{hA_s t}{\rho Vc} = Bi \cdot Fo$$

where

$$Fo \equiv rac{lpha t}{L_c^2}$$

is termed the Fourier number. It is a *dimensionless time*, which, with the Biot number, characterizes transient conduction problems. Substituting the previous eq. in the original eq. (7), we obtain

$$\frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}} = \exp(-Bi \cdot Fo) \qquad (15)$$

Example

The heat transfer coefficient for air flowing over a sphere is to be determined by observing the temperature-time history of a sphere fabricated from pure copper. The sphere, which is 12.7 mm in diameter, is at 66°C before it is inserted into an airstream having a temperature of 27°C. A thermocouple on the outer surface of the sphere indicates 55°C 69 s after the sphere is inserted in the airstream. Assume, and then justify, that the sphere behaves as a spacewise isothermal object and calculate the heat transfer coefficient.

Schematic

Steps of calculation

- 1. Find from appendices the properties of copper (density ρ, heat capacity C and thermal conductivity k) at average temperature 333.5 K.
- 2. Assume Lumped Capacitance
- 3. Apply the Eq. 7
- 4. Find h
- 5. Check Bi number