Transient Conduction:
Spatial Effects and the Role of
Analytical Solutions



Solution to the Heat Equation for a
Plane Wall with
Symmetrical Convection Conditions

* If the lumped capacitance approximation can not be made, consideration must
be given to spatial, as well as temporal, variations in temperature during the

transient process.

 For a plane wall with symmetrical
convection conditions and constant properties,
the heat equation and initial/boundary
conditions are:
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Existence of seven independent variables:
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How may the functional dependence be
simplified?
of Heat Equation and Initial/Boundary
Conditions:
o _T-T,
o, T,-T,.

Dimensionless temperature difference: €~ =



Dimensionless coordinate:

X" =
Dimensionless time: T it = Fo
| 2
Fo — the
The ; Bi = hL
K solid

0 = f(x*, Fo,Bi)
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In dimensionless form the functional
dependence may now be expressed as

0* = f(x*, Fo,Bi)
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Exact Solution:

Consider the p/ane wall of thickness 2L (Figure 5.6a). If the thickness is small
relative to the width and height of the wall, it is reasonable to assume that
conduction occurs exclusively in the x-direction.

If the wall is initially at a uniform temperature, 7(x, 0) = 7i, and is suddenly
immersed in a fluid of 7 =7, the resulting temperatures may be obtained by
solving Equation 5.34 subject to the conditions of Equations 5.35 through
5.37. Since the convection conditions for the surfaces at x*=#1 are the same,
the temperature distribution at any instant must be symmetrical about the
midplane (x* = 0). An exact solution to this problem is of the form [4]

The solution of Eq. (5.34) is an infinite Fourier series
0" =Y.C,exp(-¢ 2Fo)cos(¢ x*) B
n=1
4sin¢
n— -
24, +sin(2¢ )

See Appendix B.3 for first four roots (eigenvalues ¢ ,,...,£ ,) of Eq. (5.39¢)
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é/n tan é/n — B| (5.39b,c)



€, tan €, = Bi, for Transient(Conduction in a Plane Wall




Approximate Solution

It was shown that for Fo > 0.2 the infinite
series solution eq. 5.39a can be

approximated by the 1st term of the series
§* = C,exp (—{;Fo) cos ({;x¥) (5.40a)

or
0% = 67 cos ({;x*) (5.40b)

where 0% = (T, — T.,)/(T, — T.) represents the midplane (x* = 0) temperature
0* = C,exp (—{3Fo) (5.41)

C, and ¢, are given in Table 5.1 for a range of Biot
numbers.



TapLe 5.1  Coeflicients used in the one-term approximation to the
series solutions for transient one-dimensional eonduction

Plane Wall Infinite Cylinder Sphere I—T(x, 0) = T’

& G &
Bi* (rad) C, (rad) C, (rad) C;

0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030

0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060

0.03 0.1723 1.0049 0.2440 1.0075 0.2991 1.0090

0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120

0.05 0.2218 1.0082 0.3143 1.0124 0.3854 1.0149

0.06 0.2425 1.0098 0.3438 1.0148 04217 1.0179

0.07 0.2615 1.0114 0.3709 1.0173 0.4551 1.0209

= 0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239

B I — h L/k 0.09 0.2956 1.0145 0.4195 1.0222 0.5150 1.0268
0.10 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298

fo r PI an e 0.15 0.3779 1.0237 0.5376 1.0365 0.6609 1.0445
0.20 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592

I I 0.25 0.4801 1.0382 0.6856 1.0598 0.8447 1.0737

W a. 0.30 05218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0932 1.0528 1.1164

an d h rO/k 0.5 0.6533 1.0701 09408  1.1143 1.1656 1.1441

0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713
fo r' th e 0.7 0.7506 1.0919 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488

I nfl n Ite 1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732

20 1.0769 1.1785 1.5994 1.3384 2.0288 1.4793

Cyl I n d er 3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227

4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202
50 1.3138 1.2402 1.9898 1.5029 2.5704 1.7870 NI I

an d 6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338 I nfl n Ite Cyl I n d er Or
7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673 S p h ere

S p h ere 8.0 13978 12570 21286  1.5526 17654  1.8920

9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106

10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.0249 1_D SyStem Wlth an

20,0 1.4961 1.2699 2.2881 1.5919 2.9857 1.9781

30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898 Inltlal Unlform temp

40.0 1.5325 1.2723 2.3455 1.5993 0632 1.9942

50.0 1.5400 1.2727 2.3572 1.6002 { 1.9962 su bjected tO Sudden

100.0 1.5552 1.2731 2.3809 1.6015 : 1.9990

o 1.5708 1.2733 2.4050 1.6018 : 2.0000 ConveCtion COndition

“Bi = hL/k for the plane wall and fir,/k for the infinite cylinder and sphere. See Figure 5.6.




Total Energy transfer Q “left” or “entered”
the wall up to any time t in transient process

« Energy equation cab be applied over a time interval t=0
to any time t>0

% — E. i =AE (5.42) |
Zero \&Q Look! e N0 )

AE_=E(t)-E(0) Mt
Eq. 5.42 becomes |
Q=-[E(t)-E(0)] Lo
Or

Q= -IpC [T(x,t)-T,] AV (5.43)
It is convenient to nondimensionalize the result of integration

by adopting this quantity

Qy=pC V (T;-T,) (5.44)

Tx,0) =T,




which may be interpreted as the initial internal energy of the wall relative to the
fluid temperature. It is also the maximum amount of energy transfer that could occur
if the process were continued to time r = %. Hence, assuming constant properties,
the ratio of the total energy transferr ime i

gy erred from tp[e(rufa}g)g\;%r_tp: )}}gl}e interval ¢ to the

maximum possible transfer is )
-[6-6.1/6.=—(6 -1)

Q _ -[T(x,t)—T,-]dv_lf -
f T 7 =y A0V (5.45)

o |
* =05 cos ({x*)
Employing the approximate form of the temperature distribution for the plane wall,

Equation 5.40b, the integration prescribed by Equation 5.45 can be performed to
obtain

*
Q, 7, O 40

where 6, can be determined from Equation 5.41, using Table 5.1 for values of the
coefficients C, and ¢,.




Appreximate Solution
Infinite cylinder

Infinite Cylinder The one-term approximation to Equation 5.47a is

0* = Cyexp (~(3F oMy({yr) (9.4%)

6% = 6,Jy(¢,r¥) (3.49b)
where 67 represents the centerline temperature and is of the form
6 = C, exp (—{3Fo) (5.49)

Values of the coefficients C, and ¢, have been determined and are listed in Table
J.1 for a range of Biot numbers.




Bessel Functions of the First Kind




Appreximate Solution
Sphere

Sphere  From Equation 5.48a, the one-term approximation is

6* = Cyexp (~2Fo)—— sin ({,r*)
{ir

6% = g -{‘7 sin (Z, %) (5.50b)

where 6 represents the center temperature and is of the form

6 = C, exp (~{3Fo) (5.50c)

Values of the coefficients C, and ¢, have been determined and are listed in Table 5.1
for a range of Biot numbers.




Total Heat transfer

As In Section 5.5.3, an energy balance may be performed to determine the total
energy transfer from the infinite cylinder or sphere over the time interval At = .
Substituting from the approximate solutions, Equations 5.49b and 5.50b, and intro-
ducing 0, from Equation 5.44, the results are as follows.

Infinite Cylinder

2_ B 26*
Qn ~ 1 {l ‘]l(gl)

367
| =—=sin()) = § 008 (¢))]




