
Transient Conduction:
Spatial Effects and the Role of

Analytical Solutions



Solution to the Heat Equation for a 
Plane Wall with

Symmetrical Convection Conditions
• If the lumped capacitance approximation can not be made, consideration must

be given to spatial, as well as temporal, variations in temperature during the

transient process.

• For a plane wall with symmetrical 

convection conditions and constant properties, 

the heat equation and initial/boundary

conditions are:
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Existence of  seven independent variables:
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How may the functional dependence be 

simplified?

Dimensionless temperature difference: *
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Non-dimensionalization of Heat Equation and Initial/Boundary 

Conditions:
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Substituting the definition of Eq.s 5.31 through 5.33 into 
Eq.s 5.26 through 5.29 the heat equation becomes
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This equation implies that for a prescribed 
geometry, the transient temperature 
distribution is a universal function of x*, 
Fo, and Bi. That is, the dimensionless 
solution has a prescribed form that does 
not depend on the particular value of Ti, 
T, L, k, , or h.

 * *, ,f x Fo Bi 

In dimensionless form the functional 

dependence may now be expressed as
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See Appendix B.3 for first four roots (eigenvalues                ) of Eq. (5.39c)1 4,..., 
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• Exact Solution:

Consider the plane wall of thickness 2L (Figure 5.6a). If the thickness is small 
relative to the width and height of the wall, it is reasonable to assume that 

conduction occurs exclusively in the x-direction.

If the wall is initially at a uniform temperature, T(x, 0) = Ti, and is suddenly 
immersed in a fluid of T Ti, the resulting temperatures may be obtained by 
solving Equation 5.34 subject to the conditions of Equations 5.35 through 

5.37. Since the convection conditions for the surfaces at x*=1 are the same, 
the temperature distribution at any instant must be symmetrical about the 

midplane (x* = 0). An exact solution to this problem is of the form [4]

The solution of Eq. (5.34) is an infinite Fourier series 



Appendix B.3 for first four roots (eigenvalues                

) of Eq. (5.39c)
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Approximate Solution

It was shown that for Fo > 0.2 the infinite 

series solution eq. 5.39a can be 

approximated  by the 1st term of the series

C1 and ξ1 are given in Table 5.1 for a range of Biot 

numbers.
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Total Energy transfer Q “left” or “entered” 

the wall up to any time t in transient process

• Energy equation cab be applied over a time interval t=0 
to any time t>0

Ein – Eout =ΔEst (5.42)

Zero =Q      Look!

ΔEst=E(t)-E(0)

Eq. 5.42 becomes

Q=-[E(t)-E(0)]

Or 

Q= -∫ρC [T(x,t)-Ti] dV            (5.43)

It is convenient to nondimensionalize the result of integration 
by adopting this quantity

Q0= ρC V (Ti - T∞)                   (5.44)
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Approximate Solution

infinite cylinder





Approximate Solution

Sphere



Total Heat transfer


