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Transfer Coefficients



With the foregoing simplification and approximations, the 

overall continuity equation and the x-momentum equation 

reduce to

Also, the energy equation reduces to

And the species continuity equation becomes

Net rate of momentum 

from Control volume Net viscous + pressure forces + body force



Note 1

the terms on the left-hand side account for the net rate 

at which thermal energy leaves the control volume due 

to bulk fluid motion (advection), while the terms on the 

right-hand side account for net inflow of energy due to 

conduction, viscous dissipation.



Note 2

where CA is the molar concentration of species A, DAB

is the binary diffusion coefficient. Again, this equation 

has been derived assuming steady, two-dimensional 

flow of an incompressible fluid with constant properties. 

Terms on the left-hand side account for net transport of 

species A due to bulk fluid motion (advection), while 

terms on the right-hand side account for net inflow due 

to diffusion.



Upstream

velocity



Boundary Layers Similarity Parameters

• Define the following dimensionless variables:

Where L is the characteristic length of the surface, 
and V is the velocity upstream of the surface. 

• Using the above definitions, the velocity and 
temperature equations become as shown in the 
next table. Neglect viscous dissipation term. 
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Similarity Parameters and the dimensionless 

form of the B.L. Equations

See next 

slide



Note !!!

 u* = u / V  or  u = u* V ;  x = x* L

V2 u* du*/ Ldx*

And do the same transformation for the other terms. The final 

results should lead to the equations as given in the table.



 The following dimensionless parameters are 
given in the previous table 

 These parameters allow us to apply results 
obtained for a surface experiencing one set of 
convective conditions to geometrically similar 
surfaces experiencing entirely different 
conditions. 

Reynolds 

No.

ReL

Prandtl No. Pr

Schmidt 

No.

Sc



Functional form of the Solution
• The velocity eq. suggest the following functional forms of 

solution
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• The thermal eq. suggests the following 

functional forms of solution

• Where the dependence on dp*/dx* originates 

from the effect of the geometry on the fluid 

motion (u* and v*),which, hence, affects the 

thermal conditions.
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Equation (iii) shows that Nu is a function of x*, ReL, and Pr. If 

this function is known, hence Nu can be computed for various 

fluids and for various values of V and L. Consequently, the 

coefficient h can be found from the computed value of Nu.



Average Nusselt number

 As given before the average value for heat 

transfer coefficient h is evaluated by 

integrating over the entire surface.

 Therefore, the average coefficient is 

independent of the spatial variable x*. 

 The functional dependence of the average 

Nusselt number is
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Note: Physical interpretation of Prandtal

number “Pr”

Since  Pr = cpµ/k = ν/α

=momentum /thermal diffusivity

This number gives a measure of the relative 
effectiveness of momentum diffusion in the 
velocity B.L. and energy transport by 
diffusion in the thermal B.L.

For gases Pr ≈ 1.0 , this means momentum 
transfer=energy transfer



 For liquid metal Pr <<1 ; this means 

energy diffusion rate exceeds the 

momentum diffusion rate

 For oil Pr >>1; this means momentum 

diffusion rate exceeds the energy diffusion 

rate.

 In sum, the value of Pr number influences 

the relative growth rate of the velocity and 

thermal boundary layers.  



Conclusion: “In General”
 For Laminar flow (transport by diffusion) it is 

reasonable to assume that
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Boundary Layer analogies

Heat and Mass transfer Analogy

 Definition:

‘If two or more processes are governed by
dimensionless equations of the same
form, the processes are said to be
analogous’.

 The next table shows the analogies
between Heat and Mass transfer via eq.s

(4 & 8), (5 & 9), (6 & 10) and (7 & 11)



Summary of the functional relations

and B.L. analogies

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)



Conclusion

 If one has performed a set of heat
experiments to find the functional form of
equation (7), for example, the results may
be used for the convective mass transfer
involving the same geometry. This could
be obtained by replacing Nu with Sh and
Pr with Sc.

 In general, Nu and Sh are proportional to
Prn and Scn , respectively.



 Use the following analogy equations:

Nu= f(x*,ReL) Prn,      Sh= f(x*,ReL) Scn

in which case, with equivalent functions, 

f(x*,ReL) ,
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Reynolds Analogy

 This analogy assumes the following:

dp*/dx*=0 and Pr = Sc =1. 

and for a flat surface u∞=V 

 Hence, the velocity, the thermal and the 
concentration Equations and boundary 
conditions become analogous and the 
functional form of the solutions for u*, T*, 
and C*, eqs. 1, 4, and 8 are equivalent.  



• From eqs. 3, 6 and 10 it follows that (see the 

previous table)

• Replacing Nu and Sh by the Stanton number, St, 

and the mass transfer Stanton number, Stm, 

respectively,
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• Eq. 12 may be expressed as

• The modified Reynolds, or Chilton-

Colburn, analogies
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Example 



Schematic



Solution





Exercise 



Hints 

 Use Chilton-Colburn Analogy factor to 

obtain the convection heat transfer 

coefficient, h.


