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What Are The Transport Phenomena?

The subject of transport phenomena
includes three closely related topics:

v,

Fluid
Dynamics

J

deals with the
transport of

Mass
Transfer

Heat
Transfer

concerned with the
transport of mass of
energy various chemical species

involves the
transport of
momentum
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What Are The Transport Phenomena?

* These three transport phenomena should, at the introductory level, be
studied together for the following reasons:

They frequently occur simultaneously in industrial, biological, agricultural, and
meteorological problems; in fact, the occurrence of any one transport process by
itself is the exception rather than the rule.

The basic equations that describe the three transport phenomena are closely
related. The similarity of the equations under simple conditions is the basis for
solving problems "by analogy."

The mathematical tools needed for describing these phenomena are very similar.
Although it is not the aim of this book to teach mathematics, the student will be
required to review various mathematical topics as the development unfolds.
Learning how to use mathematics may be a very valuable by-product of studying
transport phenomena.

The molecular mechanisms underlying the various transport phenomena are very
closely related. All materials are made up of molecules, and the same molecular
motions and interactions are responsible for viscosity, thermal conductivity, and
diffusion.
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Three Levels at which Transport
Phenomena can be Studied

lQ = heat added to system

"lji\/' \—/< Fig. 9.2-1 (a) A macro- .
N\ scopic flow system contain-

W, = Work done on the systemby . .
the surroundings by means ing N, and O,; (b) a
of moving parts

microscopic region within
the macroscopic system
containing N, and O,,

(@) o which are in a state of flow;
(¢) a collision between a
molecule of N, and a mole-

®) (c) cule of O,.
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Three Levels at which Transport
Phenomena can be Studied

At the Macroscopic level (a) l ‘
* We write down a set of equations called N
)

the "macroscopic balances," which “ ~

describe how the mass, momentum,

energy, and angular momentum in the system (b) ©
change because of the introduction and removal of

these entities via the entering and leaving streams, and because

of various other inputs to the system from the surroundings. No attempt is
made to understand all the details of the system.

* |n studying an engineering or biological system it is a good idea to start with
this macroscopic description in order to make a global assessment of the
problem; in some instances, it is only this overall view that is needed.
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Three Levels at which Transport
Phenomena can be Studied

At the Microscopic level (b) | |
* We examine what is happening to N

the fluid mixture in a small region within @ ~
the equipment.

» We write down a set of equations called the (b) ©)
"equations of change," which describe how the mass, momentum, energy,
and angular momentum change within this small region.

* The aim here is to get information about velocity, temperature, pressure, and
concentration profiles within the system.
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* This more detailed information may be required for the understanding of
some processes.
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Three Levels at which Transport
Phenomena can be Studied

At the Molecular level (c) |
* We seek a fundamental understanding o
a

of the mechanisms of mass, momentum, eX @
energy, and angular momentum transportin

() (¢)

N |

terms of molecular structure and intermolecular forces.

* Generally, this is the realm of the theoretical physicist or physical chemist, but
occasionally engineers and applied scientists have to get involved at this level.
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* This is particularly true if the processes being studied involve complex

THE UNIVERSITY OF JORDAN

molecules, extreme ranges of temperature and pressure, or chemically
reacting systems.
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Relationship between Transport Phenomena

Type of transport Momentum Energy Mass
Transport by Viscosity 9 Thermal 17 Diffusivity
molecular motion and the stress conductivity and the
{momentum flux) and the heat-flux mass-flux
tensor vector vectors
Transport in one Shell momentum 10 Shell energy 18 Shell mass
dimension (shell- balances and balances and balances and
balance methods) velocity ternperature concentration
distributions distributions distributions
Transport in Equations of 11 Equations of 19 Equations of
arbitrary continua change and their change and change and
(use of general use their use their use
transport equations) l[isothermal] [nonisothermal] [mixtures]
Transport with two Momentum 12 Energy transport 20 Mass transport
independent transport with with two with two
variables (special two independent independent independent
methods) variables variables variables
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Relationship between Transport Phenomena

Type of transport Momentum Energy Mass
Transport in Turbulent 13 Turbulent 21 Turbulent
turbulent flow, and momenturmn energy transport; mass transport;
eddy transport transport; eddy eddy thermal eddy
properties viscosity conductivity diffusivity
Transport across Friction factors; 14 Heat-transfer 22 Mass-transfer
phase boundaries use of empirical coefficients; use coefficients; use
correlations of empirical of empirical
correlations correlations
Transport in large Macroscopic 15 Macroscopic 23 Macroscopic
systems, such as balances balances balances
pieces of equipment lisothermal] [nonisothermal] [mixtures]
or parts thereof
Transport by other Momentum 16 Energy 24 Mass transport
mechanisms transport in transport by in multi-
polymeric radiation component
liquids systems; cross

effects
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Principles of Momentum

Transfer and Overall Balances
Chapter 2
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Introduction

* The flow and behavior of fluids is important in many of the unit
operations in process engineering.

* Fluid: a substance that does not permanently resist distortion

and, hence, will change its shape. é
* Gases <E':
*Liquids L pave the Characteristics of Fluids E
* Vapors =
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Introduction

* In process industries

* Materials in fluid form
Stored the principles governing

the flow of fluids

Handled

Pumped
Processed s [he equipment used
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Typical Fluids
| | | : | | |
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Types of Fluids

Incompressible Fluid Compressible Fluid
* Inappreciably affected by * Gases are considered to be
changes in pressure. compressible fluids.

* Most liquids are incompressible.

If gases are subjected to small percentage changes in pressure and
temperature, their density changes will be small

4

they can be considered to be incompressible
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Introduction

* Like all physical matter, a fluid is composed of an extremely large

number of molecules per unit volume.

* A theory such as the kinetic theory of gases or statistical
mechanics treats the motions of molecules in terms of statistical

groups and not in terms of individual molecules.

* In engineering we are mainly concerned with the bu/k or

macroscopic behavior of a fluidrather than the individual

THE UNIVERSITY OF JORDAN

molecular or microscopic behavior.
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Momentum Transfer

* |n momentum transfer we treat the fluid as a continuous

distribution of matter, or a “continuum.”

* Valid when the smallest volume of fluid contains a number of
molecules large enough that a statistical average is meaningful and
the macroscopic properties of the fluid (density, pressure, and so on)
vary smoothly or continuously from point to point.

§ s B i
Momentum Transfer N
<> Fluid Mechanics
—— fluids in motion
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Section 2.3
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Force, Units, and Dimensions

* Pressure:
* a surface force exerted by a fluid against the walls of its container.
* Pressure exists at any point in a volume of a fluid.

F=mg (Slunits) FI[=IN (kg -m/s*),m[=]kg,g=9.80665m/s* S
L
F = rr:g (English units)  F [=]lbs,m [=]lby, g = 32.1740 ft/s? <
Be g.=32.1740 lb,,, - ft/lb; - 5 £
a

1 Poundal =1 1b,, - ft/s? 1Dyne=1g-cm/s?
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Pressure in a Fluid Ao * 1
Py hy
total kg Auid = (/i m)(A mz}(;;r %) = i Ap kg A:—Fét_i__.;"i iy
F = (hyAp ke)(g m/s?) = h,A kg*m{‘x} P2 i
"= (Ap kg)(g m/s7) = IhApg N -
| PN\ 2

f | .
P = i (1. Apg) in fapg N/m* or Pa

* This is the pressure on A, due to the mass of the fluid above it.
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* To get the total pressure P, on A,, the pressure P, on the top of
the fluid must be added:
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P, = hape + PyN/m* or Pa
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Pressure in a Fluid

* To calculate P, P, = hpe + P,
* The pressure difference between points 2
and 1 is

Py = Py = (Ippg + Py) = (hpg + Py)

= (h, = y)pg (SI units)

P, = P,=(h — »‘!.)pi (English units)

Se
Py Py Py Po
i .
T J, ? U J,
| — )|
A el el

EXAMPLE 2.2-2
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Head of a Fluid

* A common method of expressing pressures is in terms of head in m or
feet of a particular fluid.

* This height or head in m or feet of the given fluid will exert the same
pressure as the pressures it represents.

IIrJ'
h(head) = —m (SI)
L

"nnl"l-.l:'
g

EXAMPLE 2.2-3

h = 1 (English)
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Pressure Measurement Devices

Pa Py

e Simple U-tube manometer 11 ~ &5 ruas
o '*“/p

4
fluid A
/_ P4
3

NG 777
NS

pr=p, (£ + R)pgg N/m?
(a)

* P; must be equal to P, by the principles of hydrostatics: p; = p,

pi=pyt+ Zpge + Rpag
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P. + (£ + R)pgg = py, + Zppg + Rp, g
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EXAMPLE 2.2-4




Pressure Measurement Devices
I1d|

- Two-fluid U tube "B
* a sensitive device for measuring small heads pﬁ% * Wé//%
or pressure differences. \%: }
Po— = Rlps — pr)g (SI) ®)

g =™ P = HI{PA o PH] i I:Lllgll'?h:]

i T
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* If p, and p; are close to each other, the reading R is magnified.

EXAMPLE 2.2-5
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Pressure Measurement Devices

 Bourdon pressure gage
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Pressure Measurement Devices

e Gravity separator for two immiscible liquids

. vent . ..
feed —— . ] |f light liquid B
i "_' ' overflow —\
; \ :-.- B '-_ ) .'.__- e ey _--_:-_::-:'-._ %, -. ":. \ -'-..-._-'-.: ‘-.'-.."‘-."“-."‘-.'-'."-."‘- i -'-'i'-"":l
o o : x?__' F X !
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heavy liquid A overflow __
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Gravity separator for two immiscible liquids

feed —=—_ ||~ vent light liquid B
T — overflow —
| e 4
| SR S
fixed by e B b | Ilquld E | N G _
position : *i *‘-nr_;q:, S 0 B :a_u 5 ;.;.;1.._:,1.4“ T 14 "-':
of the Ly | r b )
overflow ' 227 ElE 1
line for B h":” liquid A: 1 _5 % N
¥ _¢ s - iz | _l_': 4 ‘l

heavy liquid A ::werflﬂw—f""
* A hydrostatic balance gives hys = hepelp
'h||':|'.r-j.r'i'-:t‘l"jlI + '“.-'H Pak — f"ﬂ:r}ﬂg — “;15_ - [ .I':}."fjlllr:};'l

* The position of the interface, h,, depends on the ratio of the densities of
the two liquids and on the elevations h,, and h,.

* Usually, h,, is movable so that the interface level can be adjusted.
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Momentum Transport

Part One
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General Molecular Transport
Equation for Momentum, Heat, and
Mass Transfer
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Section 2.3
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Introduction to Transport Processes

* In molecular transport processes in
general < the transfer

e molecules are relatively far apart
e rate of transport of property should be

(movement) of a given property by relatively fast

molecular movement th rough 3 o few moleculgs are present to block the
. . . transport or interact.

system [fluid (gas or liquid) or

solid].

‘ ProPerty: e molecules are close together

_ e transport or diffusion proceeds more
Dense fluids slowly.

(liquids)

* Each molecule of a system has a
given quantity of the property
associated with it.

Dr. Linda Al-Hmoud

e molecules are even more close-packed
than in liquids

e molecular migration is even more
restricted.

 Difference of property
concentration from one region to
an adjacent region < net transport
of this property occurs.

THE UNIVERSITY OF JORDAN
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General Molecular Transport Equation

driving force

rate of a transfer process = ;
resistance

we need a driving force to overcome a resistance
in order to transport a property

* Ohm's law in electricity
voltage drop (driving force)
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rate of flow of electricity = ;
resistance

THE UNIVERSITY OF JORDAN

—
N
(o)

—




General Molecular Transport Equation

driving force

rate of a transfer process = ;
resistance

__dr
Yz = dz

* y, = flux of property = amount of property being transferred per unit

time per unit cross-sectional area perpendicular to the zdirection of
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flow [=] amount of property/s.m?
* 0 = proportionality constant = diffusivity [=] m?/s

THE UNIVERSITY OF JORDAN

* I = concentration of the property [=] amount of property/m?3
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* z =distance in the direction of flow [=] m
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General Molecular Transport Equation

* At steady state, y, is constant

I
Yz fzzlz dz = =0 fl"lz dl ‘ Yz =

|
mrz in = :'I'E'Izlz
e

| fux |
| I

1 I3 z + Az
Distance, z Ay — unsteady-state general
property balance

s(I'1-17,)

Zyp—2Zq

— unit area

L)

r
out="z|z+ Az

— e e —

)\

Concentration
of property, I’

AN

v
L=
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(a) (b)
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General Property Balance for Unsteady State

Rate of Rate of
Generation - Accumulation

Rate of

Property I
In

!

(Yr2) -1 {'if'zlz-l*izj ‘1 R(Az-1) % (Az-1)

of Property of Property

unit area
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in= "{"zlz out="z|z +Az

A ONNN

z+ Az l'r.‘[‘

DU P— ('i!‘:l:}'l + R(ﬁz' lj = ':‘:II:’:I:+_'|:]'1 T E[ﬁz'l}

(]
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General Property Balance for Unsteady State
e 1+ R(B21) = (eas) 1+ 2o (B2+1)

Dividing by Az and letting Az go to zero,

Substituting for y, =

/,é,j unit area
7
in=¢'2|z/ ] uut=1’b:|z+.ﬁ.z
A
z z+ Az
— A\ g ——

General Equations for the Conservation of Momentum, Heat, or Mass
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Introduction to Molecular Transport

Because of their kinetic energy the molecules are in rapid random
movement, often colliding with each other

Molecular transport / molecular diffusion of a property (momentum, heat,
or mass) occurs in a fluid because of these random movements of
individual molecules.

Each individual molecule moves randomly in all directions and there are
fluxes in all directions.
If there is a concentration gradient of the property, there will be a net flux
of the property from high to low concentration.
This occurs because equal numbers of molecules diffuse in each direction
between the high-concentration and low concentration regions.

Kinetic Theory of Gases
Dr. Linda Al-Hmoud
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Momentum transport s

Heat transport

d(v,p)
iz

= —p

== Fourier's law

Mass transport

= —

d(pc, T) I

dz
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Viscosity of Fluids
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Section 2.4
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Viscosity of Fluids

e Newton's Law & Viscosity

* When a fluid is flowing
through a closed channel
such as a pipe or
between two flat plates,
either of two types of
flow may occur,
depending on the
velocity of this fluid:

Laminar Flow

e At low velocities, the fluid tends to
flow without lateral mixing, and
adjacent layers slide past one
another like playing cards.

e There are no cross currents
perpendicular to the direction of
flow, nor eddies or swirls of fluid.

Turbulent Flow

e At higher velocities eddies form,
which leads to lateral mixing.
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force

Laminar Flow stress =-—

These viscous forces arise from

Viscosity forces existing between the

e a property of a fluid which molecules in the fluid and are of
gives rise to forces that resist similar character as the shear
the relative movement of forces in solids.

adjacent layers in the fluid.

An elastic solid deforms by an
amount proportional to the

A fluid can be applied stress.

distinguished from a

A fluid when subjected to a
similar applied stress will
continue to deform, i.e., to
flow at a velocity that
increases with increasing
stress.

solid by its behavior
when subjected to a
stress/applied force.

g
S
o
&
T
<
©
©
c
=
o
()

A fluid exhibits
e resistance to this
stress.
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Laminar Flow ..

* A fluid is contained between t / = /

two infinite (very long and Ay F,force . - Ay
(very long ] N e

very wide) parallel plates.
* The bottom plate is moving parallel to the top plate and at a constant
velocity Av, m/s faster relative to the top plate because of a steady

force F newtons being applied.

* This force is called the viscous drag, and it arises from the viscous forces in
the fluid.

* The plates are Ay m apart. Each layer of liquid moves in the z direction.

* The layer immediately adjacent to the bottom plate is carried along at the
velocity of this plate. The layer just above is at a slightly slower velocity,
each layer moving at a slower velocity as we go up in the y direction. This
velocity profile is linear, with y direction.

* An analogy to a fluid is a deck of playing cards!
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Laminar Flow

* It has been found experimentally for many fluids that

F Av,
a- Fay
u = proportionality constant = viscosity of the fluid [=] Pa - s [=] kg/m - s
°* Let Ay — 0,
dv,
T,, = —
y H dy

Tyy = F /A = shear stress = force per unit area [=] N/m? [=] Pa
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* In cgs system, viscosity [=] g/cm - s == centipoise (cp)
lep=1%x107kg/m-s=1x107Pa-s=1x 107 N-s/m*  (SI)
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1 cp = (.01 poise = 0.01 g/em -5
lep = 6.7197 X 107% Ib,/ft+s EXAMPLE 2.4-1




EXAMPLE 2.4-1. Calculation of Shear Stress in a Liquid

Referring to Fig. 2.4-1, the distance between plates is Ay = 0.5 cm, Ay, =
10 cm/s, and the fluid is ethyl alcohol at 273 K having a viscosity of 1.77 cp
(0.0177 g/cm -s).
{a) Calculate the shear stress 1, and the velocity gradient or shear rate
dv.fdy using cgs units.
(b) Repeat, using Ib force, s, and ft units (English units).
(c) Repeat, using SI units. ’

B F B dv, i / /
R e R

lcp=1X103kg/m-s=1X10"*Pa-s =1 X 10> N -s/m?
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1 cp = 0.01 poise = 0.01 g/cm-s = 67197 X 10~ b /ft-s
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Momentum Transfer in a Fluid

Shear stress (7,,) < a flux of z-directed momentum in the y direction = the rate of
flow of momentum per unit area.

The units of momentum are mass x velocity [=] kg: m/s.
The shear stress can be written as the amount of momentum transferred per second

per unit area:
kg-m/s momentum / /
T — u—
@ m?-s m?-s t

Random motions of molecules in the faster-moving Ay F,force / ;‘:}& £ £
layer send some of molecules into the slower-moving i e .
layer, where they collide with the slower-moving molecules and tend to speed them
up or increase their momentum in the z direction.

Molecules in the slower layer tend to retard those in the faster layer.

This exchange of molecules between layers produces a transfer or flux of z-directed
momentum from high-velocity to low-velocity layers.

The negative sign indicates that momentum is transferred down the gradient from
high- to low-velocity regions.

Dr. Linda A
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Viscosities of Newtonian Fluids -,.=-v

* Newtonian fluids: fluids that follow Newton's law of viscosity
* For a Newtonian fluid, there is a linear relation between shear stress

T,, and velocity gradlen &

—> Viscosity u is a constant and independent of the rate of shear.

* For non-Newtonian fluids, the relation between t,,, and

linear = Viscosity u does not remain constant but is a function of

shear rate.
* Certain liquids do not obey this simple Newton's law. These are
primarily pastes, slurries, high polymers, and emulsions.
* The science of the flow and deformation of fluids is often called

rheology.
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Non-Newtonian Fluids —

Yield-
| pseudoplastic
Bingham
| plastic _

A fluid whose flow curve (shear stress
versus shear rate) is nonlinear or does not
pass through the origin,
 The apparent viscosity, shear stress divided aslc.

by shear rate, is not constant at a given "

temperature and pressure but is dependent
on flow conditions:

Flow geometry
Shear rate

Sometimes even on the kinematic history of
the fluid element under consideration.

* Apparent viscosity is the ratio of shear
stress to shear rate, though the latter ratio :
is a function of the shear stress or shear
rate and/or of time

Shear stress

Newtonian |
fluid

Dilatant fluid

Shear rate
Types of time-independent flow behavior

Thixotropic fluid
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Shear stress

Rheopectic fluid

I
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Shear rate

Shear stress—shear rate for time-
dependent fluid behavior




* fluids for which the rate of shear at any point is determined only
by the value of the shear stress at that point at that instant; these
fluids are variously known as ‘ time independent ’ , ‘ purely viscous
", “inelastic’ or ‘ generalized Newtonian fluids ’ (GNF);

* more complex fluids for which the relation between shear stress
and shear rate depends, in addition, upon the duration of shearing
and their kinematic history; they are called ‘ time-dependent fluids

’I
’

* Substances exhibiting characteristics of both ideal fluids and
elastic solids and showing partial elastic recovery, after
deformation; these are categorized as ‘ visco-elastic fluids ’ .
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Viscosities of Newtonian Fluids

* Gases are Newtonian fluids.
* Viscosity of gases increases with temperature and is approximately
independent of pressure up to a pressure of about 1000 kPa.
* At higher pressures, the viscosity of gases increases with increase in
pressure.
* For example, the viscosity of N, gas at 298 K approximately doubles in
going from 100 kPa to about 5 x 10% kPa.

* In liquids, the viscosity decreases with increasing temperature.
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* Since liquids are essentially incompressible, the viscosity is not
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Viscosities of Newtonian Fluids

TABLE 2.4-1. Viscosities of Some Gases and Liquids at 101.32 kPa Pressure

Gases Liquids
Viscosity Viscosity
Temp., (Pa-s)i0° or Temp., ({Pa-sj10° or

Substance K (kg/m-s) 10* Ref. Substance K (kg/m-s) 10>  Ref.
Air 293 001813 NI | Water 293 1.0019  SI
CO, 273 0.01370 R1 373 0.2821 S1
373 0.01828 R! Benzene 278 0.826 Rl

CH, 293 0.01089 R1
Glycerol 293 1069 L1
SO, 373 0.01630 R1 Hg 293 1.5§ R2
* Olive oil 303 84 El

More complete tables of viscosities are given in Appendix A.2 (for water), Appendix A.3 (for inorganic
and organic liquids and gases ), and Appendix A.4 (for biological and food liquids).
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Types of Fluid Flow

and Reynolds Number
Section 2.5
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Types of Fluid Flow

Laminar Flow

e When the velocity of flow is slow, the flow patterns are smooth.

e The layers of fluid seem to slide by one another without eddies or
swirls being present

e Newton's law of viscosity holds

Turbulent Flow
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e \When the velocity is quite high, an unstable pattern is observed in
which eddies or small packets of fluid particles are present moving
in all directions and at all angles to the normal line of flow.

e Eddies are present giving the fluid a fluctuating nature.
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Reynold’s Experiment

a) Laminar / Viscous flow dye in water
1
l Hater \ /—dye streamline

critical velocity "__,, - _____.e( “___ﬂ_.

b) Turbulent flow 1
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Reynolds Number <> Dimensionless

Density 0 (kg /m3) I

Average 174
Velocity Vv (m / S) = " I
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Viscosity 1 (Pa . S) 1
Tub 3
Dlilarfleter D (m) ﬂ 5




Reynolds Number <> Dimensionless

* The instability of the flow that leads to disturbed / turbulent flow
is determined by the ratio of the kinetic or inertial forces to the
viscous forces in the fluid stream.

: 2 :
* Inertial Forces o« pv } Inertial Forces pv? pvD

* Viscous Forces oc pv/D Viscous Forces = PV I = Re

* For a straight circular pipe
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7 < 2100 = Laminar flow
Re > 2100 ~4000 = Transitionregion
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P2.5-1. Reynolds Number for Milk Flow

* Whole milk at 293 K having a density of 1030 kg/m?3 and viscosity of 2.12 cp is
flowing at the rate of 0.605 kg/s in a glass pipe having a diameter of 63.5 mm.

: 5 .
a) Calculate the Reynolds number. Is this turbulent flow: lep =1 X 10~ kg/m s

Z
<
-
ad
-
prmm—
—~ vD V. om
- Rezp—, v=—=n/p=0.185m/s
U A Zp2
e 4 e
= :
N pvD 1030 x 0.185 x 0.0635 =
Y Re = = — = 5707 == turbulent T
= u 2.12 x 10 =
= b) Calculate the flow rate needed in m3/s for a Reynolds number of 2100 S
= o =
= and the velocity in m/s. =
= _Rexp _2100x212x107° _
= Y=",D T 1030x00635  008m/s [ 5 )
. T T
=V =v4 = ZDzv = Z(0.06:-;5)2>< 0.068 = 2.16 x 107+ m3/s



P2.3-2 Mass Balance for Flow of Sucrose Solution

Integration of General Property Equation for Steady State. Integrate the general
property equation {2,3-11) for steady statg and no generation between the points
[y atz, and ['; atz,. The final equation should relate I to z.

I 9T

3 ( R

dt i

S
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Overall Mass Balance

and Continuity Equation
Section 2.6
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Introduction and Simple Mass Balances

* Simple mass / material balances:
input = output + accumulation

* At steady state:
rate of input = rate of output

.

v
: ———-.B pProcess g

g
S
o
&
T
<
©
©
c
=
o
()

m = p1V141 = p2v24;
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Often, vp is expressed as G = vp, where G is mass velocity or mass flux.




EXAMPLE 2.6-1. Flow of Crude Oil and Mass Balance
A petroleum crude oil having a density of 892 kg/m° is flowing through the

piping arrangement shown in Fig. 2.6-2 at a total rate of 1.388 x 1073 m?/s
entering pipe 1.

The flow divides equally in each of pipes 3. The steel pipes are schedule
40 pipe (see Appendix A.5 for actual dimensions). Calculate the following
using SI units.

(a) The total mass flow rate m in pipe 1 and pipes 3.

THE UNIVERSITY OF JORDAN

(b) The average velocity vin | and 3. E
(c) The mass velocity G in 1. E
=
S
£
/ -
3 )]
1 - 2 [ }f2-in. pipe
; ._EL
2-in. pipe T 3-in. pipe 1/2-in. pipe { 59 J
3
EXAMPLE 2.6-1. (pg. 51) (bg. 892 - Appendix ]

A F)



Control Volume for Balances

* Laws for the conservation of mass, energy, and momentum are all
stated in terms of a system, and these laws give the interaction of
a system with its surroundings.

* A system is defined as a collection of fluid of fixed identity.
* In flow of fluids, individual particles are not easily identifiable.
» attention is focused on a given space through which the fluid flows
rather than to a given mass of fluid.
» Used method: select a control volume, which is a region fixed in
space through which the fluid flows. @ /A
A
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Overall Mass-Balance Equation

(rate of mass output ) B (rate of mass input ) n (rate of mass accumulation )
from control volume to control volume in control volume

(rate of mass generation ) ___» streamlines of
— . fluid stream
in control volume o

rate of mass -
: ; — a — dM ) normal to surface
accumulationin | = = pdV =—
dt dt _
control volume v

control surface —
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( net mass eflux ) ﬂ
= || vpcosadA
from control volume
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Overall Mass-Balance Equation

vacosadA = jfvpcosasz+jfvpcosa1dA = vy Py Ay — V1 p1 Aq

streamlines of

* For a control volume where f”’jﬁstream
no mass is being generated: -
dM ~ 3
(% A (% A =0 - T
2 pz 2 1 pl 1 + dt ) normal to surface ?IE
* And in general: | E
trol surface — g
dMl B R con 5

mj; — Mg + = I

dt
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Average Velocity to Use in Overall Mass Balance

* If the velocity is not constant but varies across the surface area, an

average or bulk velocity is defined by

1
Vg =fovdA
A
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P2.6-2. Flow of Liquid in a Pipe and Mass Balance

* A hydrocarbon liquid enters a simple flow system shown in Fig.2.6-1 at an
average velocity of 1.282 m/s, where A; =4.33 X 103 m? and p, = 902 kg/m3.
The liquid is heated in the process and the exit density is 875 kg/ms3. The
cross-sectional area at point 2 is 5.26 x 103> m?. The process is steady state.

(a) Calculate the mass flow rate m at the entrance and exit.

(b) Calculate the average velocity v in 2 and the Ay
As
mass velocity Gin 1 " g ﬁ o)
gy Process —
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P2.6-4. Bulk Velocity for Flow Between Parallel Plates

Bulk Velocity for Flow Between Parallel Plates. A fluid flowing in laminar flow
in the x direction between two parallel plates has a velocity profile given by the

{ollowing.
2
v, = U, ma:l:l - (i) ]
Yo

where 2y, is the distance between the plates, y is the distance from the center

line, and v, is the velocity in the x direction at position y. Derive an equation
relating v_,, (bulk or average velocity) with v

X max”

Ve =0 Vxmox parabolic velocity profile 1
| E / —
eI i,-’;(,,,{.rr. 5 E” R e A z // vav — vdA
R i s A
A

B e s —
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- P2.6-7 Mass Balance for Flow of Sucrose Solution

< Mass Balance for Flow of Sucrose Solution. A 20 wt % sucrose (sugar) solution

2 having a dcnsity.of 1074 kg_/m"’ 1s flowing through the same piping system as

o || - Example 2.6-1 (Fig. 2.6-2). The flow rate entering pipe I is 1.892 m*/h. The flow

= || divides equally in each of pipes 3. Calculate the following:

% (a) The velocity in m/s in pipes 2 and 3.

Ng (b) The mass velocity G kg/m? - s in pipes 2 and 3.

= S E
7 =
% E, 1 e Z 11/2-in, pipe S
= — N ©
E 2-in. pipe 3-in. pipe 11/2-in. pipe 5
- a
= AN

- { 66 J




Overall Momentum Balance

Section 2.8
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Overall Momentum Balance

* Momentum is a vector quantity, not like mass and energy.

> The total linear momentum vector P of the total mass M of a moving

fluid having a velocity of D is
P = MY[=] kg.m/s
 Newton’s second law: The time rate of change of momentum of a

system is equal to the summation of all forces acting on the system and
takes place in the direction of the net force.
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Overall Momentum Balance

* The equation for the conservation of momentum with respect to a
control volume:

sum of forces acting

. (rate of momentum out) B (rate of momentum )
on control volume

of control volume into control volume

n ( rate of accumulation of )
momentum in control volume

The Generation Rate control volume

streamlines of
fluid stream

* Momentum is not conserved, since it is B Yl
generated by external forces on the > normal to surface
control surface /

system.
* |f external forces are absent, momentum is conserved.
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Overall Momentum Balance

* For a small element of area dA on the control surface,

rate of momentum efflux = v(pv)(dA cosa) = pv(v - n)dA

streamlines of
- fluid stream

(net momentum eflux) -
from control volume

=£f§(pv)cosad/l=£fp§(§-ﬁ’)d/l

rate of accumulation 9
of momentumin | = a[ff pvdV
control volume v

control surface —
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Overall Momentum Balance

* Overall linear momentum balance for a control volume:

ZF=!Jpv(v-n)dA+%IVUpvdV

which is a vector equation =

d
ZF,C=Upvvx cosadA+&fffpvde
A vV
0
EFy=ﬂpvvy cosadA+§Ufpvde
A vV
0
ze=ﬂpva cosadA+§Ufpvde
A %
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The Force term, ). F,

* The Force term, ), E, is composed of the sum of several forces:

1. Body force, F, g, is the x-directed force caused by gravity acting on
the total mass M in the control volume. F,, = Mg,. F,, = zero if
the x direction is horizontal.

2. Pressure force, F xps 1S the x-directed force caused by the

pressure forces acting on the surface of the fluid system.

When the control surface cuts through the fluid, the pressure is taken to be
directed inward and perpendicular to the surface.

In some cases, part of the control surface may be a solid, and this wall is
included inside the control surface. Then there is a contribution to F,, from the
pressure on the outside of this wall, which is typically atmospheric pressure.

If gage pressureis used, the integral of the constant external pressure over the
entire outer surface can be automatically ignored.
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The Force term, ). F,

* The Force term, ), E, is composed of the sum of several forces:

3. Friction force: When the fluid is flowing, an x-directed shear or
friction force F ., is present, which is exerted on the fluid by a solid
wall when the control surface cuts between the fluid and the solid
wall. In some or many cases this frictional force may be negligible
compared to the other forces and is neglected.

4. Solid surface force: In cases where the control surface cuts
through a solid, there is present force R, which is the x
component of the resultant of the forces acting on the control
volume at these points. This occurs in typical cases when the
control volume includes a section of pipe and the fluid it contains.
This is the force exerted by the solid surface on the fluid.
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The Force term, ), F,,

ZFx=Fxg+Fxp+FxS+Rx

0
=ffpvvx CosadA+&fffpvde
Vv

A

Similar equations can be written for the y and z directions
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Overall Momentum Balance in Flow System

in One Direction

* For a fluid flowing at steady state in the control volume in the x
direction, with v = v, : ®

@ A-z J.l'
Uy 1y Ay
= Y
V2. Pa

ZF,C = Fyy + Fp + Fes + Ry =ffvxpvx cosa dA
A

* Integrating with cosa = +1.0 and pA = m/v,,

V2 2
Fxg + Fxp + Iy + Ry = m( xZ)av — m( xl)av

Ux, av Ux, av
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Overall Momentum Balance in Flow System
in One Direction

2 2
(v%,) (vi,)
Feg + Fep + Fyg + Ry = m——20% _ g =200
vxz av vxl av
If the velocity is not constant and varies across the surface area,
= @
R R
(V%) av _ Ux w 5 0.95 — 0.99 for turbulent flow
veay B 7 |0.75 for laminar flow (see EXAMPLE 2.8-1)

Fep = p1A1 — 02432, Fs Will be neglected, F,, = 0 (gravity is acting
only in the ydirection)
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Overall Momentum Balance in Flow System
in One Direction

V2 V2
Fry+ Fp + Fys + Ry = m( )ay — m( %)

Ux, av Ux, av

Fep = p141 — D242, Fes will be neglected D@?az 1

F.4y = 0 (gravity is acting only in the y-direction)

V2 v
e )ay = —,and setting § = 1.0

vx av ﬁ
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Ry = mv; —mv, + pA4; —p144
* R, is the force exerted by the solid on the fluid.
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* The force of the fluid on the solid (reaction force) is the negative of
this or —R,,.




EXAMPLE 2.8-2. Momentum Balance for Horizontal Nozzle

Water is flowing at a rate of 0.03154 m’/s through a horizontal nozzle
shown in Fig. 2.8-1 and discharges to the atmosphere at point 2. The nozzle
is attached at the upstream-end at point | and frictional forces are con-
sidered neghigible. The upstream ID is 0.0635 m and the downstream
(0.0286 m. Calculate the resultant force on the nozzle. The density of the
water is 1000 kg/m?. O

© PR
R, =mv, —mv; — F,; + pA; —p141 22 D 1_..:
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Overall Momentum Balance in Two Directions

|

R, = mv, cosa, —mv; cosaq + p,A, cosa, —p1A1 cOSaq
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R, = mv; sina; — mvq sina, + ppA; sina; — p1A;sina; + myg

—
N
(o)

—

EXAMPLE 2.8-3. and 2.8-4.




EXAMPLE 2.8-3. Momentum Balance in a Pipe Bend

Fluid is flowing at steady state through a reducing pipe bend, as shown in
Fig. 2.8-3. Turbulent flow will be assumed with frictional forces negligible.
The volumetric flow rate of the hquid and the pressure p, at point 2 are
known as are the pipe diamecters at both ends. Derive the equations to
calculate the forces on the bend. Assume that the density p is constant.

R, = mv, cosa, —mv,cosa; + p,A, cosa, — p1A1COS a4
R, = mv,; sina; —mv,sina; + p,A; sina; — p14;sina; + myg
a; =0, cosa; =1,sina; =0

mm) R .= mv, cosa, —mv{ + prA, cosa, — p144

- . @ tz, P2 '
R, = mv; sina; + p;A; sina; + m;g o __/{
. \/’
o T

_ | p2 2 _....-1(R 1, Py oy
IR| = JRx +RZ, 6 =tan"!(2) fopr
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EXAMPLE 2.8-4. Friction Loss in a Sudden Enlargement

A mechanical-energy loss occurs when a fluid flows from a small pipe to a
large pipe through an abrupt expansion, as shown in Fig. 2.8-4. Use the
momentum balance and mechanical-energy balance to obtain an expression
for the loss for a liquid. (Hint: Assume that p, = p, and vy = v,. Make a
mechanical-energy balance between points 0 and 2 and a2 momentum
balance between points 1 and 2. It will be assumed that p, and p, are
uniform over the cross-sectional area.)

@- 1- Momentum balance between points 1 & 2
|

oF R, = mv, —mv + p4; — p144
i
|

; y e Control volume is selected so that it does
mo ———

not include the pipe wall = R, drops out
- = Vg U8} —
“‘“{“‘“& i * AndA; = Ay, Po =P V1 = Vo
i) : > p24; — p14; = My — mv,
! Since m = pAgvgand v, = (4y/45)v,

S P27P1 _ 2 (ﬂ) ( _ ﬂ)
p 0\4, Az
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EXAMPLE 2.8-4. Friction Loss in a Sudden Enlargement

A mechanical-energy loss occurs when a fluid flows from a small pipe to a
large pipe through an abrupt expansion, as shown in Fig. 2.8-4. Use the
momentum balance and mechanical-energy balance to obtain an expression
for the loss for a liquid. (Hint: Assume that p, = p, and vy = v,. Make a
mechanical-energy balance between points 0 and 2 and a2 momentum
balance between points 1 and 2. It will be assumed that p, and p, are
uniform over the cross-sectional area.)

@' 2- Mechanical energy balance between 0 & 2
2 2
(0) §3\ i VO—VZ_ZF:PZ—PO
; }
NS~ : -
- g v, ——v# Combining momentum and energy balance
7 S
: & equations:

)

I
|
I 2 2
| v A
2 A,
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P2.8-1. Momentum Balance in a Reducing Bend

Water is flowing at steady state through ® .,
the reducing bend in Fig. 2.8-3. The angle © .

o, = 90° (a right-angle bend). The
pressure at point 2 is 1.0 atm abs.
The flow rate is 0.020 m3/s and the
diameters at points 1 and 2 are 0.050 m and 0.030 m, respectively. Neglect
frictional and gravitational forces. Calculate the resultant forces on the bend in
newtons and |b-force. Use p = 1000 kg/m3.

v, Py

R, = mv, cosa, — mv;cosa; + pA, cosa, — p1A1 cos a4

R, = mv; sina; — mv,;sina; + ppA; sina; — p1A;sina; + meg
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Overall Momentum Balance for Free Jet ;

control U

Striking a Fixed Vane

* For the curved vane (a):

R, = mv{(cosa; — 1)

and neglecting the body force

R, = mvsin a,

* Hence, R, and R, are the force components of the vane on the
control volume fluid.
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* The force components on the vane are —R, and —R,,.
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Overall Momentum Balance for Free Jet ;
Striking a Fixed Vane '

* For smooth flat vane (b):

control
volume

m, = %(1 + cos a,)

m e
msz = 71 (1 —cosay) (a) (b)
* The resultant force exerted by the plate on the fluid must be normal to it: %
resultant force = R = m v, sina, %
OR =
S
_ 2 2 £
R = \/Rx + R;, >
)]

R, = m,v, cosa, —myv4 COSa; + myv3(—Ccos a,)

THE UNIVERSITY OF JORDAN
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R, = myv, sin a; — myv, sina; + mzv3(—sina;)
V1 = V3 = v3 (No energy loss)




P2.8-3. Force of Water Stream on a Wall

* Water at 298 K discharges from a nozzle and travels horizontally hitting a flat vertical
wall. The nozzle has a diameter of 12 mm and the water leaves the nozzle with a flat
velocity profile at a velocity of 6.0 m/s. Neglecting frictional resistance of the air on
the jet, calculate the force in newtons on the wall.

my
m, = 7(1 + cos ay)

®)

m >

ms =—1(1—cosa2) £
2 T
resultant force = R = m,v, sin a, =
OR =
k=

_ | p2 2 "

R = \/Rx + RS a

R, = m,v, cos a; — M V1 COS a1 + M3V3(— COS &)
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R, = myv; sina; — mv4 sinaq + m3v3(—sinay)




P2.8-6. Momentum Balance for Free Jet on a
Curved, Fixed Vane.

A free jet having a velocity of 30.5 m/s and a diameter of 5.08 X 1072 m is
deflected by a curved, fixed vane as in Fig. 2.8-5a. However, the vane is curved
downward at an angle of 60° instead of upward. Calculate the force of the jet on the
vane. The density is 1000 kg/m3. L veew

control

= *,
R, = mv (cosa, — 1) R, = mvq sin a; mlume—\/ A
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Shell Momentum Balance and

Velocity Profile in Laminar Flow
Section 2.9
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Shell Momentum Balance and
Velocity Profile in Laminar Flow

* Overall momentum balance does not tell about the details of what
happens inside the control volume.

* Here, a small control volume will be analyzed and then shrank to

differential size.

* Shell momentum balance using the momentum-balance concepts
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* using the definition of viscosity, an expression for the velocity profile
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inside the enclosure and the pressure drop will be obtained.
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Shell Momentum Balance Inside a Pipe

r[
- -

* Engineers often deal with the

flow of fluids inside a circular

conduit or pipe.

* Analysis:

* Horizontal section of pipe in which an incompressible Newtonian fluid is

flowing in one-dimensional, steady-state, laminar flow.
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* The flow is fully developed.

It is not influenced by entrance effects.
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the velocity profile does not vary along the axis of flow in the x direction.
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Shell Momentum Balance Inside a Pipe

* At steady state the conservation ,[
- - X

pl
of momentum becomes as follows: d

-—

(sum of forces acting )
on control volume

Ax —

(rate of momentum out) B (rate of momentum )
of control volume into control volume

* Pressure force = pA|, — PA|yirr = P2rr Ar)|,, — D (21T AT) |34 Ax

 Shear force = (T, 2717 AX) | 3pr — (Tpy 277 Ax)|,- = net rate of momentum efflux
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* Flow is fully developed = net convective momentum flux across the annular surface

at x and x + Ax is zero & the terms are independent of X = v, |, = Vy|xanx
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Shell Momentum Balance Inside a Pipe

r[
- X

* At steady state the conservation

of momentum becomes as follows:

Pressure force + Shear force =0

p(Zm" Ar)lx _ p(ZTL’T A7ﬂ)|x+Ax — (Trx 2nr Ax)|r+Ar T (Trx 2nr Ax)lr

r (plx _ p|x+Ax) _ (rTrx )|r+Ar _ (rTrx)lr
Ax Ar
In fully developed flow, the pressure gradient (Ap/Ax) is constant = (Ap /L), where

L = pipe length =
ATty ) _ A_P
dr L
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Shell Momentum Balance Inside a Pipe

d(TTrx) _ A_p r
dr L - [ - X

Separating variables and integrating,

Ap Cq
T"‘x_(L>2+7

T FOatr =0 - C;=0

_(Ap Po — P
= Ty = 57 T = Tpy = o7 r

= momentum flux varies linearly
with the radius, and the maximum
value occurs at r =R at the wall

momentum
flux profile

VL L A ib’ WY,

I I
Ti".fl:' —{:I T.::max
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Shell Momentum Balance Inside a Pipe

__ (Po — PL
TT'X_ 2L r

Substituting Newton's law of viscosity

_ dv, (Po — PL)T
Har 2L

Trx

- X

Integrating using the boundary condition that at the wall, v, = 0atr = R, we

obtain the equation for the velocity distribution

4,,¢LpL R? [1 - (92]

= the velocity distribution is parabolic

— —

momentum
flux profile

L rif?if?:nfff«fffrilﬂ??’?iﬁﬁ?iffiffﬂ

I
= {:I T.r.::max
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Shell Momentum Balance Inside a Pipe

Po — PL T\*
-Botfi-()
SA) [ R ] '

The average velocity v, 4, for

a cross section is found by summing

up all the velocities over the cross
section and dividing by the cross-sectional area

1 1 27 r R 1 I
Vygy = — ” v, dA = — J j v, rdrdf = . J v, 2mr dr
All, Ry TR

= (Po — PL)R _ (po — pr)D*
Sl 32ul
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Shell Momentum Balance Inside a Pipe

The maximum velocity for a pipe
occursatr = 0.

Po — PL m\?
Aol ()
T L [ R ]

Po — PL
= Ux max = aul R?

- -

by =0 Cxmax velocity profile
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7
g
_ Uxmax I e T

vx av — 2

momentum
flux profile

THE UNIVERSITY OF JORDAN
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Shell Momentum Balance Inside a Pipe

Po — PL T\*
-Botfi-()
SA) [ R ] '

The average velocity v, 4, for

a cross section is found by summing

up all the velocities over the cross
section and dividing by the cross-sectional area

1 1 27 r R 1 I
Vygy = — ” v, dA = — J j v, rdrdf = . J v, 2mr dr
All, Ry TR

= (Po — PL)R _ (po — pr)D*
Sl 32ul
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Shell Momentum Balance for Falling Film

* Falling films have been used to study convection
X

various phenomena in mass transfer, I %mw ~ 0

l momentum in by

coatings on surfaces, and so on. ‘
* The control volume for the falling film

is a shell of fluid having a thickness of l )
Ax and a length of L in the vertical z RN gavy
direction; gobr;entxfx/ \#

momentum out

» sufficiently far from the entrance i;‘&f’l‘;g‘éﬁ" @ by molecular
and exit regions so that the flow is T transport
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not affected by these regions. < &
= the velocity v, (x) does not
depend on position z. 1

L momentum out

by convection

THE UNIVERSITY OF JORDAN
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Shell Momentum Balance for Falling Film

convection

momentum in by
System: Ax thick, bounded in the z direction j

by the planesz =0and z = L, and

extending a distance W in the y direction.

——— g
1. Momentum flux due to molecular %
transport: i\—‘

THE UNIVERSITY OF JORDAN

S
gravity g
net efflux = LW (Ty,)lxsax — LW (Tr)ls omenun | ___..% force =
2. Net convective momentum flux: in by \\# <
molecular momentfum out %
net efflux transport by molecular <
transport —!
— Axwvz(b}{xh =L — AXWUZ(//)|Z 0~ — 5 -
equal
3. Gravity force acting on the fluid: T l { 99 J
gravity force = AxXWL(pg) X momentum out

by convection
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Shell Momentum Balance for Falling Film

(sum of forces acting ) _ (rate of momentum out) B (rate of momentum )

on control volume of control volume

AXWL(pg) = LW (Tyz)|x4ax — LW (Tyz)|x + 0

Rearranging and letting Ax — 0,

Txz |x+Ax — Txz |x dez

Ax — P9 ” dx — P

Boundary conditions:

atx =0, t,, = 0 at the free liquid surface,

andatx =x,T,, =T,, UV — T,,=pgx

l.

into control volume

— —byf=— 0
) '\%

N

> |

l

A

t

| %[’
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Shell Momentum Balance for Falling Film

* For a Newtonian fluid using Newton's law of viscosity,

dv,
Loy = e i ‘E’; and  T,, = pgx

’duz Pg ]
. -'(**—"“)x mtegrati 0, = pg 2 n Ct
dx H o 2,1:

Boundary conditions:

atx =0,v, =0

p, = l —{—
21 o

Z

—

.
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Shell Momentum Balance for Falling Film

p, = ]l —{—=
21 o

* The maximum velocity occurs at x = 0

2
pgo
— 0, =
. -H
* Average velocity:
r {7 W
-M;_Jf :VJ‘ LU dxdy‘l”%
_pgot 2
- v, = 3 = 3 Vzmax

Laminar flow occurs for Re< 1200.

3
Jv dx

| N
N
ﬁ\.xw

.

Dr. Linda Al-Hmoud
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Shell Momentum Balance for Falling__ Film

z

X

I

|

momentum in by

» convection

...___..O

s

— pravity
force

i

v, (x)l

pgd’
-

e § ]

v

=z

-

Y

A R R T R Y

mommtlin_/{ | velocity ——/
in by profile
molecular momenium out
transport Ax by molecular
B T transport
/ Tyz (X)
< & -
A
momentum /
T - = % —— L flux profile
Lo ,
\‘ momentum oul o
by convection Txz = PGXx

&

)|
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2.9-1. Film of Water on Wetted-Wall Tower. Pure water at 20°C is flowing down a
vertical wetted-wall column at a rate of 0.124 kg/s-m. Calculate the film
thickness and the average velocity.

Ans. 6 =3370 x 107 m,v, ., = 0.3687 m/s

~ av

Dr. Linda Al-Hmoud
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Differential Equations Of Contmulty <
Chapter 3 2

Section 3.6
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Differential Equations of Continuity

* Overall mass and momentum balances allowed us to solve many
elementary problems on fluid flow.

* balances done on a contro/ volume

* Overall balances do not require knowledge of what goes on inside
the finite control volume.

* To advance in studying these flow systems, must investigate in
greater detail what goes on inside this finite control volume.
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» use a differential element for a control volume

THE UNIVERSITY OF JORDAN

* differential balances in a single phase and integrate to the phase
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boundary using the boundary conditions.
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Differential Equations of Continuity

 Differential-momentum-balance equation is based on Newton's

second law
* allows to determine the way velocity varies with position and time

* allows to determine the pressure drop in laminar flow.
* The equation of momentum balance can be used for turbulent

flow with certain modifications.
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* Often these conservation equations are called equations of

change, since they describe the variations in the properties of the

—
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—

fluid with respect to position and time:




Types of Time Derivatives & Vector Notation

1. Partial time derivative: the local change of fluid property with
time at a fixed-point x, y, and z.

G, L L. :
* Example: a—i = partial time derivative of density p.

2. Total time derivative.

dp_ap_l_apdx_l_apdy_l_apdz
dt ot o0xdt OJdydt 0Jzdt

“the density is a function of tand of the velocity components dx/dt,
dy/dt, and dz/dt at which the observer is moving”
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3. Substantial time derivative: derivative that follows the motion
Dp o0p dp dp dp dp

—F_ZF - e r_F v
Dt ot T gx T oyt Vi, T 5 TV VP)

THE UNIVERSITY OF JORDAN
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Types of Time Derivatives & Vector Notation

4, Scalars: quantities such as concentration, temperature, length,
volume, time, and energy. They have magnitude but no direction.

5. Vectors. Velocity, force, momentum, and acceleration are considered
vectors since they have magnitude and direction. They are written in
boldface letters in textbooks, e.g., v for velocity.

The vector B is represented by its three projections By, By, and B, on
the x, j, and zaxes and
B =iB, +jB, + kB,
rB = Br
(B-C)=(C-B)
(B-C)D # B(C- D)
(B:-C) = BC cos dg¢
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Types of Time Derivatives & Vector Notation

6. Differential operations with scalars and vectors. The gradient or

"grad" of a scalar field is
dp . dp dp
V = u _ L] - k_
P =15 15, T %52

The divergence or "div" of a vector v is
dv, O0v, 0Jv,
V.v)= —> 42
V)=t Tz

The Laplacian of a scalar field is

92p 9%p 92
_0% 0°p 0%
0x2 ' dy? ' 9z
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Types of Time Derivatives & Vector Notation

* Other useful operations:

Vrs =rVs + sVr
(V-sv)=Vs-v)+s(V-v)

. GS_I_ (')S_I_ ds
\% S‘”xax vyay vZaZ
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Differential Equation of Continuity

* Derivation of equation of continuity:

* pure fluid flowing through stationary
volume element

-

{Pu_}r]y-l-ﬂy (Pvz)zeaz2

N

N I
X |
5 |
(v, ), - \l ! B ':Fl’_x]x+ax__
Az \
T __—vi———.-
Ay N
& | 4 N
o NN\

(pvz); (poydy
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Differential Equation of Continuity

o _ [a(pv ) e,

| Yoo, )} (V- v

(F“.:]x+ﬂx__

ot Ox ay . oz
op 3p 3p dp 5u Ov, Ov,
Tt T T A — +
or T ox o dx dy 0Oz
Dp (ov 5 ov, - 50‘,) V9 Poylyray  (PU2)isns
T e . = — v ¥
Dt P ox dy 0z i z4 \x %
Y
For constant density: \u !
(v )y \] I
V.9 av, 2 dv, Ou, R VRN
o N B
EXAMPLE 3.6-1. > z;/' \t
(pr:);
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Continuity Equation in Cylindrical Coordinates

X=17 gox y =rsin 0 zZ =z

r= +./x*+y* @=tan"! 4
X
dp 10(prv) 13d(pvy) Olpv.)

aTr e Ty e T o

Continuity Equation in Spherical Coordinates

x =rsin 8 cos ¢ y = rsin § sin ¢ z = rcos f

z

dp N L d(prv,) N 1 d(pu, sin 0) . [ dpvy)
at  r*  or r sin f L, rsin 0 go

=
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3 - -1 Y
r=+\/x2+y2+z“ 0 = tan qﬁmtan’m
X
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P3.6-1. Equation of Continuity in a Cylinder.

Fluid having a constant density pis flowing in the z direction through

a circular pipe with axial symmetry. The radial direction is designated

by r.

(a) Using a cylindrical shell balance with dimensions dr and dz,
derive the equation of continuity for this system.

(b) Use the equation of continuity in cylindrical coordinates to derive é
the equation. <E.E

% I d(prv,} 1 d(pv d(pu. S

o , Lelorv) | 13pve)  Olpv) E

gt r Or r g8 0z 5

—
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~
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Differential Equations of Momentum
Transfer or Motion

©
>
)
&
7
<
©
©
c
=
i
O

Section 3.7
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Differential Equation of Momentum Transfer

« Equation of motion
== Equation for the conservation-of-momentum equation

( rate of ) . ( rate of )
momentum in momentum out

( sum of forces ) _ (rate of momentum )

acting on system accumulation _g

» Considering the x-component of each term: £

+ Net Convective x-momentum flow into the volume element AxAyAz is =

[(pvxvx)x _ (pvxvx)x+Ax ]AyAZ (ovy)ysay (Pvz)z4nz 'r'g

N =

+ [(pvyvx)y —(pvyvx), .4, ] AxAz N =

+[(pvzvx)z o (pvzvx)z+Az ]AxAy (Poxde | \1 | - (Prx)xvax
pv, = concentration [=] momentum/m?3 s N

P,V = momentum flux [=] momentum/s-m? X ﬁ{_TT\ { o0 J
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Differential Equation of Momentum Transfer

» Considering the x-component of each term:

* Net x-component of momentum by Molecular transfer is

[(Tax)x — (Tax)xvax JAYAZ + [(Tyx)y - (Tyx)y+Ay ] AxAz

+[(sz)z o (sz)z+Az ]AxAy

Ty, = Xxdirection shear stress on the yface

)
T, = nomal stress on the xface \\ 1;
. \“\ I
> net fluid pressure force: e | VT T immee
- I e
bz [
[Px — Pxsnx |AYAZ N ___]T\
¥y ™
(x, y }—/\‘_}_M_X\[ ]
(p Py ly
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Differential Equation of Momentum Transfer

(poydysny (Pvz)zenz

. . z4 1
 Considering the x-component of each term: \\\ 1
. |
- Gravitational force in the x direction is C I B A v
N ———- N
pgx AxAyAz > \L + \\\
——Ax
gx = x component of the gravitational vectorg \| """~ .. o)y

» Rate of Accumulation of x momentum in the element is:

(pvy)
ot

 Substituting, dividing by AxAyAz, and taking the limit as Ax, Ay, Az — 0:

AxAyAz

dat dx ay 0z *

d(pvy) A (pvyvy) a(p vax) d(pv,vy) 0Ty 0Ty 0Ty dp
= — + + — +
dx ay 0z
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Differential Equation of Momentum Transfer

« x-component of the differential equation of motion.

a(pvx) a(pvxvx) a(pvyvx) a(pvzvx) aTxx aTyx asz ap
at [ ax dy 9z ox "oy oz ) oax  PY
« Using the equation of continuity:
ap _ |9(pvy) a(pvy) a(pv,)
at dx ay dz

« Equations of motion for the x, ), and zcomponents are obtained:
av, av, av, v, 0Ty 0Ty 0T,y Op
p(at+”xax+”y<9y+zaz)_ (6x+ay+az
07y, 07Ty, 0T, )\ Op
p(WH’CEHy()yJ’”Z 62) <6x T ay T8z _6_y+pgy
<6vz v, v, avz) (arxz a7y, N OTZZ> op
P
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Equations of Motion for Newtonian Fluids

dv 2

y
;r = _...2 m+ — .
yy -“'ay 3 (VW)

in cylindrical
coordinates

In rectangular
coordinates

Newtonian fluids

in spherical
coordinates

Shear-stress components for
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Equations of Motion for Newtonian Fluids
with Varying Density and Viscosity

* For the x-component of momentum, the general equation of motion for a
Newtonian fluid with varying density and viscosity Is:

Dv, & #2 du, 2 toa | [av, v,
m e = g (Vo) |+ — | 3
£ Dt ox a dox 3 # ) Tay . dx dx g
- . - - I
3 | fov, au.\] ap 3
4 e e £
oz |"\ox ez )| ax 7 :

—
[
N
(9

—

* Similar equations are obtained for the y and z components of momentum.
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Equations of Motion for Newtonian Fluids
with Constant Density and Viscosity

a(pvx) _ a(pvxvx) n a(pvyvx) a(pvzvx) 0Ty n aTyx n 07,y dp
at dx ay dz ax ay dz

* For constant viscosity fluid, Newton’s law applies: 7., = —pu——

=>» Equation of motion In rectangular coordinates:

v, . avx+ v, . v\ azvx+azvx+azvx ap+
P lat "™ ax " ay T ez ) TH\axz Tayz T a2 ) " ax PYx

* Similar equations are obtained for the y and z components.
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EXAMPLE 3.8-3. Laminar Flow in a Circular

Tut

2. Equation of motion in cylindrical coordinates.

These equations are as follows for

Newtonian fluids for constant p and wu for the r, 8, and z components, respectively.

ot aor r o8 r .02

v, duv, vy du, v§ dv,
pi—+ v, + - + v, =

3 [1arv)\ 1 8%, 2 duvs 8%, 1740
+ pl— |- + — - = + - 7-
Hlar\r ar ) 17967 rPae a2 | P (3:7-40)
oV g vy Uy avg VU, Vg avg I ap
pl-——+ v, + -+ tv, —}|= ———
at ar r ado r 0z r oo
3 (1 a(rug) 1 0%vy 2 0v, @&%v, 5741
+ ]~ + + o e + .7
# ar\r dr rt 382 1?36 8z’ P (
dv; Ju vg OU v p
p-'——i—i-v, 4 z—i—vz—z-:——
dat 3r r 98 0z 0z
1 o du, i a'ﬁvl azvz
+ Al B y — + I + + 3.7‘42
Mrar\" ar ] T i1 502 " az2 | PYs ( )
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EXAMPLE 3.8-3. Laminar Flow in a Circular

Tube [ dp dv. ldv. 1d ( dvz)

— —= = const = —E g e | p £
u dz dr? T rdr rdr dr
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P3.6-1. Equation of Continuity in a

Gm' &constant density pis flowing in the zdirection through a
&g& Ith axial symmetry. The radial direction is designated by .
(a) Using a cylindrical shell balance with dimensions grand adz, derive

the equation of continuity for this system.
(b) Use the equation of continuity in cylindrical coordinates to derive the

equation.
Nz ( iCN

e AZ =N

THE UNIVERSITY OF JORDAN

dp. 1¢ 18 |
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P3.8-1. Average Velocity in a Circular Tube.

Using Eq. (3.8-17) for the velocity in a circular tube as a function of

radius 7, 1 dp
v, == Z; :‘f; (.r - ro) 2 1
derive Eq. (3.8-19) for the average velocity. v,,, = — -é'.i. %
Zas

g
S
o
&
T
<
©
©
c
=
o
()

—
[
w
o

—




THE UNIVERSITY OF JORDAN

P3.8-4. \elocity Profile in Falling Film and
Differential Momentum Balance.

Newtonian liquid is flowing as a falling film on
an inclined flat surface. The surface makes an
angle of B with the vertical. Assume that in this
case the section being considered is sufficiently
far from both ends that there are no end effects
on the velocity profile. The thickness of the film

is 0. The apparatus is similar to Fig. 2.9-3 but is not vertical. Do as follows.

(a) Derive the equation for the velocity profile of v, as a function of x in
this film using the differential momentum balance equation.
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(b) What are the maximum velocity and the average velocity?

(c) What is the equation for the momentum flux distribution of 7,.,?
[Hint: Can Eq. (3.7-19) be used here?]
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P3.8-4. \elocity Profile in Falling Film and
Differential Momentum Balance.

(‘06@ (32.7- 3% o2 Z Compportnt
Q‘{-f-f Uz

( Vy _3_3.+v;9_1;2__)
-/"@—C};%_*/_ai +?Jzz)aé+@g,z

N

el
Rl g, = 45 Coa
(1;;.7() U'z——egamﬁ

o K™=

Stegailling (2 ),

3
(3) ”—a—‘f = —@ g« x 42

B,C. "az;;"z"“’z"xx:a

Conala

\ Memct , <, =0

(¢ p%_’f;.z =—@gerBX 4o
BC Zz =0, a.?__)(sé
() p vy =€ Bxt+C2 =0

Dr. Linda Al-Hmoud

He/wd) Cz-.-.eg ca,g_:_i__z
€E)pv, = “Q‘jcﬂG_gi_L+eegm§_§:‘-

M‘Lﬂ&

—
[
w
N

—

v, =egq7? .
= ‘;;JL C""‘@("‘—:—.’—‘f)
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' P3.8-4. Velocity Profile in Falling Film and
Differential Momentum Balance.
&) ”?w ﬁf"""z,z oL X=¢

7y |V=

— 31
= £€3° cnp
£V

? e?"(n'q’z‘)‘*’ﬁ“‘- Wio Wm Y denrclooi

0%, =+

( ‘“’r § dzd-ﬁdy* ELIU'OLX

M’ﬂd‘j"y(é) MvG-’?waoMj)f; —@9J coe @

(C)éy(S? m - E1Z
--P( V= +/
'(?) Ixz="p.aa_v_-1 )

10) 4etsi, (¢ m,z“ @)
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P3.8-2. Laminar Flow in a Cylindrical Annulus.

Derive all the equations given in Example 3.8-4 showing all the steps.
Also, derive the equation for the average velocity v, .. Finally, integrate to
obtain the pressure drop from z = 0for p =p,to z =L for p= p,.

Steady-state laminar flow inside the annulus
r dv between Two concentric horizontal pipes

,_(iiﬁ)(i Toes

dr “\pdz/\2 2 _-___*\ F
\' ’IZ JAS r"j“‘" /i/
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2. Equation of motion in cylindrical coordinates. These equations are as follows for
Newtonian fluids for constant p and u for the r, 8, and z components, respectively.

— + v, + - + v,

v, du, vy dvu, vﬁ dvu, ap
P at ar r o8 r .0Z -

or

[a (1 a(ru,)) | 8%v, 2 vy d°v,
+ u +

-3 + }”rpgr

r o ar r2 307 rrag a7
dUg vy Vg avg U,Up avg I ap
pl-—+ v, + -+ tv, —}|= — -
at ar r aé r 0z
3 ({1 alrug) 1 azvg 2 dv, &?'ve
+ - + - + = — +
#* ar\r or rt 982  r? 36 ﬁ'z:2
dv. ovu Vg dvu v ap
p-*-—E-i-v, %4 Z—}-Uz—z-:——
dgt or r 06 0z 87

1 d dv, 1 3%v, 3’0,
+ - r +* — + +
Ay ar \ ar r2 302 azz | PY:

+ pgg

(3.7-40)

(3.7-41)

(3.7-42)
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Boundary-Layer Theory

* Boundary Layer: the region close to the solid surface.

* In the boundary-layer region, the fluid motion is greatly affected
by the solid surface.

* In the bulk of the fluid away from the boundary layer the flow can
often be adequately described by the theory of ideal fluids with
Zero viscosity.

* However, in the thin boundary layer, viscosity is important.

* Since the region is thin, simplified solutions can be obtained for
the boundary-layer region.

* Prandtl originally suggested this division of the problem into two
parts, which has been used extensively in fluid dynamics.
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Boundary Layer for Flow Past Flat Plate

* Boundary-layer formation in the steady-state flow of a fluid past a
flat plate.

(9 e N —_—

. [ —{ -~ b— turbulent

P 1
s ( L_‘ T boundary layer
|
i

——
' viscous
{ —>———+«—"  sublayer
LN LT e e e e e,
x =( laminar ‘: i X ——
boundary layer transition zone

At the points connected by the dashed line, L, the velocity is 99% of
the bulk velocity v,
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_ | Boundary Layer for Flow Past Flat Plate
<
QQ: * Boundary-layer formation in the steady-state flow of a fluid past a
O flat plate.
% > e —— ::___......
>_‘ %" % " //"'T” N turbu!ent
— s I £ I S fa ] o boundary layer =2
— 5 e T £
o i viscous o
Sa —— ———+«—"  sublayer <
> -
Z - X —— "
— x =0 transition zone a
% When Re, = % < 5% 10°, the flow is laminar
140

= the thickness 0 of the boundary layer increases ( J

with the \/x as we move in the x direction
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Boundary Layer for Flow Past Flat Plate

* Boundary-layer formation in the steady-state flow of a fluid past a

flat plate.
o et s mnan g —
> > —{ __~ 7T |— turbulent
o L LT | boundary layer
5 - ' *
o !
- i viscous
—* - ———+«—"  sublayer
i / oSN

l : oA 7.
x =( laminar ‘:
boundary layer transition @

* When 5 X 10° < Re, < 3 x 109, the flow is in the transition zone
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Boundary Layer for Flow Past Flat Plate

* Boundary-layer formation in the steady-state flow of a fluid past a
flat plate.

i

7 turbulent
\} boundary layer
viSCous
{~ —>——-—+—"  sublayer
////./' 1[//

x =0 laminar ‘: i X weeerein-
boundary layer transition zone

» When Re, > 3 X 10°, the flow is turbulent

When the boundary layer is turbulent, a thin viscous sublayer persists next to
- the plate. The drag caused by the viscous shear in the boundary layers is
called skin friction. the only drag present for flow past a flat plate.
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Laminar Flow and Boundary-Layer Theory

* Boundary-layer equations: When laminar flow is occurring in a boundary
layer, certain terms in the Navier-Stokes equations become negligible and can
be neglected.

* Thickness of boundary layer o: the distance away from the surface where the
velocity reaches 99% of the free stream velocity.

* The concept of a relatively thin boundary layer leads to some important
simplifications of the Navier-Stokes equations.

* For two-dimensional laminar flow in the x and y directions of a fluid having a
constant density, for flow at steady state, when the body forces g, and g, are

neglected:
v, v, M v, d%*v,\ 10p
ax ay p\ dx ay p o0x

v v, u(azvy azvy> 1dp
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Laminar Flow and Boundary-Layer Theory

* The continuity equation for two-dimensional flow becomes

negligible in comparison
with the other terms

% o _ la_p =

& S p Ox S

“ ©

g3 _19p =

c Y ©

= p 0y 2
* All the terms containing v,, and its derivatives are small. g
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Solution for

Laminar Boundary Layer on a Flat Plate

* Since v, is constant, dp/dx is zero.
* The final boundary-layer equations reduce to

v (4 L5

ov ov v - " . i sp= T
vx _x + vy _x — E Z-X' - = - _‘_,.-""-T
dx dy p dy N
- ] I
avx avy [ a _'.--"":__J Ip'x—"'r - | |
Jax ay o _ b et
* Boundary condition: x.l_.n £

* v, =v, =0aty = 0,and
* Solution of this problem for laminar flow over a flat plate giving

Uy = Uy aty =

v, and v,, as a function of x and y was first obtained by Blasius
and later elaborated by Howarth.
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Solution for
Laminar Boundary Layer on a Flat Plate

 Blasius reduced the two equations to a single ordinary differential equation
which is nonlinear.

* The equation could not be solved to give a closed form but a series solution
was obtained.

* The results of Blasius work are as follows:

5.0x Ux

» Boundary-layer thickness 3 is given approximately by ¢ = N = 5.0 o
X (00)

* Hence § varies as \/x

« Skin friction 7 is calculated =, N LN ~ _l:f- -
from the shear stress at the _ - L _*_,h...f-'“'#ﬂif
surface at y = 0 for any x: - - ﬂ\i,..-:*",,:_ﬁj* i R :L
7o = 0.332uv, |22 . I\Q’Mx( e

Ux
x=0 x
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Solution for

Laminar Boundary Layer on a Flat Plate
Total drag for a plate of length L and width b is given by:

L
FD :bf Todx
0

2
| Vo
Fp = 0.664b |upvs L = Cp, - pA

where Cp, = 1.328 / oo \1/3_ (similar to Fanning friction factor ffor pipes).

This ¢, equation applies only to the laminar boundary layer for Re; <5 x 10°.

The results are valid only for positions where x is sufficiently far from the leading
edge so that x or L is much greater than 0.

Experimental results on the drag coefficient to a flat plate confirm the validity of the
above equation.

Boundary-layer flow past many other shapes has been successfully analyzed using
similar methods.
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P3.10-1

Laminar Boundary Layer on Flat Plate. W ater at 20°C is flowing past a flat plate

at 0.914 m/s. The plate is 0.305 m wide.

{a) Calculate the Reynolds number 0.305 m from the leading edge to determine if
the flow 1s laminar.

(b) Calculate the boundary-layer thickness at x = 0.152 and x = 0.305 m from
the leading edge.

(c}) Calculate the total drag on the 0.305-m-long plate.

P3.10-2

Air Flow Past a Plate. Air at 294.3 K and 101.3 kPa is flowing past a flat plate

at 6.1 m/s. Calculate the thickness of the boundary layer at a distance of 0.3 m
from ihe leading edge and the total drag for a 0.3-m-wide plate.
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Boundary-Layer Flow and

Turbulence in Heat Transfer
Section 5.7A

©
>
)
&
7
<
©
©
c
=
i
O

THE UNIVERSITY OF JORDAN

|_\
D
(o]




Laminar Flow and Boundary-Layer Theory
in Heat Transfer

* Laminar Flow of Fluid past a Flat Plate and Thermal Boundary Layer
* T = temperature of fluid approaching the plate

* T, = temperature of the plate at the surface.

 Starting with the differential energy balance:

THE UNIVERSITY OF JORDAN

aT . aT N aT N aT  k (0°T N a°T . 9T -
% % % — + =
a ' *ax Yoy *az pcy, \0x? = dy? = 0z? é
* The flow is in x and y directions - v, = 0 . o
on : <
* The flow is at steady state — % =0 . ‘___,gdsﬁ gf thTfmal Ko
_ oundary layer
* Conduction is neglected inthe x '} //__,- —E'
aZT aZT il i 5
and z directions > — = — =0 ]
dx%2  0z2 // 5
5 |
gl oT 4 or k 07T R T ( 50 J
ax 7 ay pc, dy> \——TS oo 2




Laminar Flow and Boundary-Layer Theory

in Heat Transfer
oT aT k 9%T

Y 3x T Way ay pc, 0y?

* The simplified momentum balance equation used in the velocity
boundary-layer derivation

THE UNIVERSITY OF JORDAN

av, oy avx ﬂazvx §
% — v
“ox Y Ay  p ay? p:
* The continuity equation used previously is =
A
ov, av
X4+ _0
dx Jdy { 151 J




Laminar Flow and Boundary-Layer Theory

in Heat Transfer
* Boundary Conditions used by Blasius for solving the case of laminar boundary-
layer flow:
Vy Uy Uy
Voo Voo @y Vo a y==
%
= =1 at x =0

 Blasius solution can be applied similarly,
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Laminar Flow and Boundary-Layer Theory
in Heat Transfer

* The transfer of momentum and heat are directly analogous and the
boundary-layer thickness 6 for the velocity profile (hydrodynamic boundary
layer) and the thermal boundary-layer thickness 0; are equal.

dv
(—x) = 0. 332—,/Rex, Re, =

0Y /=

@) - ()
y=0

dy X

* The convective equation can be related

to the Fourier equation by the following:

dy _ B oT
it =+(Z)

XV P
u

7k

edge of thermal
-~ boundary layer

i

S

x=

LR

0

Ts A

h

x X

k

= Nu, = 0.332,/Re,
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Laminar Flow and Boundary-Layer Theory
in Heat Transfer

* Pohlhausen showed that the relation between the hydrodynamic and thermal

boundary layers for fluids with Pr > 0.6 is approximately:
)

Or
* As a result, the equation for the local heat-transfer coefficient is
h, x
’;{ = Nu, = 0.332Re, }/?pr1/3

* The equation for the mean heat-transfer coefficient h fromx = 0 tox = L is fora
plate of width b and area b,

b (" k
h= —J hy dx = 0.664— Re, */*Pr1/3
A, L

hL
- = 0.664Re; Y/ pr1/3

* This laminar boundary layer on smooth plates holds for Re < 5x10°.
* Fluid properties are evaluated at film temperature Ty = (T + T, ) /2.
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P5.7-1. Thermal and Hydrodynamic Boundary

Layer Thicknesses

* Air at 294.3 K and 101.3 kPa with a free stream velocity of 12.2 m/s is
flowing parallel to a smooth flat plate held at a surface temperature of
383 K. Do the following.

(a) Atthe critical Re; = 5 X 10°, calculate the critical length x = L of
the plate, the thickness 0 of the hydrodynamic boundary layer, and
the thickness o of the thermal boundary layer. Note that the Prandtl
number is not 1.0.

(b) Calculate the average heat-transfer coefficient over the plate covered
by the laminar boundary layer.
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P5.7-2. Boundary Layer Thicknesses and Heat

Transfer

* Air at 37.8 °Cand 1 atm abs flows at a velocity of 3.05 m/s parallel to a
flat plate held at 93.3 °C. The plate is 1 m wide. Calculate the following
at a position 0.61 m from the leading edge.

(a) The thermal boundary layer thickness o0,, and the hydrodynamic
boundary layer thickness o.

(b) Total heat-transfer from the plate.
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