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What Are The Transport Phenomena?

The subject of transport phenomena 
includes three closely related topics:

Fluid 
Dynamics

involves the 
transport of 
momentum

Heat 
Transfer

deals with the 
transport of 

energy

Mass 
Transfer

concerned with the 
transport of mass of 

various chemical species
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What Are The Transport Phenomena?
• These three transport phenomena should, at the introductory level, be 

studied together for the following reasons:
• They frequently occur simultaneously in industrial, biological, agricultural, and 

meteorological problems; in fact, the occurrence of any one transport process by 
itself is the exception rather than the rule.

• The basic equations that describe the three transport phenomena are closely 
related. The similarity of the equations under simple conditions is the basis for 
solving problems "by analogy."

• The mathematical tools needed for describing these phenomena are very similar. 
Although it is not the aim of this book to teach mathematics, the student will be 
required to review various mathematical topics as the development unfolds. 
Learning how to use mathematics may be a very valuable by-product of studying 
transport phenomena.

• The molecular mechanisms underlying the various transport phenomena are very 
closely related. All materials are made up of molecules, and the same molecular 
motions and interactions are responsible for viscosity, thermal conductivity, and 
diffusion.
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Three Levels at which Transport 
Phenomena can be Studied
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Three Levels at which Transport 
Phenomena can be Studied
At the Macroscopic level (a)
• We write down a set of equations called

the "macroscopic balances," which 
describe how the mass, momentum, 
energy, and angular momentum in the system 
change because of the introduction and removal of 
these entities via the entering and leaving streams, and because 
of various other inputs to the system from the surroundings. No attempt is 
made to understand all the details of the system. 

• In studying an engineering or biological system it is a good idea to start with 
this macroscopic description in order to make a global assessment of the 
problem; in some instances, it is only this overall view that is needed.
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Three Levels at which Transport 
Phenomena can be Studied
At the Microscopic level (b)
• We examine what is happening to 

the fluid mixture in a small region within 
the equipment. 

• We write down a set of equations called the 
"equations of change," which describe how the mass, momentum, energy, 
and angular momentum change within this small region. 

• The aim here is to get information about velocity, temperature, pressure, and 
concentration profiles within the system. 

• This more detailed information may be required for the understanding of 
some processes. 6
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Three Levels at which Transport 
Phenomena can be Studied

At the Molecular level (c)

• We seek a fundamental understanding 
of the mechanisms of mass, momentum, 
energy, and angular momentum transport in 
terms of molecular structure and intermolecular forces. 

• Generally, this is the realm of the theoretical physicist or physical chemist, but 
occasionally engineers and applied scientists have to get involved at this level. 

• This is particularly true if the processes being studied involve complex 
molecules, extreme ranges of temperature and pressure, or chemically 
reacting systems.
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Relationship between Transport Phenomena
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Relationship between Transport Phenomena
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Principles of Momentum 
Transfer and Overall Balances

Chapter 2
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Introduction
• The flow and behavior of fluids is important in many of the unit 

operations in process engineering. 

• Fluid: a substance that does not permanently resist distortion 
and, hence, will change its shape. 
• Gases
• Liquids
• Vapors 

Have the Characteristics of Fluids 

11
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Introduction
• In process industries

• Materials in fluid form 
• Stored
• Handled
• Pumped
• Processed

12

It is necessary to 
become familiar with

the principles governing 
the flow of fluids

the equipment used

Typical Fluids

Water Air CO2 Oil Slurries Thick Syrups

Dr
. L

in
da

 A
l-H

m
ou

d



TH
E 

UN
IV

ER
SI

TY
 O

F 
JO

RD
AN

Types of Fluids
Incompressible Fluid
• Inappreciably affected by 

changes in pressure.
• Most liquids are incompressible. 

Compressible Fluid
• Gases are considered to be 

compressible fluids. 

13

If gases are subjected to small percentage changes in pressure and 
temperature, their density changes will be small 

they can be considered to be incompressible
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Introduction
• Like all physical matter, a fluid is composed of an extremely large 

number of molecules per unit volume. 

• A theory such as the kinetic theory of gases or statistical 

mechanics treats the motions of molecules in terms of statistical 

groups and not in terms of individual molecules. 

• In engineering we are mainly concerned with the bulk or 

macroscopic behavior of a fluid rather than the individual 

molecular or microscopic behavior. 14
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Momentum Transfer
• In momentum transfer we treat the fluid as a continuous 

distribution of matter, or a “continuum.” 
• Valid when the smallest volume of fluid contains a number of 

molecules large enough that a statistical average is meaningful and 
the macroscopic properties of the fluid (density, pressure, and so on) 
vary smoothly or continuously from point to point.

15

Momentum Transfer 
⇔ Fluid Mechanics

Fluid Statics fluids at rest

Fluid Dynamics fluids in motion
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Fluid Statics
Section 2.3
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Force, Units, and Dimensions
• Pressure:

• a surface force exerted by a fluid against the walls of its container. 
• Pressure exists at any point in a volume of a fluid.

𝑭𝑭 [=] 𝑵𝑵 (𝒌𝒌𝒌𝒌 · 𝒎𝒎/𝒔𝒔𝟐𝟐),𝒎𝒎 [=] 𝒌𝒌𝒌𝒌,𝒌𝒌 = 𝟗𝟗.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝒎𝒎/𝒔𝒔𝟐𝟐

𝑭𝑭 [=]𝒍𝒍𝒍𝒍𝒇𝒇,𝒎𝒎 [=]𝒍𝒍𝒍𝒍𝒎𝒎,𝒌𝒌 = 𝟑𝟑𝟐𝟐.𝟏𝟏𝟏𝟏𝟏𝟏𝟖𝟖 𝒇𝒇𝒇𝒇/𝒔𝒔𝟐𝟐,
𝒌𝒌𝒄𝒄 = 𝟑𝟑𝟐𝟐.𝟏𝟏𝟏𝟏𝟏𝟏𝟖𝟖 𝒍𝒍𝒍𝒍𝒎𝒎 · 𝒇𝒇𝒇𝒇/𝒍𝒍𝒍𝒍𝒇𝒇 · 𝒔𝒔𝟐𝟐

1 Poundal = 1 𝒍𝒍𝒍𝒍𝒎𝒎 · 𝒇𝒇𝒇𝒇/𝒔𝒔𝟐𝟐 1 Dyne = 1 𝒌𝒌 · 𝒄𝒄𝒎𝒎/𝒔𝒔𝟐𝟐
17

EXAMPLE 2.2-1
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Pressure in a Fluid

• This is the pressure on A2 due to the mass of the fluid above it.
• To get the total pressure P2 on A2, the pressure P0 on the top of 

the fluid must be added:
18
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Pressure in a Fluid
• To calculate P1,
• The pressure difference between points 2 

and 1 is

19
EXAMPLE 2.2-2
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Head of a Fluid
• A common method of expressing pressures is in terms of head in m or 

feet of a particular fluid. 
• This height or head in m or feet of the given fluid will exert the same 

pressure as the pressures it represents.

20

EXAMPLE 2.2-3
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Pressure Measurement Devices
• Simple U-tube manometer

• P3 must be equal to P2 by the principles of hydrostatics:  𝒑𝒑𝟑𝟑 = 𝒑𝒑𝟐𝟐

21

EXAMPLE 2.2-4
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Pressure Measurement Devices
• Two-fluid U tube

• a sensitive device for measuring small heads 

or pressure differences.

• If ρA and ρB are close to each other, the reading R is magnified.

22EXAMPLE 2.2-5
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Pressure Measurement Devices
• Bourdon pressure gage

23
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Pressure Measurement Devices
• Gravity separator for two immiscible liquids
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Gravity separator for two immiscible liquids

• A hydrostatic balance gives

• The position of the interface, hA1 depends on the ratio of the densities of 
the two liquids and on the elevations hA2 and hT.

• Usually, hA2 is movable so that the interface level can be adjusted.

25

fixed by 
position 
of the 
overflow 
line for B
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Momentum Transport
Part  One
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General Molecular Transport 
Equation for Momentum, Heat, and 
Mass Transfer

Section 2.3
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Introduction to Transport Processes
• In molecular transport processes in 

general ⇔ the transfer 
(movement) of a given property by 
molecular movement through a 
system [fluid (gas or liquid) or 
solid].
• Property: 

• Each molecule of a system has a 
given quantity of the property 
associated with it. 

• Difference of property 
concentration from one region to 
an adjacent region ⇔ net transport 
of this property occurs. 

28

Dilute fluids 
(gases

• molecules are relatively far apart
• rate of transport of property should be 

relatively fast
• few molecules are present to block the 

transport or interact. 

Dense fluids 
(liquids)

• molecules are close together
• transport or diffusion proceeds more 

slowly. 

Solids

• molecules are even more close-packed 
than in liquids

• molecular migration is even more 
restricted.

mass heat momentum
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General Molecular Transport Equation

rate of a transfer process =
driving force

resistance
we need a driving force to overcome a resistance 

in order to transport a property

• Ohm's law in electricity

rate of flow of electricity =
voltage drop (driving force)

resistance

29
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General Molecular Transport Equation

rate of a transfer process =
driving force

resistance

ψ𝑧𝑧 = −𝛿𝛿
𝑑𝑑Γ
𝑑𝑑𝑑𝑑

• ψ𝑧𝑧 = flux of property = amount of property being transferred per unit 
time per unit cross-sectional area perpendicular to the z direction of 
flow [=] amount of property/s.m2

• 𝛿𝛿 = proportionality constant = diffusivity [=] m2/s
• Γ = concentration of the property [=] amount of property/m3

• 𝑑𝑑 = distance in the direction of flow [=] m
30
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General Molecular Transport Equation
• At steady state, ψ𝑧𝑧 is constant

ψ𝑧𝑧 ∫𝑧𝑧1
𝑧𝑧2 𝑑𝑑𝑑𝑑 = −𝛿𝛿 ∫Γ1

Γ2 𝑑𝑑Γ ψ𝑧𝑧 = 𝛿𝛿 Γ1−Γ2
𝑧𝑧2−𝑧𝑧1

32

unsteady-state general 
proper ty balance

EXAMPLE 2.3-1
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General Property Balance for Unsteady State

33

Rate of 
Property 

In

Rate of 
Property 

Out

Rate of 
Generation 
of Property

Rate of 
Accumulation 

of Property

R (Δ z · 1)·1·1 𝝏𝝏Γ
𝝏𝝏𝒇𝒇

(Δ z · 1)
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General Property Balance for Unsteady State

34

Dividing by Δ𝑑𝑑 and letting Δ𝑑𝑑 go to zero,

Substituting for   ψ𝑧𝑧 = −𝛿𝛿 𝑑𝑑Γ
𝑑𝑑𝑧𝑧

For the case where no generation is present,

General Equations for the Conservation of Momentum, Heat, or Mass
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Introduction to Molecular Transport

35

Ki
ne

tic
 T

he
or

y 
of

 G
as

es
Because of their kinetic energy the molecules are in rapid random 

movement, often colliding with each other

Molecular transport / molecular diffusion of a property (momentum, heat, 
or mass) occurs in a fluid because of these random movements of 

individual molecules.

Each individual molecule moves randomly in all directions and there are 
fluxes in all directions.

If there is a concentration gradient of the property, there will be a net flux 
of the property from high to low concentration.

This occurs because equal numbers of molecules diffuse in each direction 
between the high-concentration and low concentration regions.
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tr
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to
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Momentum transport

Newton's law

Heat transport

Fourier's law

Mass transport

Fick's law

36

ψ
𝒛𝒛

=
−
𝜹𝜹
𝒅𝒅Γ 𝒅𝒅𝒛𝒛
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Viscosity of Fluids
Section 2.4
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Viscosity of Fluids
• Newton's Law & Viscosity

• When a fluid is flowing 
through a closed channel 
such as a pipe or 
between two flat plates, 
either of two types of 
flow may occur, 
depending on the 
velocity of this fluid:

• At low velocities, the fluid tends to 
flow without lateral mixing, and 
adjacent layers slide past one 
another like playing cards. 

• There are no cross currents 
perpendicular to the direction of 
flow, nor eddies or swirls of fluid. 

Laminar Flow

• At higher velocities eddies form, 
which leads to lateral mixing.

Turbulent Flow

38
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Laminar Flow
These viscous forces arise from 
forces existing between the 
molecules in the fluid and are of 
similar character as the shear 
forces in solids.

Viscosity
• a property of a fluid which 

gives rise to forces that resist 
the relative movement of 
adjacent layers in the fluid. 

A fluid can be 
distinguished from a 
solid by its behavior 
when subjected to a 
stress/applied force.

An elastic solid deforms by an 
amount proportional to the 

applied stress. 

A fluid when subjected to a 
similar applied stress will 

continue to deform, i.e., to 
flow at a velocity that 

increases with increasing 
stress. 

A fluid exhibits 
resistance to this 

stress. 
39

𝒔𝒔𝒇𝒇𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 =
𝒇𝒇𝒇𝒇𝒔𝒔𝒄𝒄𝒔𝒔
𝒂𝒂𝒔𝒔𝒔𝒔𝒂𝒂
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Laminar Flow
• A fluid is contained between 

two infinite (very long and 
very wide) parallel plates. 

• The bottom plate is moving parallel to the top plate and at a constant 
velocity ∆𝒗𝒗𝒛𝒛 m/s faster relative to the top plate because of a steady 
force 𝑭𝑭 newtons being applied. 
• This force is called the viscous drag, and it arises from the viscous forces in 

the fluid. 
• The plates are ∆𝒚𝒚 m apart. Each layer of liquid moves in the z direction. 

• The layer immediately adjacent to the bottom plate is carried along at the 
velocity of this plate. The layer just above is at a slightly slower velocity, 
each layer moving at a slower velocity as we go up in the 𝑦𝑦 direction. This 
velocity profile is linear, with y direction. 

• An analogy to a fluid is a deck of playing cards!
40
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Laminar Flow
• It has been found experimentally for many fluids that

𝑭𝑭
𝑨𝑨

= −𝝁𝝁
∆𝒗𝒗𝒛𝒛
∆𝒚𝒚

𝝁𝝁 = proportionality constant = viscosity of the fluid [=] Pa · s [=] kg/m · s
• Let ∆𝒚𝒚 → 𝟖𝟖,

𝝉𝝉𝒚𝒚𝒛𝒛 = −𝝁𝝁
𝒅𝒅𝒗𝒗𝒛𝒛
𝒅𝒅𝒚𝒚

𝝉𝝉𝒚𝒚𝒛𝒛 = 𝑭𝑭/𝑨𝑨 = shear stress = force per unit area [=] N/m2 [=] Pa
• In cgs system, viscosity [=] g/cm · s == centipoise (cp)

41

EXAMPLE 2.4-1
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EXAMPLE 2.4-1. Calculation of Shear Stress in a Liquid

42

𝝉𝝉𝒚𝒚𝒛𝒛 =
𝑭𝑭
𝑨𝑨

= −𝝁𝝁
𝒅𝒅𝒗𝒗𝒛𝒛
𝒅𝒅𝒚𝒚
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Momentum Transfer in a Fluid
• Shear stress (𝝉𝝉𝒚𝒚𝒛𝒛) ⇔ a flux of z-directed momentum in the y direction = the rate of 

flow of momentum per unit area. 
• The units of momentum are mass  × velocity [=] kg· m/s. 
• The shear stress can be written as the amount of momentum transferred per second 

per unit area:

𝝉𝝉𝒚𝒚𝒛𝒛 =
𝒌𝒌𝒌𝒌 � 𝒎𝒎/𝒔𝒔
𝒎𝒎𝟐𝟐 � 𝒔𝒔 =

momentum
𝒎𝒎𝟐𝟐 � 𝒔𝒔

• Random motions of molecules in the faster-moving 
layer send some of molecules into the slower-moving 
layer, where they collide with the slower-moving molecules and tend to speed them 
up or increase their momentum in the z direction.

• Molecules in the slower layer tend to retard those in the faster layer. 
• This exchange of molecules between layers produces a transfer or flux of z-directed 

momentum from high-velocity to low-velocity layers. 
• The negative sign indicates that momentum is transferred down the gradient from 

high- to low-velocity regions. 
43
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Viscosities of Newtonian Fluids
• Newtonian fluids: fluids that follow Newton's law of viscosity

• For a Newtonian fluid, there is a linear relation between shear stress 
𝝉𝝉𝒚𝒚𝒛𝒛 and velocity gradient 𝒅𝒅𝒗𝒗𝒛𝒛

𝒅𝒅𝒚𝒚
(rate of shear). 

⇒ Viscosity 𝝁𝝁 is a constant and independent of the rate of shear. 

• For non-Newtonian fluids, the relation between 𝝉𝝉𝒚𝒚𝒛𝒛 and 𝒅𝒅𝒗𝒗𝒛𝒛
𝒅𝒅𝒚𝒚

is not 

linear ⇒ Viscosity 𝝁𝝁 does not remain constant but is a function of 
shear rate. 
• Certain liquids do not obey this simple Newton's law. These are 

primarily pastes, slurries, high polymers, and emulsions. 
• The science of the flow and deformation of fluids is often called 

rheology.
44

𝝉𝝉𝒚𝒚𝒛𝒛 = −𝝂𝝂
𝒅𝒅(𝒗𝒗𝒛𝒛𝝆𝝆)
𝒅𝒅𝒚𝒚
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Non-Newtonian Fluids
• A fluid whose flow curve (shear stress 

versus shear rate) is nonlinear or does not 
pass through the origin, 
• The apparent viscosity, shear stress divided 

by shear rate, is not constant at a given 
temperature and pressure but is dependent 
on flow conditions:
• Flow geometry
• Shear rate
• Sometimes even on the kinematic history of 

the fluid element under consideration.
• Apparent viscosity is the ratio of shear 

stress to shear rate, though the latter ratio 
is a function of the shear stress or shear 
rate and/or of time
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Types of time-independent flow behavior
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• fluids for which the rate of shear at any point is determined only 
by the value of the shear stress at that point at that instant; these 
fluids are variously known as ‘ time independent ’ , ‘ purely viscous 
’ , ‘ inelastic ’ or ‘ generalized Newtonian fluids ’ (GNF);

• more complex fluids for which the relation between shear stress 
and shear rate depends, in addition, upon the duration of shearing 
and their kinematic history; they are called ‘ time-dependent fluids 
’;

• Substances exhibiting characteristics of both ideal fluids and 
elastic solids and showing partial elastic recovery, after 
deformation; these are categorized as ‘ visco-elastic fluids ’ .
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Viscosities of Newtonian Fluids
• Gases are Newtonian fluids.

• Viscosity of gases increases with temperature and is approximately 
independent of pressure up to a pressure of about 1000 kPa. 

• At higher pressures, the viscosity of gases increases with increase in 
pressure. 

• For example, the viscosity of N2 gas at 298 K approximately doubles in 
going from 100 kPa to about 5 x 104 kPa. 

• In liquids, the viscosity decreases with increasing temperature. 
• Since liquids are essentially incompressible, the viscosity is not 

affected by pressure.
47
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Viscosities of Newtonian Fluids

48
More complete tables of viscosities are given in Appendix A.2 (for water), Appendix A.3 (for inorganic 
and organic liquids and gases ), and Appendix A.4 (for biological and food liquids).
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Types of Fluid Flow 
and Reynolds Number

Section 2.5

49
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Types of Fluid Flow
Laminar Flow
•When the velocity of flow is slow, the flow patterns are smooth.
• The layers of fluid seem to slide by one another without eddies or 

swirls being present
•Newton's law of viscosity holds

Turbulent Flow
•When the velocity is quite high, an unstable pattern is observed in 

which eddies or small packets of fluid particles are present moving 
in all directions and at all angles to the normal line of flow.

• Eddies are present giving the fluid a fluctuating nature.
50
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Reynold’s Experiment
a) Laminar / Viscous flow

b) Turbulent flow

51

critical velocity
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Reynold’s Experiment

52
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Reynolds Number ↔ Dimensionless
Density  ρ (kg/m3)

Average 
Velocity v (m/s) = �̇�𝑉

𝐴𝐴
Viscosity µ (Pa ⋅ s)

Tube 
Diameter D (m) 53

𝑹𝑹𝒔𝒔 =
𝝆𝝆𝒗𝒗𝝆𝝆
𝝁𝝁
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Reynolds Number ↔ Dimensionless
• The instability of the flow that leads to disturbed / turbulent flow 

is determined by  the ratio of the kinetic or inertial forces to the 
viscous forces in the fluid stream.
• Inertial Forces ∝ 𝝆𝝆𝒗𝒗𝟐𝟐

• Viscous Forces ∝ 𝛍𝛍𝒗𝒗/𝝆𝝆

• For a straight circular pipe

𝑹𝑹𝒔𝒔
 < 𝟐𝟐𝟏𝟏𝟖𝟖𝟖𝟖 ≡ Laminar flow
 𝟐𝟐𝟏𝟏𝟖𝟖𝟖𝟖 ~ 𝟏𝟏𝟖𝟖𝟖𝟖𝟖𝟖 ≡ Transition region
 > 𝟏𝟏𝟖𝟖𝟖𝟖𝟖𝟖 ≡ Turbulent flow 54

Inertial Forces
Viscous Forces

∝
𝝆𝝆𝒗𝒗𝟐𝟐
𝛍𝛍𝒗𝒗
𝝆𝝆

=
𝝆𝝆𝒗𝒗𝝆𝝆
𝝁𝝁

= 𝑹𝑹𝒔𝒔
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P2.5-1. Reynolds Number for Milk Flow
• Whole milk at 293 K having a density of 1030 kg/m3 and viscosity of 2.12 cp is 

flowing at the rate of O.605 kg/s in a glass pipe having a diameter of 63.5 mm.
a) Calculate the Reynolds number. Is this turbulent flow? 

𝑅𝑅𝑅𝑅 =
𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇 , 𝜌𝜌 =

�̇�𝑉
𝐴𝐴 =

�̇�𝑚/𝜌𝜌
𝜋𝜋
4𝜌𝜌

2
= 0.185 𝑚𝑚/𝑠𝑠

𝑅𝑅𝑅𝑅 =
𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

=
1030 × 0.185 × 0.0635

2.12 × 10−3 = 5707 == 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

b) Calculate the flow rate needed in m3/s for a Reynolds number of 2100 
and the velocity in m/s.

𝜌𝜌 =
𝑅𝑅𝑅𝑅 × 𝜇𝜇
𝜌𝜌𝜌𝜌 =

2100 × 2.12 × 10−3

1030 × 0.0635 = 0.068 𝑚𝑚/𝑠𝑠

⇒ �̇�𝑉 = 𝜌𝜌𝐴𝐴 =
𝜋𝜋
4𝜌𝜌

2𝜌𝜌 =
𝜋𝜋
4 (0.0635)2× 0.068 = 2.16 × 10−4 𝑚𝑚3/𝑠𝑠

55
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P2.3-2 Mass Balance for Flow of Sucrose Solution

56
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Overall Mass Balance 
and Continuity Equation

Section 2.6

57
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Introduction and Simple Mass Balances
• Simple mass / material balances:

𝐢𝐢𝐭𝐭𝐢𝐢𝐭𝐭𝐭𝐭 = 𝐨𝐨𝐭𝐭𝐭𝐭𝐢𝐢𝐭𝐭𝐭𝐭 + 𝐚𝐚𝐚𝐚𝐚𝐚𝐭𝐭𝐚𝐚𝐭𝐭𝐭𝐭𝐚𝐚𝐭𝐭𝐢𝐢𝐨𝐨𝐭𝐭
• At steady state:

𝐭𝐭𝐚𝐚𝐭𝐭𝐭𝐭 𝐨𝐨𝐨𝐨 𝐢𝐢𝐭𝐭𝐢𝐢𝐭𝐭𝐭𝐭 = 𝐭𝐭𝐚𝐚𝐭𝐭𝐭𝐭 𝐨𝐨𝐨𝐨 𝐨𝐨𝐭𝐭𝐭𝐭𝐢𝐢𝐭𝐭𝐭𝐭

𝒎𝒎 = 𝝆𝝆𝟏𝟏𝒗𝒗𝟏𝟏𝑨𝑨𝟏𝟏 = 𝝆𝝆𝟐𝟐𝒗𝒗𝟐𝟐𝑨𝑨𝟐𝟐
Often, 𝒗𝒗𝝆𝝆 is expressed as 𝑮𝑮 = 𝒗𝒗𝝆𝝆, where 𝑮𝑮 is mass velocity or mass flux. 58
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EXAMPLE 2.6-1. Flow of Crude Oil and Mass Balance

59

EXAMPLE 2.6-1. (pg. 51) (pg. 892 – Appendix 
A 5)
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Control Volume for Balances
• Laws for the conservation of mass, energy, and momentum are all 

stated in terms of a system, and these laws give the interaction of 
a system with its surroundings.
• A system is defined as a collection of fluid of fixed identity.

• In flow of fluids, individual particles are not easily identifiable.
 attention is focused on a given space through which the fluid flows 

rather than to a given mass of fluid.
 Used method: select a control volume, which is a region fixed in 

space through which the fluid flows.

60
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Overall Mass-Balance Equation
rate of mass output
from control volume

− rate of mass input
to control volume

+ rate of mass accumulation
in control volume

= rate of mass generation
in control volume

rate of mass
accumulation in
control volume

=
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

𝜌𝜌 𝑑𝑑𝑉𝑉 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

net mass eflux
from control volume

= �
𝐴𝐴

𝜌𝜌𝜌𝜌 cos𝛼𝛼 𝑑𝑑𝐴𝐴
61
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Overall Mass-Balance Equation
�
𝐴𝐴

𝜌𝜌𝜌𝜌 cos𝛼𝛼 𝑑𝑑𝐴𝐴 = �
𝐴𝐴2

𝜌𝜌𝜌𝜌 cos𝛼𝛼2 𝑑𝑑𝐴𝐴 + �
𝐴𝐴1

𝜌𝜌𝜌𝜌 cos𝛼𝛼1 𝑑𝑑𝐴𝐴 = 𝒗𝒗𝟐𝟐 𝝆𝝆𝟐𝟐 𝑨𝑨𝟐𝟐 − 𝒗𝒗𝟏𝟏 𝝆𝝆𝟏𝟏 𝑨𝑨𝟏𝟏

• For a control volume where 
no mass is being generated:

𝒗𝒗𝟐𝟐 𝝆𝝆𝟐𝟐 𝑨𝑨𝟐𝟐 − 𝒗𝒗𝟏𝟏 𝝆𝝆𝟏𝟏 𝑨𝑨𝟏𝟏 +
𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

= 0

• And in general:

𝒎𝒎𝒊𝒊𝟐𝟐 −𝒎𝒎𝒊𝒊𝟏𝟏 +
𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝜕𝜕
= 𝑅𝑅𝑖𝑖

62
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Average Velocity to Use in Overall Mass Balance

• If the velocity is not constant but varies across the surface area, an 

average or bulk velocity is defined by

𝜌𝜌𝑎𝑎𝑎𝑎 =
1
𝐴𝐴
�
𝐴𝐴

𝜌𝜌𝑑𝑑𝐴𝐴

63
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P2.6-2. Flow of Liquid in a Pipe and Mass Balance
• A hydrocarbon liquid enters a simple flow system shown in Fig.2.6-1 at an 

average velocity of 1.282 m/s, where A1 = 4.33 X 10-3 m2 and ρ1 = 902 kg/m3. 
The liquid is heated in the process and the exit density is 875 kg/m3. The 
cross-sectional area at point 2 is 5.26 x 10-3 m2. The process is steady state.

(a) Calculate the mass flow rate m at the entrance and exit.
(b) Calculate the average velocity v in 2 and the 
mass velocity G in 1

64
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P2.6-4. Bulk Velocity for Flow Between Parallel Plates

65

𝒗𝒗𝒂𝒂𝒗𝒗 =
𝟏𝟏
𝑨𝑨
�
𝑨𝑨

𝒗𝒗𝒅𝒅𝑨𝑨
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P2.6-7 Mass Balance for Flow of Sucrose Solution

66
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Overall Momentum Balance
Section 2.8

67

Dr
. L

in
da

 A
l-H

m
ou

d



TH
E 

UN
IV

ER
SI

TY
 O

F 
JO

RD
AN

Overall Momentum Balance
• Momentum is a vector quantity, not like mass and energy. 
• The total linear momentum vector 𝑷𝑷 of the total mass 𝑑𝑑 of a moving 

fluid having a velocity of 𝒗𝒗 is

𝑷𝑷 = 𝑑𝑑𝒗𝒗 = 𝑘𝑘𝑘𝑘.𝑚𝑚/𝑠𝑠
• Newton’s second law: The time rate of change of momentum of a 

system is equal to the summation of all forces acting on the system and 
takes place in the direction of the net force.

�𝑭𝑭 =
𝑑𝑑𝑷𝑷
𝑑𝑑𝜕𝜕

= 𝑁𝑁 68
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Overall Momentum Balance
• The equation for the conservation of momentum with respect to a 

control volume:
sum of forces acting

on control volume
= rate of momentum out

of control volume
− rate of momentum

into control volume

+ rate of accumulation of
momentum in control volume

• Momentum is not conserved, since it is 
generated by external forces on the 
system. 
• If external forces are absent, momentum is conserved. 69

The Generation Rate
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Overall Momentum Balance
• For a small element of area 𝑑𝑑𝐴𝐴 on the control surface,

rate of momentum efflux = 𝒗𝒗 𝜌𝜌𝜌𝜌 𝑑𝑑𝐴𝐴 cos𝛼𝛼 = 𝜌𝜌𝒗𝒗 𝒗𝒗 � 𝒏𝒏 𝑑𝑑𝐴𝐴
net momentum eflux
from control volume

= �
𝐴𝐴

𝒗𝒗(𝜌𝜌𝜌𝜌) cos𝛼𝛼 𝑑𝑑𝐴𝐴 = �
𝐴𝐴

𝜌𝜌𝒗𝒗 𝒗𝒗 � 𝒏𝒏 𝑑𝑑𝐴𝐴

rate of accumulation
of momentum in
control volume

=
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

𝜌𝜌𝒗𝒗𝑑𝑑𝑉𝑉
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Overall Momentum Balance
• Overall linear momentum balance for a control volume:

�𝑭𝑭 = �
𝐴𝐴

𝜌𝜌𝒗𝒗 𝒗𝒗 � 𝒏𝒏 𝑑𝑑𝐴𝐴 +
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

𝜌𝜌𝒗𝒗 𝑑𝑑𝑉𝑉

which is a vector equation 

�𝐹𝐹𝑥𝑥 = �
𝐴𝐴

𝜌𝜌𝜌𝜌 𝜌𝜌𝑥𝑥 cos𝛼𝛼 𝑑𝑑𝐴𝐴 +
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

𝜌𝜌𝜌𝜌𝑥𝑥𝑑𝑑𝑉𝑉

�𝐹𝐹𝑦𝑦 = �
𝐴𝐴

𝜌𝜌𝜌𝜌 𝜌𝜌𝑦𝑦 cos𝛼𝛼 𝑑𝑑𝐴𝐴 +
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

𝜌𝜌𝜌𝜌𝑦𝑦𝑑𝑑𝑉𝑉

�𝐹𝐹𝑧𝑧 = �
𝐴𝐴

𝜌𝜌𝜌𝜌 𝜌𝜌𝑧𝑧 cos𝛼𝛼 𝑑𝑑𝐴𝐴 +
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

𝜌𝜌𝜌𝜌𝑧𝑧𝑑𝑑𝑉𝑉
71
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The Force term, ∑𝑭𝑭𝒙𝒙
• The Force term, ∑𝐹𝐹𝑥𝑥 is composed of the sum of several forces:

1. Body force, 𝑭𝑭𝒙𝒙𝒌𝒌, is the x-directed force caused by gravity acting on 
the total mass 𝑑𝑑 in the control volume. 𝑭𝑭𝒙𝒙𝒌𝒌 = 𝑴𝑴𝒌𝒌𝒙𝒙. 𝐹𝐹𝑥𝑥𝑥𝑥 = zero if 
the x direction is horizontal.

2. Pressure force, 𝑭𝑭𝒙𝒙𝒑𝒑, is the x-directed force caused by the 
pressure forces acting on the surface of the fluid system. 
When the control surface cuts through the fluid, the pressure is taken to be 
directed inward and perpendicular to the surface. 
In some cases, part of the control surface may be a solid, and this wall is 
included inside the control surface. Then there is a contribution to 𝐹𝐹𝑥𝑥𝑥𝑥 from the 
pressure on the outside of this wall, which is typically atmospheric pressure. 
If gage pressure is used, the integral of the constant external pressure over the 
entire outer surface can be automatically ignored.

72
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The Force term, ∑𝑭𝑭𝒙𝒙
• The Force term, ∑𝐹𝐹𝑥𝑥 is composed of the sum of several forces:

3. Friction force: When the fluid is flowing, an x-directed shear or 
friction force 𝑭𝑭𝒙𝒙𝒔𝒔, is present, which is exerted on the fluid by a solid 
wall when the control surface cuts between the fluid and the solid 
wall. In some or many cases this frictional force may be negligible 
compared to the other forces and is neglected.

4. Solid surface force: In cases where the control surface cuts 
through a solid, there is present force 𝑹𝑹𝒙𝒙, which is the x 
component of the resultant of the forces acting on the control 
volume at these points. This occurs in typical cases when the 
control volume includes a section of pipe and the fluid it contains. 
This is the force exerted by the solid surface on the fluid.
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The Force term, ∑𝑭𝑭𝒙𝒙
�𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝑅𝑅𝑥𝑥

= �
𝐴𝐴

𝜌𝜌𝜌𝜌 𝜌𝜌𝑥𝑥 cos𝛼𝛼 𝑑𝑑𝐴𝐴 +
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

𝜌𝜌𝜌𝜌𝑥𝑥𝑑𝑑𝑉𝑉

Similar equations can be written for the y and z directions

74
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Overall Momentum Balance in Flow System 
in One Direction
• For a fluid flowing at steady state in the control volume in the x 

direction, with 𝜌𝜌 = 𝜌𝜌𝑥𝑥 :

�𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝑅𝑅𝑥𝑥 = �
𝐴𝐴

𝜌𝜌𝑥𝑥 𝜌𝜌𝜌𝜌𝑥𝑥 cos𝛼𝛼 𝑑𝑑𝐴𝐴

• Integrating with cos𝛼𝛼 = ±𝟏𝟏.𝟖𝟖 and 𝜌𝜌𝐴𝐴 = 𝑚𝑚/𝜌𝜌𝑎𝑎𝑎𝑎

𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝑅𝑅𝑥𝑥 = 𝑚𝑚
𝜌𝜌𝑥𝑥2
2

𝑎𝑎𝑎𝑎
𝜌𝜌𝑥𝑥2 𝑎𝑎𝑎𝑎

− 𝑚𝑚
𝜌𝜌𝑥𝑥1
2

𝑎𝑎𝑎𝑎
𝜌𝜌𝑥𝑥1 𝑎𝑎𝑎𝑎 75
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Overall Momentum Balance in Flow System 
in One Direction

𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝑅𝑅𝑥𝑥 = 𝑚𝑚
𝜌𝜌𝑥𝑥2
2

𝑎𝑎𝑎𝑎
𝜌𝜌𝑥𝑥2 𝑎𝑎𝑎𝑎

− 𝑚𝑚
𝜌𝜌𝑥𝑥1
2

𝑎𝑎𝑎𝑎
𝜌𝜌𝑥𝑥1 𝑎𝑎𝑎𝑎

If the velocity is not constant and varies across the surface area,

𝜌𝜌𝑥𝑥2 𝑎𝑎𝑎𝑎 =
1
𝐴𝐴
�
𝐴𝐴

𝜌𝜌𝑥𝑥2𝑑𝑑𝐴𝐴

𝜌𝜌𝑥𝑥2 𝑎𝑎𝑎𝑎

𝜌𝜌𝑥𝑥 𝑎𝑎𝑎𝑎
=
𝜌𝜌𝑥𝑥 𝑎𝑎𝑎𝑎
𝛽𝛽

,𝛽𝛽 = � 0.95 − 0.99 for turbulent flow
0.75 for laminar flow (see EXAMPLE 2.8−1)

𝐹𝐹𝑥𝑥𝑥𝑥 = 𝑝𝑝1𝐴𝐴1 − 𝑝𝑝2𝐴𝐴2, 𝐹𝐹𝑥𝑥𝑥𝑥 will be neglected, 𝐹𝐹𝑥𝑥𝑥𝑥 = 0 (gravity is acting 
only in the y direction)

76
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Overall Momentum Balance in Flow System 
in One Direction

𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝑅𝑅𝑥𝑥 = 𝑚𝑚
𝜌𝜌𝑥𝑥2
2

𝑎𝑎𝑎𝑎
𝜌𝜌𝑥𝑥2 𝑎𝑎𝑎𝑎

− 𝑚𝑚
𝜌𝜌𝑥𝑥1
2

𝑎𝑎𝑎𝑎
𝜌𝜌𝑥𝑥1 𝑎𝑎𝑎𝑎

𝐹𝐹𝑥𝑥𝑥𝑥 = 𝑝𝑝1𝐴𝐴1 − 𝑝𝑝2𝐴𝐴2, 𝐹𝐹𝑥𝑥𝑥𝑥 will be neglected

𝐹𝐹𝑥𝑥𝑥𝑥 = 0 (gravity is acting only in the y-direction)
𝜌𝜌𝑥𝑥2 𝑎𝑎𝑎𝑎

𝜌𝜌𝑥𝑥 𝑎𝑎𝑎𝑎
=
𝜌𝜌
𝛽𝛽

, and setting 𝛽𝛽 = 1.0

𝑹𝑹𝒙𝒙 = 𝒎𝒎𝒗𝒗𝟐𝟐 −𝒎𝒎𝒗𝒗𝟏𝟏 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟏𝟏
• 𝑹𝑹𝒙𝒙 is the force exerted by the solid on the fluid. 
• The force of the fluid on the solid (reaction force) is the negative of 

this or −𝑹𝑹𝒙𝒙.
77
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EXAMPLE 2.8-2. Momentum Balance for Horizontal Nozzle
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𝑹𝑹𝒙𝒙 = 𝒎𝒎𝒗𝒗𝟐𝟐 −𝒎𝒎𝒗𝒗𝟏𝟏 − 𝑭𝑭𝒙𝒙𝒔𝒔 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟏𝟏
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Overall Momentum Balance in Two Directions

𝑹𝑹𝒙𝒙 = 𝒎𝒎𝒗𝒗𝟐𝟐 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 −𝒎𝒎𝒗𝒗𝟏𝟏 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟏𝟏 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟏𝟏 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟏𝟏

𝑹𝑹𝒚𝒚 = 𝒎𝒎𝒗𝒗𝟐𝟐 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐 −𝒎𝒎𝒗𝒗𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟏𝟏 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟏𝟏 + 𝒎𝒎𝒇𝒇𝒌𝒌

79
EXAMPLE 2.8-3. and 2.8-4.
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EXAMPLE 2.8-3. Momentum Balance in a Pipe Bend

80

𝑹𝑹𝒙𝒙 = 𝒎𝒎𝒗𝒗𝟐𝟐 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 −𝒎𝒎𝒗𝒗𝟏𝟏 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟏𝟏 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟏𝟏 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟏𝟏

𝑹𝑹𝒚𝒚 = 𝒎𝒎𝒗𝒗𝟐𝟐 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐 −𝒎𝒎𝒗𝒗𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟏𝟏 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟏𝟏 + 𝒎𝒎𝒇𝒇𝒌𝒌

𝜶𝜶𝟏𝟏 = 𝟖𝟖,  𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟏𝟏 = 𝟏𝟏, 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟏𝟏 = 𝟖𝟖

𝑹𝑹𝒙𝒙 = 𝒎𝒎𝒗𝒗𝟐𝟐 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 −𝒎𝒎𝒗𝒗𝟏𝟏 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟏𝟏

𝑹𝑹𝒚𝒚 = 𝒎𝒎𝒗𝒗𝟐𝟐 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐 + 𝒎𝒎𝒇𝒇𝒌𝒌

𝑹𝑹 = 𝑹𝑹𝒙𝒙𝟐𝟐 + 𝑹𝑹𝒚𝒚𝟐𝟐,   𝜽𝜽 = tan−𝟏𝟏 𝑹𝑹𝒚𝒚
𝑹𝑹𝒙𝒙
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EXAMPLE 2.8-4. Friction Loss in a Sudden Enlargement

81

1- Momentum balance between points 1 & 2 
𝑹𝑹𝒙𝒙 = 𝒎𝒎𝒗𝒗𝟐𝟐 −𝒎𝒎𝒗𝒗𝟏𝟏 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟏𝟏

• Control volume is selected so that it does 
not include the pipe wall  𝑹𝑹𝒙𝒙 drops out

• And 𝑨𝑨𝟐𝟐 = 𝑨𝑨𝟏𝟏, 𝒑𝒑𝟖𝟖 = 𝒑𝒑𝟏𝟏, 𝒗𝒗𝟏𝟏 = 𝒗𝒗𝟖𝟖
 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟐𝟐 = 𝒎𝒎𝒗𝒗𝟖𝟖 −𝒎𝒎𝒗𝒗𝟐𝟐
Since  𝒎𝒎 = 𝝆𝝆𝑨𝑨𝟖𝟖𝒗𝒗𝟖𝟖 and 𝒗𝒗𝟐𝟐 = ⁄𝑨𝑨𝟖𝟖 𝑨𝑨𝟐𝟐 𝒗𝒗𝟖𝟖


𝒑𝒑𝟐𝟐−𝒑𝒑𝟏𝟏
𝝆𝝆

= 𝒗𝒗𝟖𝟖𝟐𝟐
𝑨𝑨𝟖𝟖
𝑨𝑨𝟐𝟐

𝟏𝟏 − 𝑨𝑨𝟖𝟖
𝑨𝑨𝟐𝟐
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EXAMPLE 2.8-4. Friction Loss in a Sudden Enlargement

82

2- Mechanical energy balance between 0 & 2 
𝒗𝒗𝟖𝟖𝟐𝟐 − 𝒗𝒗𝟐𝟐𝟐𝟐

𝟐𝟐
−�𝑭𝑭 =

𝒑𝒑𝟐𝟐 − 𝒑𝒑𝟖𝟖
𝝆𝝆

• Combining momentum and energy balance 
equations:

�𝑭𝑭 =
𝒗𝒗𝟖𝟖𝟐𝟐

𝟐𝟐
𝟏𝟏 −

𝑨𝑨𝟖𝟖
𝑨𝑨𝟐𝟐

𝟐𝟐
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P2.8-1. Momentum Balance in a Reducing Bend
Water is flowing at steady state through 
the reducing bend in Fig. 2.8-3. The angle 
α2 = 90° (a right-angle bend). The 
pressure at point 2 is 1.0 atm abs. 
The flow rate is 0.020 m3/s and the 
diameters at points 1 and 2 are 0.050 m and 0.030 m, respectively. Neglect 
frictional and gravitational forces. Calculate the resultant forces on the bend in 
newtons and lb-force. Use p = 1000 kg/m3.

𝑹𝑹𝒙𝒙 = 𝒎𝒎𝒗𝒗𝟐𝟐 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 −𝒎𝒎𝒗𝒗𝟏𝟏 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟏𝟏 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟏𝟏 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟏𝟏

𝑹𝑹𝒚𝒚 = 𝒎𝒎𝒗𝒗𝟐𝟐 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐 −𝒎𝒎𝒗𝒗𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟏𝟏 + 𝒑𝒑𝟐𝟐𝑨𝑨𝟐𝟐 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐 − 𝒑𝒑𝟏𝟏𝑨𝑨𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟏𝟏 + 𝒎𝒎𝒇𝒇𝒌𝒌
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Overall Momentum Balance for Free Jet 
Striking a Fixed Vane
• For the curved vane (a):

𝑹𝑹𝒙𝒙 = 𝒎𝒎𝒗𝒗𝟏𝟏(𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 − 𝟏𝟏)

and neglecting the body force

𝑹𝑹𝒚𝒚 = 𝒎𝒎𝒗𝒗𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐
• Hence, 𝑹𝑹𝒙𝒙 and 𝑹𝑹𝒚𝒚 are the force components of the vane on the 

control volume fluid. 
• The force components on the vane are −𝑹𝑹𝒙𝒙 and −𝑹𝑹𝒚𝒚.

84
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Overall Momentum Balance for Free Jet 
Striking a Fixed Vane
• For smooth flat vane (b):

𝑚𝑚2 = 𝑚𝑚1
2

(1 + cos𝛼𝛼2)

𝑚𝑚3 = 𝑚𝑚1
2

(1 − cos𝛼𝛼2)
• The resultant force exerted by the plate on the fluid must be normal to it:

resultant force = 𝑹𝑹 = 𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐
𝑶𝑶𝑹𝑹

𝑹𝑹 = 𝑹𝑹𝒙𝒙𝟐𝟐 + 𝑹𝑹𝒚𝒚𝟐𝟐

𝑹𝑹𝒙𝒙 = 𝒎𝒎𝟐𝟐𝒗𝒗𝟐𝟐 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 −𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟏𝟏 + 𝒎𝒎𝟑𝟑𝒗𝒗𝟑𝟑(−𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐)

𝑹𝑹𝒚𝒚 = 𝒎𝒎𝟐𝟐𝒗𝒗𝟐𝟐 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐 −𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟏𝟏 + 𝒎𝒎𝟑𝟑𝒗𝒗𝟑𝟑(−𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐)
𝒗𝒗𝟏𝟏 = 𝒗𝒗𝟐𝟐 = 𝒗𝒗𝟑𝟑 (No energy loss)

85
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P2.8-3. Force of Water Stream on a Wall
• Water at 298 K discharges from a nozzle and travels horizontally hitting a flat vertical 

wall. The nozzle has a diameter of 12 mm and the water leaves the nozzle with a flat 
velocity profile at a velocity of 6.0 m/s. Neglecting frictional resistance of the air on 
the jet, calculate the force in newtons on the wall.

𝑚𝑚2 =
𝑚𝑚1

2 (1 + cos𝛼𝛼2)

𝑚𝑚3 =
𝑚𝑚1

2
(1 − cos𝛼𝛼2)

resultant force = 𝑹𝑹 = 𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐
𝑶𝑶𝑹𝑹

𝑹𝑹 = 𝑹𝑹𝒙𝒙𝟐𝟐 + 𝑹𝑹𝒚𝒚𝟐𝟐

𝑹𝑹𝒙𝒙 = 𝒎𝒎𝟐𝟐𝒗𝒗𝟐𝟐 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 −𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏 𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟏𝟏 + 𝒎𝒎𝟑𝟑𝒗𝒗𝟑𝟑(−𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐)

𝑹𝑹𝒚𝒚 = 𝒎𝒎𝟐𝟐𝒗𝒗𝟐𝟐 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐 −𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟏𝟏 + 𝒎𝒎𝟑𝟑𝒗𝒗𝟑𝟑(−𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐)
86
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P2.8-6. Momentum Balance for Free Jet on a 
Curved, Fixed Vane.
A free jet having a velocity of 30.5 m/s and a diameter of 5.08 × 10−2 m is 
deflected by a curved, fixed vane as in Fig. 2.8-5a. However, the vane is curved 
downward at an angle of 60° instead of upward. Calculate the force of the jet on the 
vane. The density is 1000 kg/m3.
𝑹𝑹𝒙𝒙 = 𝒎𝒎𝒗𝒗𝟏𝟏(𝐚𝐚𝐨𝐨𝐜𝐜𝜶𝜶𝟐𝟐 − 𝟏𝟏) 𝑹𝑹𝒚𝒚 = 𝒎𝒎𝒗𝒗𝟏𝟏 𝐜𝐜𝐢𝐢𝐭𝐭𝜶𝜶𝟐𝟐

Ans. −Rx = 942.8 N, − Ry = 1633 N
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Shell Momentum Balance and 
Velocity Profile in Laminar Flow

Section 2.9

88
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Shell Momentum Balance and 
Velocity Profile in Laminar Flow

• Overall momentum balance does not tell about the details of what 

happens inside the control volume.

• Here, a small control volume will be analyzed and then shrank to 

differential size.

• Shell momentum balance using the momentum-balance concepts

• using the definition of viscosity, an expression for the velocity profile 

inside the enclosure and the pressure drop will be obtained. 89
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Shell Momentum Balance Inside a Pipe
• Engineers often deal with the 

flow of fluids inside a circular 

conduit or pipe. 

• Analysis:

• Horizontal section of pipe in which an incompressible Newtonian fluid is 

flowing in one-dimensional, steady-state, laminar flow.

• The flow is fully developed.

• It is not influenced by entrance effects.

• the velocity profile does not vary along the axis of flow in the x direction.
90
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Shell Momentum Balance Inside a Pipe
• At steady state the conservation 

of momentum becomes as follows:

sum of forces acting
on control volume

= rate of momentum out
of control volume

− rate of momentum
into control volume

• Pressure force = 𝑝𝑝𝐴𝐴|𝑥𝑥 − 𝑝𝑝𝐴𝐴|𝑥𝑥+∆𝑥𝑥 = 𝑝𝑝(2𝜋𝜋𝜋𝜋 ∆𝜋𝜋)|𝑥𝑥 − 𝑝𝑝(2𝜋𝜋𝜋𝜋 ∆𝜋𝜋)|𝑥𝑥+∆𝑥𝑥
• Shear force = 𝜏𝜏𝑟𝑟𝑥𝑥 2𝜋𝜋𝜋𝜋 ∆𝑥𝑥 |𝑟𝑟+∆𝑟𝑟 − 𝜏𝜏𝑟𝑟𝑥𝑥 2𝜋𝜋𝜋𝜋 ∆𝑥𝑥 |𝑟𝑟 = net rate of momentum efflux

• Flow is fully developed ⇒ net convective momentum flux across the annular surface 

at 𝑥𝑥 and 𝑥𝑥 + ∆𝑥𝑥 is zero & the terms are independent of 𝑥𝑥 ⇒ 𝜌𝜌𝑥𝑥|𝑥𝑥 = 𝜌𝜌𝑥𝑥|𝑥𝑥+∆𝑥𝑥 91
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Shell Momentum Balance Inside a Pipe
• At steady state the conservation 

of momentum becomes as follows:

Pressure force + Shear force = 0

𝑝𝑝(2𝜋𝜋𝜋𝜋 ∆𝜋𝜋)|𝑥𝑥 − 𝑝𝑝(2𝜋𝜋𝜋𝜋 ∆𝜋𝜋)|𝑥𝑥+∆𝑥𝑥 = 𝜏𝜏𝑟𝑟𝑥𝑥 2𝜋𝜋𝜋𝜋 ∆𝑥𝑥 |𝑟𝑟+∆𝑟𝑟 − 𝜏𝜏𝑟𝑟𝑥𝑥 2𝜋𝜋𝜋𝜋 ∆𝑥𝑥 |𝑟𝑟

𝜋𝜋 (𝑝𝑝|𝑥𝑥 − 𝑝𝑝|𝑥𝑥+∆𝑥𝑥)
∆𝑥𝑥 =

𝜋𝜋𝜏𝜏𝑟𝑟𝑥𝑥 |𝑟𝑟+∆𝑟𝑟 − 𝜋𝜋𝜏𝜏𝑟𝑟𝑥𝑥 |𝑟𝑟
∆𝜋𝜋

In fully developed flow, the pressure gradient (∆𝑝𝑝/∆𝑥𝑥) is constant = (∆𝑝𝑝/𝐿𝐿), where 
𝐿𝐿 = pipe length ⇒

𝑑𝑑 𝜋𝜋𝜏𝜏𝑟𝑟𝑥𝑥
𝑑𝑑𝜋𝜋 = 𝜋𝜋

∆𝑝𝑝
𝐿𝐿

92

Dr
. L

in
da

 A
l-H

m
ou

d



TH
E 

UN
IV

ER
SI

TY
 O

F 
JO

RD
AN

Shell Momentum Balance Inside a Pipe
𝑑𝑑 𝜋𝜋𝜏𝜏𝑟𝑟𝑥𝑥
𝑑𝑑𝜋𝜋

= 𝜋𝜋
∆𝑝𝑝
𝐿𝐿

Separating variables and integrating,

𝜏𝜏𝑟𝑟𝑥𝑥 =
∆𝑝𝑝
𝐿𝐿

𝜋𝜋
2

+
𝐶𝐶1
𝜋𝜋

𝜏𝜏𝑟𝑟𝑥𝑥 ≠ ∞ 𝑎𝑎𝜕𝜕 𝜋𝜋 = 0 → 𝐶𝐶1= 0

⇒ 𝜏𝜏𝑟𝑟𝑥𝑥 =
∆𝑝𝑝
2𝐿𝐿

𝜋𝜋 ⇒ 𝜏𝜏𝑟𝑟𝑥𝑥 =
𝑝𝑝0 − 𝑝𝑝𝐿𝐿

2𝐿𝐿
𝜋𝜋

⇒ momentum flux varies linearly 
with the radius, and the maximum 
value occurs at r = R at the wall 93
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Shell Momentum Balance Inside a Pipe
𝜏𝜏𝑟𝑟𝑥𝑥 =

𝑝𝑝0 − 𝑝𝑝𝐿𝐿
2𝐿𝐿

𝜋𝜋

Substituting Newton's law of viscosity

𝝉𝝉𝒔𝒔𝒙𝒙 = −𝝁𝝁
𝒅𝒅𝒗𝒗𝒙𝒙
𝒅𝒅𝒔𝒔

=
𝑝𝑝0 − 𝑝𝑝𝐿𝐿

2𝐿𝐿
𝜋𝜋

Integrating using the boundary condition that at the wall, 𝜌𝜌𝑥𝑥 = 0 at 𝜋𝜋 = 𝑅𝑅, we 
obtain the equation for the velocity distribution

𝜌𝜌𝑥𝑥 =
𝑝𝑝0 − 𝑝𝑝𝐿𝐿

4𝜇𝜇𝐿𝐿
𝑅𝑅2 1 −

𝜋𝜋
𝑅𝑅

2

⇒ the velocity distribution is parabolic
94
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Shell Momentum Balance Inside a Pipe
𝜌𝜌𝑥𝑥 =

𝑝𝑝0 − 𝑝𝑝𝐿𝐿
4𝜇𝜇𝐿𝐿

𝑅𝑅2 1 −
𝜋𝜋
𝑅𝑅

2

The average velocity 𝜌𝜌𝑥𝑥 𝑎𝑎𝑎𝑎 for 
a cross section is found by summing 
up all the velocities over the cross 
section and dividing by the cross-sectional area

95
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Shell Momentum Balance Inside a Pipe
The maximum velocity for a pipe 
occurs at 𝜋𝜋 = 0.

𝜌𝜌𝑥𝑥 =
𝑝𝑝0 − 𝑝𝑝𝐿𝐿

4𝜇𝜇𝐿𝐿
𝑅𝑅2 1 −

𝜋𝜋
𝑅𝑅

2

⇒ 𝜌𝜌𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 =
𝑝𝑝0 − 𝑝𝑝𝐿𝐿

4𝜇𝜇𝐿𝐿
𝑅𝑅2

𝒗𝒗𝒙𝒙𝒂𝒂𝒗𝒗 =
𝒗𝒗𝒙𝒙𝒎𝒎𝒂𝒂𝒙𝒙
𝟐𝟐 96
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Shell Momentum Balance Inside a Pipe
𝜌𝜌𝑥𝑥 =

𝑝𝑝0 − 𝑝𝑝𝐿𝐿
4𝜇𝜇𝐿𝐿

𝑅𝑅2 1 −
𝜋𝜋
𝑅𝑅

2

The average velocity 𝜌𝜌𝑥𝑥 𝑎𝑎𝑎𝑎 for 
a cross section is found by summing 
up all the velocities over the cross 
section and dividing by the cross-sectional area

97
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Shell Momentum Balance for Falling Film
• Falling films have been used to study 

various phenomena in mass transfer, 
coatings on surfaces, and so on.

• The control volume for the falling film 
is a shell of fluid having a thickness of 
∆𝑥𝑥 and a length of L in the vertical z 
direction;
• sufficiently far from the entrance 

and exit regions so that the flow is 
not affected by these regions.
⇒ the velocity 𝜌𝜌𝑧𝑧(𝑥𝑥) does not 
depend on position z.
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Shell Momentum Balance for Falling Film

System: ∆𝑥𝑥 thick, bounded in the 𝑑𝑑 direction 
by the planes 𝑑𝑑 = 0 and 𝑑𝑑 = 𝐿𝐿, and 
extending a distance 𝑊𝑊 in the y direction.
1. Momentum flux due to molecular 

transport:
net efflux = 𝑳𝑳𝑳𝑳 𝝉𝝉𝒙𝒙𝒛𝒛 |𝒙𝒙+∆𝒙𝒙 − 𝑳𝑳𝑳𝑳 𝝉𝝉𝒙𝒙𝒛𝒛 |𝒙𝒙

2. Net convective momentum flux:
net efflux
= ∆𝒙𝒙𝑳𝑳𝒗𝒗𝒛𝒛 𝝆𝝆𝒗𝒗𝒛𝒛 |𝒛𝒛=𝑳𝑳 − ∆𝒙𝒙𝑳𝑳𝒗𝒗𝒛𝒛 𝝆𝝆𝒗𝒗𝒛𝒛 |𝒛𝒛=𝟖𝟖 = 𝟖𝟖

equal
3. Gravity force acting on the fluid:

gravity force = ∆𝒙𝒙𝑳𝑳𝑳𝑳 𝝆𝝆𝒌𝒌
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Shell Momentum Balance for Falling Film

sum of forces acting
on control volume

= rate of momentum out
of control volume

− rate of momentum
into control volume

∆𝒙𝒙𝑳𝑳𝑳𝑳 𝝆𝝆𝒌𝒌 = 𝑳𝑳𝑳𝑳 𝝉𝝉𝒙𝒙𝒛𝒛 |𝒙𝒙+∆𝒙𝒙 − 𝑳𝑳𝑳𝑳 𝝉𝝉𝒙𝒙𝒛𝒛 |𝒙𝒙 + 𝟖𝟖

Rearranging and letting ∆𝒙𝒙 → 𝟖𝟖,

𝝉𝝉𝒙𝒙𝒛𝒛|𝒙𝒙+∆𝒙𝒙 − 𝝉𝝉𝒙𝒙𝒛𝒛|𝒙𝒙
∆𝒙𝒙

= 𝝆𝝆𝒌𝒌 →
𝒅𝒅𝝉𝝉𝒙𝒙𝒛𝒛
𝒅𝒅𝒙𝒙

= 𝝆𝝆𝒌𝒌

Boundary conditions: 

at 𝑥𝑥 = 0, 𝝉𝝉𝒙𝒙𝒛𝒛 = 𝟖𝟖 at the free liquid surface, 

and at 𝑥𝑥 = 𝑥𝑥, 𝝉𝝉𝒙𝒙𝒛𝒛 = 𝝉𝝉𝒙𝒙𝒛𝒛 𝒗𝒗 → 𝝉𝝉𝒙𝒙𝒛𝒛 = 𝝆𝝆𝒌𝒌𝒙𝒙
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Shell Momentum Balance for Falling Film
• For a Newtonian fluid using Newton's law of viscosity,

Boundary conditions: 

at 𝑥𝑥 = 𝛿𝛿, 𝒗𝒗𝒙𝒙 = 𝟖𝟖
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and       𝝉𝝉𝒙𝒙𝒛𝒛 = 𝝆𝝆𝒌𝒌𝒙𝒙

𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑟𝑟𝑎𝑎𝑛𝑛𝑛𝑛
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Shell Momentum Balance for Falling Film

• The maximum velocity occurs at 𝑥𝑥 = 0

• Average velocity:
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Laminar flow occurs for Re < 1200. 

=
𝟐𝟐
𝟑𝟑
𝒗𝒗𝒛𝒛𝒎𝒎𝒂𝒂𝒙𝒙
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Shell Momentum Balance for Falling Film
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𝝉𝝉𝒙𝒙𝒛𝒛 = 𝝆𝝆𝒌𝒌𝒙𝒙
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Differential Equations Of Continuity
Chapter 3

Section 3.6
107
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Differential Equations of Continuity
• Overall mass and momentum balances allowed us to solve many 

elementary problems on fluid flow.
• balances done on a control volume

• Overall balances do not require knowledge of what goes on inside 
the finite control volume.

• To advance in studying these flow systems, must investigate in 
greater detail what goes on inside this finite control volume.
• use a differential element for a control volume
• differential balances in a single phase and integrate to the phase 

boundary using the boundary conditions.
108
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Differential Equations of Continuity
• Differential-momentum-balance equation is based on Newton's 

second law 
• allows to determine the way velocity varies with position and time 
• allows to determine the pressure drop in laminar flow.

• The equation of momentum balance can be used for turbulent 
flow with certain modifications.

• Often these conservation equations are called equations of 
change, since they describe the variations in the properties of the 
fluid with respect to position and time: 109
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Types of Time Derivatives & Vector Notation
1. Partial time derivative: the local change of fluid property with 

time at a fixed-point x, y, and z.

• Example: 𝜕𝜕𝜌𝜌
𝜕𝜕𝑛𝑛

= partial time derivative of density 𝜌𝜌.

2. Total time derivative.
𝑑𝑑𝜌𝜌
𝑑𝑑𝜕𝜕

=
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥
𝑑𝑑𝜕𝜕

+
𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦
𝑑𝑑𝜕𝜕

+
𝜕𝜕𝜌𝜌
𝜕𝜕𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

“the density is a function of t and of the velocity components 𝑑𝑑𝑥𝑥/𝑑𝑑𝜕𝜕, 
𝑑𝑑𝑦𝑦/𝑑𝑑𝜕𝜕, and 𝑑𝑑𝑑𝑑/𝑑𝑑𝜕𝜕 at which the observer is moving”

3. Substantial time derivative: derivative that follows the motion 
𝜌𝜌𝜌𝜌
𝜌𝜌𝜕𝜕

=
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑥𝑥
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥

+ 𝜌𝜌𝑦𝑦
𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦

+ 𝜌𝜌𝑧𝑧
𝜕𝜕𝜌𝜌
𝜕𝜕𝑑𝑑

=
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ (𝐯𝐯 � 𝛁𝛁𝜌𝜌) 110
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Types of Time Derivatives & Vector Notation
4. Scalars: quantities such as concentration, temperature, length, 

volume, time, and energy. They have magnitude but no direction.
5. Vectors. Velocity, force, momentum, and acceleration are considered 

vectors since they have magnitude and direction. They are written in 
boldface letters in textbooks, e.g., 𝐯𝐯 for velocity.
The vector 𝑩𝑩 is represented by its three projections 𝐵𝐵𝑥𝑥, 𝐵𝐵𝑦𝑦, and 𝐵𝐵𝑧𝑧 on 
the x, y, and z axes and

𝐁𝐁 = 𝐢𝐢𝐵𝐵𝑥𝑥 + 𝐣𝐣𝐵𝐵𝑦𝑦 + 𝐤𝐤𝐵𝐵𝑧𝑧
𝜋𝜋𝐁𝐁 = 𝐁𝐁𝜋𝜋
𝐁𝐁 � 𝐂𝐂 = 𝐂𝐂 � 𝐁𝐁
𝐁𝐁 � 𝐂𝐂 𝐃𝐃 ≠ 𝐁𝐁(𝐂𝐂 � 𝐃𝐃)
𝐁𝐁 � 𝐂𝐂 = 𝐵𝐵𝐶𝐶 cos φ𝐵𝐵𝐵𝐵 111
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Types of Time Derivatives & Vector Notation
6. Differential operations with scalars and vectors. The gradient or 

"grad" of a scalar field is

𝛁𝛁𝜌𝜌 = 𝐢𝐢
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥

+ 𝐣𝐣
𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦

+ 𝐤𝐤
𝜕𝜕𝜌𝜌
𝜕𝜕𝑑𝑑

The divergence or "div" of a vector 𝐯𝐯 is

(𝛁𝛁 � 𝐯𝐯) =
𝜕𝜕𝜌𝜌𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝜌𝜌𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝜌𝜌𝑧𝑧
𝜕𝜕𝑑𝑑

The Laplacian of a scalar field is

𝛁𝛁𝟐𝟐𝜌𝜌 =
𝜕𝜕2𝜌𝜌
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜌𝜌
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2𝜌𝜌
𝜕𝜕𝑑𝑑2

112
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Types of Time Derivatives & Vector Notation
• Other useful operations:

𝛻𝛻𝜋𝜋𝑠𝑠 = 𝜋𝜋𝛻𝛻𝑠𝑠 + 𝑠𝑠𝛻𝛻𝜋𝜋

(𝛻𝛻 � 𝑠𝑠𝐯𝐯) = (𝛻𝛻𝑠𝑠 � 𝐯𝐯) + 𝑠𝑠(𝛻𝛻 � 𝐯𝐯)

𝐯𝐯 � 𝛻𝛻𝑠𝑠 = 𝜌𝜌𝑥𝑥
𝜕𝜕𝑠𝑠
𝜕𝜕𝑥𝑥

+ 𝜌𝜌𝑦𝑦
𝜕𝜕𝑠𝑠
𝜕𝜕𝑦𝑦

+ 𝜌𝜌𝑧𝑧
𝜕𝜕𝑠𝑠
𝜕𝜕𝑑𝑑

113
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Differential Equation of Continuity
• Derivation of equation of continuity:

• pure fluid flowing through stationary 
volume element 
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Differential Equation of Continuity

115

For constant density:

EXAMPLE 3.6-1.
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Continuity Equation in Cylindrical Coordinates

Continuity Equation in Spherical Coordinates

116
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P3.6-1. Equation of Continuity in a Cylinder.
Fluid having a constant density ρ is flowing in the z direction through 
a circular pipe with axial symmetry. The radial direction is designated 
by r.
(a) Using a cylindrical shell balance with dimensions 𝑑𝑑𝜋𝜋 and 𝑑𝑑𝑑𝑑, 

derive the equation of continuity for this system.
(b) Use the equation of continuity in cylindrical coordinates to derive 

the equation.
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Differential Equations of Momentum 
Transfer or Motion

Section 3.7

119
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Differential Equation of Momentum Transfer
• Equation of motion 

== Equation for the conservation-of-momentum equation
rate of

momentum in
− rate of

momentum out

+ sum of forces
acting on system = rate of momentum

accumulation
• Considering the x-component of each term:

• Net Convective x-momentum flow into the volume element ∆𝒙𝒙∆𝒚𝒚∆𝒛𝒛 is
𝜌𝜌𝜌𝜌𝑥𝑥𝜌𝜌𝑥𝑥 𝑥𝑥 − 𝜌𝜌𝜌𝜌𝑥𝑥𝜌𝜌𝑥𝑥 𝑥𝑥+∆𝑥𝑥 ∆𝒚𝒚∆𝒛𝒛

+ 𝜌𝜌𝜌𝜌𝑦𝑦𝜌𝜌𝑥𝑥 𝑦𝑦
− 𝜌𝜌𝜌𝜌𝑦𝑦𝜌𝜌𝑥𝑥 𝑦𝑦+∆𝑦𝑦

∆𝒙𝒙∆𝒛𝒛
+ 𝜌𝜌𝜌𝜌𝑧𝑧𝜌𝜌𝑥𝑥 𝑧𝑧 − 𝜌𝜌𝜌𝜌𝑧𝑧𝜌𝜌𝑥𝑥 𝑧𝑧+∆𝑧𝑧 ∆𝒙𝒙∆𝒚𝒚

𝜌𝜌𝜌𝜌𝑥𝑥 = concentration [=] momentum/𝑚𝑚3

𝜌𝜌𝜌𝜌𝑥𝑥𝜌𝜌𝑥𝑥 = momentum flux [=] momentum/s·𝑚𝑚2 120
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Differential Equation of Momentum Transfer
• Considering the x-component of each term:

• Net x-component of momentum by Molecular transfer is

𝜏𝜏𝑥𝑥𝑥𝑥 𝑥𝑥 − 𝜏𝜏𝑥𝑥𝑥𝑥 𝑥𝑥+∆𝑥𝑥 ∆𝒚𝒚∆𝒛𝒛 + 𝜏𝜏𝑦𝑦𝑥𝑥 𝑦𝑦
− 𝜏𝜏𝑦𝑦𝑥𝑥 𝑦𝑦+∆𝑦𝑦

∆𝒙𝒙∆𝒛𝒛

+ 𝜏𝜏𝑧𝑧𝑥𝑥 𝑧𝑧 − 𝜏𝜏𝑧𝑧𝑥𝑥 𝑧𝑧+∆𝑧𝑧 ∆𝒙𝒙∆𝒚𝒚

𝜏𝜏𝑦𝑦𝑥𝑥 = x direction shear stress on the y face

𝜏𝜏𝑥𝑥𝑥𝑥 = nomal stress on the x face

• net fluid pressure force:

𝑝𝑝𝑥𝑥 − 𝑝𝑝𝑥𝑥+∆𝑥𝑥 ∆𝒚𝒚∆𝒛𝒛 121
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Differential Equation of Momentum Transfer

122

• Considering the x-component of each term:

• Gravitational force in the x direction is

𝜌𝜌𝑘𝑘𝑥𝑥 ∆𝒙𝒙∆𝒚𝒚∆𝒛𝒛

𝑘𝑘𝑥𝑥 = x component of the gravitational vector 𝐠𝐠

• Rate of Accumulation of x momentum in the element is:

∆𝒙𝒙∆𝒚𝒚∆𝒛𝒛 𝝏𝝏 𝜌𝜌𝑎𝑎𝑥𝑥
𝝏𝝏𝒇𝒇

• Substituting, dividing by ∆𝒙𝒙∆𝒚𝒚∆𝒛𝒛, and taking the limit as ∆𝒙𝒙,∆𝒚𝒚,∆𝒛𝒛 → 𝟖𝟖:

𝝏𝝏 𝜌𝜌𝜌𝜌𝑥𝑥
𝝏𝝏𝒇𝒇

= −
𝝏𝝏 𝜌𝜌𝜌𝜌𝑥𝑥𝜌𝜌𝑥𝑥

𝝏𝝏𝒙𝒙
+
𝝏𝝏 𝜌𝜌𝜌𝜌𝑦𝑦𝜌𝜌𝑥𝑥

𝝏𝝏𝒚𝒚
+
𝝏𝝏 𝜌𝜌𝜌𝜌𝑧𝑧𝜌𝜌𝑥𝑥

𝝏𝝏𝒛𝒛
−

𝝏𝝏𝜏𝜏𝑥𝑥𝑥𝑥
𝝏𝝏𝒙𝒙

+
𝝏𝝏𝜏𝜏𝑦𝑦𝑥𝑥
𝝏𝝏𝒚𝒚

+
𝝏𝝏𝜏𝜏𝑧𝑧𝑥𝑥
𝝏𝝏𝒛𝒛

−
𝝏𝝏𝒑𝒑
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑘𝑘𝑥𝑥
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Differential Equation of Momentum Transfer

123

• x-component of the differential equation of motion.
𝝏𝝏 𝜌𝜌𝜌𝜌𝑥𝑥
𝝏𝝏𝒇𝒇

= −
𝝏𝝏 𝜌𝜌𝜌𝜌𝑥𝑥𝜌𝜌𝑥𝑥

𝝏𝝏𝒙𝒙
+
𝝏𝝏 𝜌𝜌𝜌𝜌𝑦𝑦𝜌𝜌𝑥𝑥

𝝏𝝏𝒚𝒚
+
𝝏𝝏 𝜌𝜌𝜌𝜌𝑧𝑧𝜌𝜌𝑥𝑥

𝝏𝝏𝒛𝒛
−

𝝏𝝏𝜏𝜏𝑥𝑥𝑥𝑥
𝝏𝝏𝒙𝒙

+
𝝏𝝏𝜏𝜏𝑦𝑦𝑥𝑥
𝝏𝝏𝒚𝒚

+
𝝏𝝏𝜏𝜏𝑧𝑧𝑥𝑥
𝝏𝝏𝒛𝒛

−
𝝏𝝏𝒑𝒑
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑘𝑘𝑥𝑥

• Using the equation of continuity:
𝝏𝝏𝜌𝜌
𝝏𝝏𝒇𝒇 = −

𝝏𝝏 𝜌𝜌𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙 +

𝝏𝝏 𝜌𝜌𝜌𝜌𝑦𝑦
𝝏𝝏𝒚𝒚 +

𝝏𝝏 𝜌𝜌𝜌𝜌𝑧𝑧
𝝏𝝏𝒛𝒛

• Equations of motion for the x, y, and z components are obtained:

𝜌𝜌
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒇𝒇

+ 𝜌𝜌𝑥𝑥
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚

+ 𝜌𝜌𝑧𝑧
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒛𝒛

= −
𝝏𝝏𝜏𝜏𝑥𝑥𝑥𝑥
𝝏𝝏𝒙𝒙

+
𝝏𝝏𝜏𝜏𝑦𝑦𝑥𝑥
𝝏𝝏𝒚𝒚

+
𝝏𝝏𝜏𝜏𝑧𝑧𝑥𝑥
𝝏𝝏𝒛𝒛

−
𝝏𝝏𝒑𝒑
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑘𝑘𝑥𝑥

𝜌𝜌
𝝏𝝏𝜌𝜌𝑦𝑦
𝝏𝝏𝒇𝒇

+ 𝜌𝜌𝑥𝑥
𝝏𝝏𝜌𝜌𝑦𝑦
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝜌𝜌𝑦𝑦
𝝏𝝏𝒚𝒚

+ 𝜌𝜌𝑧𝑧
𝝏𝝏𝜌𝜌𝑦𝑦
𝝏𝝏𝒛𝒛

= −
𝝏𝝏𝜏𝜏𝑥𝑥𝑦𝑦
𝝏𝝏𝒙𝒙

+
𝝏𝝏𝜏𝜏𝑦𝑦𝑦𝑦
𝝏𝝏𝒚𝒚

+
𝝏𝝏𝜏𝜏𝑧𝑧𝑦𝑦
𝝏𝝏𝒛𝒛

−
𝝏𝝏𝒑𝒑
𝝏𝝏𝒚𝒚

+ 𝜌𝜌𝑘𝑘𝑦𝑦

𝜌𝜌
𝝏𝝏𝜌𝜌𝑧𝑧
𝝏𝝏𝒇𝒇

+ 𝜌𝜌𝑥𝑥
𝝏𝝏𝜌𝜌𝑧𝑧
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝜌𝜌𝑧𝑧
𝝏𝝏𝒚𝒚

+ 𝜌𝜌𝑧𝑧
𝝏𝝏𝜌𝜌𝑧𝑧
𝝏𝝏𝒛𝒛

= −
𝝏𝝏𝜏𝜏𝑥𝑥𝑧𝑧
𝝏𝝏𝒙𝒙

+
𝝏𝝏𝜏𝜏𝑦𝑦𝑧𝑧
𝝏𝝏𝒚𝒚

+
𝝏𝝏𝜏𝜏𝑧𝑧𝑧𝑧
𝝏𝝏𝒛𝒛

−
𝝏𝝏𝒑𝒑
𝝏𝝏𝒛𝒛

+ 𝜌𝜌𝑘𝑘𝑧𝑧
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Equations of Motion for Newtonian Fluids
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Equations of Motion for Newtonian Fluids 
with Varying Density and Viscosity
• For the x-component of momentum, the general equation of motion for a 

Newtonian fluid with varying density and viscosity is:

• Similar equations are obtained for the y and z components of momentum. 125
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Equations of Motion for Newtonian Fluids 
with Constant Density and Viscosity
𝝏𝝏 𝜌𝜌𝜌𝜌𝑥𝑥
𝝏𝝏𝒇𝒇

= −
𝝏𝝏 𝜌𝜌𝜌𝜌𝑥𝑥𝜌𝜌𝑥𝑥

𝝏𝝏𝒙𝒙
+
𝝏𝝏 𝜌𝜌𝜌𝜌𝑦𝑦𝜌𝜌𝑥𝑥

𝝏𝝏𝒚𝒚
+
𝝏𝝏 𝜌𝜌𝜌𝜌𝑧𝑧𝜌𝜌𝑥𝑥

𝝏𝝏𝒛𝒛
−

𝝏𝝏𝜏𝜏𝑥𝑥𝑥𝑥
𝝏𝝏𝒙𝒙

+
𝝏𝝏𝜏𝜏𝑦𝑦𝑥𝑥
𝝏𝝏𝒚𝒚

+
𝝏𝝏𝜏𝜏𝑧𝑧𝑥𝑥
𝝏𝝏𝒛𝒛

−
𝝏𝝏𝒑𝒑
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑘𝑘𝑥𝑥

• For constant viscosity fluid, Newton’s law applies: 𝝉𝝉𝒚𝒚𝒙𝒙 = −𝝁𝝁𝒅𝒅𝒗𝒗𝒙𝒙
𝒅𝒅𝒚𝒚

Equation of motion in rectangular coordinates:

𝜌𝜌
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒇𝒇

+ 𝜌𝜌𝑥𝑥
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚

+ 𝜌𝜌𝑧𝑧
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒛𝒛

= 𝝁𝝁
𝝏𝝏𝟐𝟐𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙𝟐𝟐

+
𝝏𝝏𝟐𝟐𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚𝟐𝟐

+
𝝏𝝏𝟐𝟐𝜌𝜌𝑥𝑥
𝝏𝝏𝒛𝒛𝟐𝟐

−
𝝏𝝏𝒑𝒑
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑘𝑘𝑥𝑥

• Similar equations are obtained for the y and z components. 126

Dr
. L

in
da

 A
l-H

m
ou

d



TH
E 

UN
IV

ER
SI

TY
 O

F 
JO

RD
AN

EXAMPLE 3.8-3. Laminar Flow in a Circular 
Tube

127
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EXAMPLE 3.8-3. Laminar Flow in a Circular 
Tube

128
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P3.6-1. Equation of Continuity in a 
Cylinder.Fluid having a constant density ρ is flowing in the z direction through a 
circular pipe with axial symmetry. The radial direction is designated by r.
(a) Using a cylindrical shell balance with dimensions dr and dz, derive 

the equation of continuity for this system.
(b) Use the equation of continuity in cylindrical coordinates to derive the 

equation.

129
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P3.8-1. Average Velocity in a Circular Tube.
Using Eq. (3.8-17) for the velocity in a circular tube as a function of 
radius r,

derive Eq. (3.8-19) for the average velocity.

130
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P3.8-4. Velocity Profile in Falling Film and 
Differential Momentum Balance.
Newtonian liquid is flowing as a falling film on 
an inclined flat surface. The surface makes an 
angle of θ with the vertical. Assume that in this 
case the section being considered is sufficiently 
far from both ends that there are no end effects 
on the velocity profile. The thickness of the film 
is δ. The apparatus is similar to Fig. 2.9-3 but is not vertical. Do as follows.
(a) Derive the equation for the velocity profile of 𝜌𝜌𝑧𝑧 as a function of 𝑥𝑥 in 
this film using the differential momentum balance equation.
(b) What are the maximum velocity and the average velocity?
(c) What is the equation for the momentum flux distribution of 𝜏𝜏𝑥𝑥𝑧𝑧? 
[Hint: Can Eq. (3.7-19) be used here?]

131
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P3.8-4. Velocity Profile in Falling Film and 
Differential Momentum Balance.

132
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P3.8-4. Velocity Profile in Falling Film and 
Differential Momentum Balance.
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P3.8-2. Laminar Flow in a Cylindrical Annulus.
Derive all the equations given in Example 3.8-4 showing all the steps. 
Also, derive the equation for the average velocity vz,av. Finally, integrate to 
obtain the pressure drop from z = 0 for p = p0 to z = L for p = pL.

135

Steady-state laminar flow inside the annulus 
between Two concentric horizontal pipes
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Boundary-Layer Flow and 
Turbulence

Section 3.10

137
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Boundary-Layer Theory
• Boundary Layer: the region close to the solid surface.
• In the boundary-layer region, the fluid motion is greatly affected 

by the solid surface. 
• In the bulk of the fluid away from the boundary layer the flow can 

often be adequately described by the theory of ideal fluids with 
zero viscosity. 

• However, in the thin boundary layer, viscosity is important. 
• Since the region is thin, simplified solutions can be obtained for 

the boundary-layer region. 
• Prandtl originally suggested this division of the problem into two 

parts, which has been used extensively in fluid dynamics.
138
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Boundary Layer for Flow Past Flat Plate
• Boundary-layer formation in the steady-state flow of a fluid past a 

flat plate.

At the points connected by the dashed line, L, the velocity is 99% of 
the bulk velocity 𝜌𝜌∞

139
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Boundary Layer for Flow Past Flat Plate
• Boundary-layer formation in the steady-state flow of a fluid past a 

flat plate.

• When 𝑅𝑅𝑅𝑅𝑥𝑥 = 𝑥𝑥𝑎𝑎∞𝜌𝜌
𝜇𝜇

< 5 × 105, the flow is laminar
140

the thickness δ of the boundary layer increases 
with the 𝒙𝒙 as we move in the 𝒙𝒙 direction
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Boundary Layer for Flow Past Flat Plate
• Boundary-layer formation in the steady-state flow of a fluid past a 

flat plate.

• When 5 × 105 < 𝑅𝑅𝑅𝑅𝑥𝑥 < 3 × 106, the flow is in the transition zone
141
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Boundary Layer for Flow Past Flat Plate
• Boundary-layer formation in the steady-state flow of a fluid past a 

flat plate.

• When 𝑅𝑅𝑅𝑅𝑥𝑥 > 3 × 106, the flow is turbulent
142When the boundary layer is turbulent, a thin viscous sublayer persists next to 

the plate. The drag caused by the viscous shear in the boundary layers is 
called skin friction: the only drag present for flow past a flat plate.
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Laminar Flow and Boundary-Layer Theory
• Boundary-layer equations: When laminar flow is occurring in a boundary 

layer, certain terms in the Navier-Stokes equations become negligible and can 
be neglected.

• Thickness of boundary layer δ: the distance away from the surface where the 
velocity reaches 99% of the free stream velocity. 

• The concept of a relatively thin boundary layer leads to some important 
simplifications of the Navier-Stokes equations.

• For two-dimensional laminar flow in the 𝑥𝑥 and 𝑦𝑦 directions of a fluid having a 
constant density, for flow at steady state, when the body forces 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 are 
neglected:

𝜌𝜌𝑥𝑥
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚

=
𝝁𝝁
𝜌𝜌

𝝏𝝏𝟐𝟐𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙𝟐𝟐

+
𝝏𝝏𝟐𝟐𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚𝟐𝟐

−
𝟏𝟏
𝜌𝜌
𝝏𝝏𝒑𝒑
𝝏𝝏𝒙𝒙

𝜌𝜌𝑥𝑥
𝝏𝝏𝜌𝜌𝑦𝑦
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝜌𝜌𝑦𝑦
𝝏𝝏𝒚𝒚

=
𝝁𝝁
𝜌𝜌

𝝏𝝏𝟐𝟐𝜌𝜌𝑦𝑦
𝝏𝝏𝒙𝒙𝟐𝟐

+
𝝏𝝏𝟐𝟐𝜌𝜌𝑦𝑦
𝝏𝝏𝒚𝒚𝟐𝟐

−
𝟏𝟏
𝜌𝜌
𝝏𝝏𝒑𝒑
𝝏𝝏𝒚𝒚

143
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Laminar Flow and Boundary-Layer Theory
• The continuity equation for two-dimensional flow becomes

𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙

+
𝝏𝝏𝜌𝜌𝑦𝑦
𝝏𝝏𝒚𝒚

= 𝟖𝟖

𝜌𝜌𝑥𝑥
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚

=
𝝁𝝁
𝜌𝜌

𝝏𝝏𝟐𝟐𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙𝟐𝟐

+
𝝏𝝏𝟐𝟐𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚𝟐𝟐

−
𝟏𝟏
𝜌𝜌
𝝏𝝏𝒑𝒑
𝝏𝝏𝒙𝒙

𝜌𝜌𝑥𝑥
𝝏𝝏𝜌𝜌𝑦𝑦
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝜌𝜌𝑦𝑦
𝝏𝝏𝒚𝒚

=
𝝁𝝁
𝜌𝜌

𝝏𝝏𝟐𝟐𝜌𝜌𝑦𝑦
𝝏𝝏𝒙𝒙𝟐𝟐

+
𝝏𝝏𝟐𝟐𝜌𝜌𝑦𝑦
𝝏𝝏𝒚𝒚𝟐𝟐

−
𝟏𝟏
𝜌𝜌
𝝏𝝏𝒑𝒑
𝝏𝝏𝒚𝒚

• All the terms containing 𝜌𝜌𝑦𝑦 and its derivatives are small.

𝜌𝜌𝑥𝑥
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚

=
𝝁𝝁
𝜌𝜌
𝝏𝝏𝟐𝟐𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚𝟐𝟐

−
𝟏𝟏
𝜌𝜌
𝝏𝝏𝒑𝒑
𝝏𝝏𝒙𝒙 144

negligible in comparison 
with the other terms
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Solution for 
Laminar Boundary Layer on a Flat Plate

• Since 𝜌𝜌∞ is constant, 𝑑𝑑𝑝𝑝/𝑑𝑑𝑥𝑥 is zero.
• The final boundary-layer equations reduce to

𝜌𝜌𝑥𝑥
𝝏𝝏𝑎𝑎𝑥𝑥
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝑎𝑎𝑥𝑥
𝝏𝝏𝒚𝒚

= 𝝁𝝁
𝜌𝜌
𝝏𝝏𝟐𝟐𝑎𝑎𝑥𝑥
𝝏𝝏𝒚𝒚𝟐𝟐

𝝏𝝏𝑎𝑎𝑥𝑥
𝝏𝝏𝒙𝒙

+ 𝝏𝝏𝑎𝑎𝑦𝑦
𝝏𝝏𝒚𝒚

= 𝟖𝟖
• Boundary condition:

• 𝜌𝜌𝑥𝑥 = 𝜌𝜌𝑦𝑦 = 0 at 𝑦𝑦 = 0,and 𝜌𝜌𝑥𝑥 = 𝜌𝜌∞ at 𝑦𝑦 = ∞
• Solution of this problem for laminar flow over a flat plate giving 
𝜌𝜌𝑥𝑥 and 𝜌𝜌𝑦𝑦 as a function of 𝑥𝑥 and 𝑦𝑦 was first obtained by Blasius
and later elaborated by Howarth. 145
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Solution for 
Laminar Boundary Layer on a Flat Plate

• Blasius reduced the two equations to a single ordinary differential equation 
which is nonlinear. 

• The equation could not be solved to give a closed form but a series solution 
was obtained.

• The results of Blasius work are as follows:
• Boundary-layer thickness δ is given approximately by
• Hence 𝛿𝛿 varies as 𝑥𝑥
• Skin friction 𝜏𝜏0 is calculated 

from the shear stress at the 
surface at 𝑦𝑦 = 0 for any 𝑥𝑥:

𝜏𝜏0 = 0.332𝜇𝜇𝜌𝜌∞
𝜌𝜌𝑎𝑎∞
𝜇𝜇𝑥𝑥

146

𝛿𝛿 =
5.0𝑥𝑥
𝑅𝑅𝑅𝑅𝑥𝑥

= 5.0
𝜇𝜇𝑥𝑥
𝜌𝜌𝜌𝜌∞
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Solution for 
Laminar Boundary Layer on a Flat Plate

• Total drag for a plate of length 𝐿𝐿 and width 𝑏𝑏 is given by:

𝐹𝐹𝐷𝐷 = 𝑏𝑏�
0

𝐿𝐿
𝜏𝜏0𝑑𝑑𝑥𝑥

𝐹𝐹𝐷𝐷 = 0.664𝑏𝑏 𝜇𝜇𝜌𝜌𝜌𝜌∞3 𝐿𝐿 = 𝐶𝐶𝐷𝐷
𝜌𝜌∞2

2 𝜌𝜌𝐴𝐴

where 𝐶𝐶𝐷𝐷 = 1.328 𝜇𝜇
𝐿𝐿𝜌𝜌𝑎𝑎∞

= 1.328
𝑅𝑅𝑛𝑛𝐿𝐿

(similar to Fanning friction factor f for pipes).

• This CD equation applies only to the laminar boundary layer for 𝑅𝑅𝑅𝑅𝐿𝐿 < 5 x 105.
• The results are valid only for positions where x is sufficiently far from the leading 

edge so that x or L is much greater than δ. 
• Experimental results on the drag coefficient to a flat plate confirm the validity of the 

above equation. 
• Boundary-layer flow past many other shapes has been successfully analyzed using 

similar methods.
147
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P3.10-1

148

P3.10-2
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Boundary-Layer Flow and 
Turbulence in Heat Transfer

Section 5.7A

149

Dr
. L

in
da

 A
l-H

m
ou

d



TH
E 

UN
IV

ER
SI

TY
 O

F 
JO

RD
AN

Laminar Flow and Boundary-Layer Theory 
in Heat Transfer

• Laminar Flow of Fluid past a Flat Plate and Thermal Boundary Layer
• T∞ = temperature of fluid approaching the plate
• Ts = temperature of the plate at the surface.
• Starting with the differential energy balance:

𝝏𝝏𝑇𝑇
𝝏𝝏𝜕𝜕

+ 𝜌𝜌𝑥𝑥
𝝏𝝏𝑇𝑇
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝑇𝑇
𝝏𝝏𝒚𝒚

+ 𝜌𝜌z
𝝏𝝏𝑇𝑇
𝝏𝝏z

=
k
𝜌𝜌𝑐𝑐𝑥𝑥

𝝏𝝏𝟐𝟐𝑇𝑇
𝝏𝝏x𝟐𝟐

+
𝝏𝝏𝟐𝟐𝑇𝑇
𝝏𝝏𝒚𝒚𝟐𝟐

+
𝝏𝝏𝟐𝟐𝑇𝑇
𝝏𝝏z𝟐𝟐

• The flow is in 𝑥𝑥 and y directions → 𝜌𝜌z = 0
• The flow is at steady state → 𝝏𝝏𝑇𝑇

𝝏𝝏𝑛𝑛
= 0

• Conduction is neglected in the 𝒙𝒙
and z directions → 𝝏𝝏𝟐𝟐𝑇𝑇

𝝏𝝏x𝟐𝟐
= 𝝏𝝏𝟐𝟐𝑇𝑇

𝝏𝝏z𝟐𝟐
= 0

𝜌𝜌𝑥𝑥
𝝏𝝏𝑇𝑇
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝑇𝑇
𝝏𝝏𝒚𝒚

=
k
𝜌𝜌𝑐𝑐𝑥𝑥

𝝏𝝏𝟐𝟐𝑇𝑇
𝝏𝝏𝒚𝒚𝟐𝟐

150
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Laminar Flow and Boundary-Layer Theory 
in Heat Transfer
𝜌𝜌𝑥𝑥
𝝏𝝏𝑇𝑇
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝑇𝑇
𝝏𝝏𝒚𝒚

=
k
𝜌𝜌𝑐𝑐𝑥𝑥

𝝏𝝏𝟐𝟐𝑇𝑇
𝝏𝝏𝒚𝒚𝟐𝟐

• The simplified momentum balance equation used in the velocity 
boundary-layer derivation

𝜌𝜌𝑥𝑥
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙

+ 𝜌𝜌𝑦𝑦
𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚

=
𝝁𝝁
𝜌𝜌
𝝏𝝏𝟐𝟐𝜌𝜌𝑥𝑥
𝝏𝝏𝒚𝒚𝟐𝟐

• The continuity equation used previously is

𝝏𝝏𝜌𝜌𝑥𝑥
𝝏𝝏𝒙𝒙

+
𝝏𝝏𝜌𝜌𝑦𝑦
𝝏𝝏𝒚𝒚

= 𝟖𝟖
151
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Laminar Flow and Boundary-Layer Theory 
in Heat Transfer

• Boundary Conditions used by Blasius for solving the case of laminar boundary-
layer flow:
𝜌𝜌𝑥𝑥
𝜌𝜌∞

=
𝜌𝜌𝑦𝑦
𝜌𝜌∞

= 0 𝑎𝑎𝜕𝜕 𝑦𝑦 = 0,
𝜌𝜌𝑥𝑥
𝜌𝜌∞

= 1 𝑎𝑎𝜕𝜕 𝑦𝑦 = ∞

𝜌𝜌𝑥𝑥
𝜌𝜌∞

= 1 𝑎𝑎𝜕𝜕 𝑥𝑥 = 0

• Blasius solution can be applied similarly, 
if k
𝜌𝜌𝑐𝑐𝑝𝑝

=
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Laminar Flow and Boundary-Layer Theory 
in Heat Transfer

• The transfer of momentum and heat are directly analogous and the 
boundary-layer thickness δ for the velocity profile (hydrodynamic boundary 
layer) and the thermal boundary-layer thickness δT are equal.

𝜕𝜕𝜌𝜌𝑥𝑥
𝜕𝜕𝑦𝑦 𝑦𝑦=0

= 0.332
𝜌𝜌∞
𝑥𝑥

𝑅𝑅𝑅𝑅𝑥𝑥 , 𝑅𝑅𝑅𝑅𝑥𝑥 =
𝑥𝑥𝜌𝜌∞𝜌𝜌
𝜇𝜇

𝜕𝜕𝑇𝑇
𝜕𝜕𝑦𝑦 𝑦𝑦=0

= 𝑇𝑇∞ − 𝑇𝑇𝑥𝑥
0.332
𝑥𝑥

𝑅𝑅𝑅𝑅𝑥𝑥

• The convective equation can be related 
to the Fourier equation by the following:
𝑞𝑞𝑦𝑦
𝐴𝐴

= ℎ𝑥𝑥 𝑇𝑇∞ − 𝑇𝑇𝑥𝑥 = −𝑘𝑘
𝜕𝜕𝑇𝑇
𝜕𝜕𝑦𝑦 𝑦𝑦=0
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Laminar Flow and Boundary-Layer Theory 
in Heat Transfer

• Pohlhausen showed that the relation between the hydrodynamic and thermal 
boundary layers for fluids with P𝜋𝜋 > 0.6 is approximately:

δ
δ𝑇𝑇

= 𝑃𝑃𝜋𝜋1/3

• As a result, the equation for the local heat-transfer coefficient is
ℎ𝑥𝑥 𝑥𝑥
𝑘𝑘 = 𝑁𝑁𝑁𝑁𝑥𝑥 = 0.332𝑅𝑅𝑅𝑅𝑥𝑥1/2𝑃𝑃𝜋𝜋1/3

• The equation for the mean heat-transfer coefficient ℎ from 𝑥𝑥 = 0 to 𝑥𝑥 = 𝐿𝐿 is for a 
plate of width 𝑏𝑏 and area 𝑏𝑏𝐿𝐿,

ℎ =
𝑏𝑏
𝐴𝐴
�
0

𝐿𝐿
ℎ𝑥𝑥 𝑑𝑑𝑥𝑥 = 0.664

𝑘𝑘
𝐿𝐿
𝑅𝑅𝑅𝑅𝐿𝐿1/2𝑃𝑃𝜋𝜋1/3

ℎ𝐿𝐿
𝑘𝑘 = 0.664𝑅𝑅𝑅𝑅𝐿𝐿1/2𝑃𝑃𝜋𝜋1/3

• This laminar boundary layer on smooth plates holds for Re <  5x105. 
• Fluid properties are evaluated at film temperature 𝑇𝑇𝑓𝑓 = (𝑇𝑇𝑥𝑥 + 𝑇𝑇∞)/2.
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P5.7-1. Thermal and Hydrodynamic Boundary 
Layer Thicknesses
• Air at 294.3 K and 101.3 kPa with a free stream velocity of 12.2 m/s is 

flowing parallel to a smooth flat plate held at a surface temperature of 
383 K. Do the following.

(a) At the critical 𝑅𝑅𝑅𝑅𝐿𝐿 = 5 × 105, calculate the critical length 𝑥𝑥 = 𝐿𝐿 of 
the plate, the thickness δ of the hydrodynamic boundary layer, and 
the thickness δT of the thermal boundary layer. Note that the Prandtl 
number is not 1.0.

(b) Calculate the average heat-transfer coefficient over the plate covered 
by the laminar boundary layer.
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P5.7-2. Boundary Layer Thicknesses and Heat 
Transfer
• Air at 37.8 °C and 1 atm abs flows at a velocity of 3.05 m/s parallel to a 

flat plate held at 93.3 °C . The plate is 1 m wide. Calculate the following 
at a position 0.61 m from the leading edge.

(a) The thermal boundary layer thickness δT, and the hydrodynamic 
boundary layer thickness δ.

(b) Total heat-transfer from the plate.
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