Modes of Mass Transfer

Modes of Mass Transfer

Molecular diffusion

Convective mass transfer

Molecular Diffusion

• <u>Definition</u>: The diffusion of molecules when the whole bulk fluid is not moving but stationary. Diffusion of molecules is due to a <u>concentration gradient</u>. Movement of molecules through a stagnant fluid take place as a result of random movements of these molecules "see the schematic

Schematic diagram of molecular diffusion process.

Due to the random path, molecular diffusion is often called random-walk process.

Convective Mass Transfer

<u>Definition</u>: The diffusion of molecules when the bulk fluid is moving and diffusion of molecules

fluid

Water

Salty
water

Before

Agitator

Agitator

After

Comparison between Convective Heat Transfer and Mass Transfer

When a fluid is flowing outside a solid surface in forced convection motion and diffusion takes place. This is similar to convective heat transfer.

Convective Heat Transfer

Convective Mass Transfer

Convective Mass Transfer

$$N_A = k_c (c_{L_i} - c_{L_1})$$

k_c mass transfer coefficient (m/s)

c_{1,1} bulk fluid concentration

c_{Li} concentration of fluid near the solid surface

k_c depends on:

System geometry

Fluid properties

Flow velocity

COMPARISON BETWEEN THE TWO MASS TRANSFER MECHANISMS

Mechanisms of Mass Transfer

Mass transfer occurs by two basic mechanisms which act simultaneously: 1) molecular diffusion and 2) Convective mass transfer

Molecular Diffusion	Convective Mass Transfer		
 Caused by random microscopic movement of individual molecules in gas/liq/solid as a result of thermal motion or concentration differences. Extremely slow 	 Caused by random <u>macroscopic</u> fluid bulk motion (dynamic characteristics). Orders of magnitude faster than molecular diffusion. 		
 Occurs in solids and fluids that are stagnant or in laminar flow. Mass transfer under turbulent-flow but across an interface or near solid surface, the conditions near surface can be assumed laminar. Mathematically described by Fick's law: 	 Involves transport of materials at the interface between moving fluids (liq-gas) or at interface between a moving fluid and a solid surface (liq-solid, gas-solid). 		
	 Mathematically described in a manner analogous to Newton's law: 		
$J_{A,z} = -D_{AB} dC_A/dz$	$N_A = k_c \Delta C_A$		

Molecular Diffusion in Gases

(1) Equi-molar counter diffusion in gases

Two gases A and B are contained in two connected chambers. Total pressure is constant P under steady state conditions.

Molecular Diffusion in Gases

(1) Equi-molar counter diffusion in gases

(P is constant, therefore the total concentration c is also constant).

since $P = p_A + p_B = \text{constant}$, then

$$c = c_A + c_B$$

$$dc_A = -dc_B$$

$$J_{AZ}^* = -J_{BZ}^*$$

$$J^*_{A} = -D_{AB} \frac{dc_{A}}{dz} = -J^*_{B} = -(-)D_{BA} \frac{dc_{B}}{dz}$$

$$D_{AB} = D_{BA}$$

Important constrain:

When the total pressure of the system is constant, the net moles of A diffusing to the right must equal the net moles of B to the left. This means $J_{Az}^* = -J_{Bz}^*$

Molecular Diffusion in Gases

(1) Equi-molar counter diffusion in gases

For a binary gas mixture of A and pressure, the diffusivity coefficient

Equimolar counterdiffusion of gases A and B

 $p_{A1} > p_{A2}$

 $\mathbf{p}_{\mathtt{Bl}}$

 $p_{B2} >$

Example 1: Molecular Diffusion of He in N₂

A mixture of He and N₂ gas is contained in a pipe at 298 K and 1 atm total pressure which is constant throughout. At one end of the pipe at point 1 the partial pressure p_{A1} of He is 0.6 atm and at the other end 0.2 m, p_{A2} = 0.2 atm.

Calculate the flux of He at steady state if D_{AB} of the He-N₂ mixture is 0.687 x 10⁻⁴ m²/s.

Example 1: Molecular Diffusion of He in N₂

Solution

Example 1: Molecular Diffusion of He in N₂

Solution

$$J_{A_{Z}}^{*} = -D_{AB} \frac{C_{A2} - C_{A1}}{z_{2} - z_{1}}$$

Assuming ideal gas law: $pV = nRT \longrightarrow \frac{n}{V} = C = \frac{p}{RT}$

Example 2: Equi-molar Counter Diffusion

Ammonia gas (A) is diffusing through a uniform tube 0.10 m long containing N₂ gas (B) at 1.0132 x 10⁵ Pa pressure and 298 K. At point 1, p_{A1} = 1.013 x 10⁴ Pa and at point 2, p_{A2} = 0.507 x 10⁴ Pa.

The diffusivity $D_{AB} = 0.230 \text{ x } 10^{-4} \text{ m}^2/\text{s}.$

- (a) Calculate the flux J_A^* at steady state
- (b) Repeat for J_B^*

Example 2: Equi-molar Counter Diffusion

Solution

$$J_{A_{Z}}^{*} = -D_{AB} \frac{p_{B2} - p_{B1}}{RT(z_{2} - z_{1})} = D_{AB} \frac{p_{A1} - p_{A2}}{RT(z_{2} - z_{1})}$$

 z_2 - z_1 = 0.10 m, and T = 298 K.

Since the total pressure is constant, $D_{AB}=D_{BA}$ for this binary gas system.

Example 3

A pure nitrogen carrier gas flows parallel to the $0.6 \,\mathrm{m}^2$ surface of a liquid acetone in an open tank. The acetone temperature is maintained at 290 K. If the average mass-transfer coefficient, k_c , for the mass transfer of acetone into the nitrogen stream is $0.0324 \,\mathrm{m/s}$, determine the total rate of acetone release in units of kg.mol/s.

Schematic

Find the total rate of acetone in kg mol/s

Solution

Summary

Mass transfer (Diffusion) is defined as the microscopic transport of one component from a region to another under effect of a driving force. The Diffusion is a slow microscopic process. It can be accelerated by agitation or convection (macroscopic).