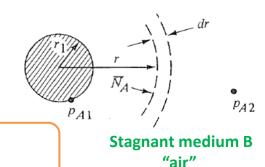
DIFFUSION THROUGH & VARYING CROSS-SECTIONAL AREA

Diffusion through a varying crosssectional area


 In some cases, the area A may vary. Then, it is convenient to define N_Δ as: Constant at

$$N_A = \frac{N_A \text{ [kgmol/s]}}{A \text{ [m}^2]}$$
 steady state condition

Examples

Diffusion from a sphere

- Evaporation of a drop of liquid
- Evaporation of ball of naphthalens

Diffusion from a sphere

$$N_A = \frac{\overline{N_A}}{A} = \frac{\overline{N_A}}{4\pi \overline{p^2}}$$

But as given before

$$N_{A}\left(1 - \frac{p_{A}}{P}\right) = -\frac{D_{AB}}{RT} \frac{dp_{A}}{dz}$$

Or
$$N_A = \frac{\vec{N}_A}{4\pi r^2} = -\frac{D_{AB}}{RT} \frac{dp_A}{(1 - p_A/P)(dr)}$$

Rearranging and integration

$$\frac{\bar{N}_{A}}{4\pi} \int_{r_{1}}^{r_{2}} \frac{dr}{r^{2}} = -\frac{D_{AB}}{RT} \int_{p_{A1}}^{p_{A2}} \frac{dp_{A}}{(1 - p_{A}/P)}$$

$$\frac{\bar{N}_{A}}{4\pi} \left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right) = \frac{D_{AB}P}{RT} \ln \frac{P - p_{A2}}{P - p_{A1}}$$

• Since $r_2 >> r_1$, \therefore $1/r_2 \approx 0$, hence previous eq. becomes

$$\frac{N_A}{4\pi r_1^2} = N_{A1} = \frac{D_{AB}P}{RTr_1} \ln \frac{(P - p_{A2})}{(P - p_{A1})}$$

• Or
$$\frac{\bar{N}_A}{4\pi r_1^2} = N_{A1} = \frac{D_{AB}P}{RTr_1} \frac{p_{A1} - p_{A2}}{p_{BM}}$$

NOTE

If p_{A1} is small compared to P (a dilute gas phase),

 $p_{BM} \cong P$. Also, setting $2r_1 = D_1$, diameter, and $c_{A1} = p_{A1}/RT$, we obtain

$$N_{A1} = \frac{2D_{AB}}{D_1} \left(c_{A1} - c_{A2} \right)$$

This equation can also be used for liquids, where D_{AB} is the diffusivity of A in the liquid.

Time for complete evaporation or dissolution of the sphere is:

$$t_F = \frac{\rho_A r_1^2 RT}{2M_A D_{AB} P} \frac{1}{\ln \frac{(P - p_{A2})}{(P - p_{A1})}}$$

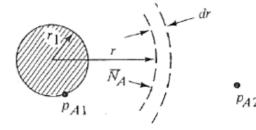
Example 1

Evaporation of a Naphthalene Sphere

A sphere of naphthalene having a radius of 2.0 mm is suspended in a large volume of still air at 318 K and 1.101325 x 10^5 Pa. The diffusivity of the naphthalene at 318 K is 6.92×10^{-6} m²/s.

- (1) Calculate the rate of evaporation of naphthalene from the surface.
- (2) Estimate the time after which the sphere will completely evaporate.

Solution


(1)
$$\frac{\bar{N_A}}{4\pi r_1^2} = N_{A1} = \frac{D_{AB}P}{RTr_1} \ln \frac{(P - p_{A2})}{(P - p_{A1})}$$

 $D_{AB} = 6.92 \times 10^{-6} \text{ m}^2/\text{s}.$

P = 101325 Pa.

The vapor pressure of Naphthalene at 318 K is $p_{A1} = 0.555$ mm Hg = $0.555/760 \times 101325 = 74$ Pa. [From Tables].

 $p_{A2} = 0$ [Evaporation to a large volume of Air to a large distance].

 $r_1 = 2 \text{ mm} = 2 \times 10^3 \text{ m}.$

$$\frac{\bar{N_A}}{4\pi r_1^2} = N_{A1} = \frac{D_{AB}P}{RTr_1} \ln \frac{(P - p_{A2})}{(P - p_{A1})}$$

$$N_{A1} = \frac{(6.92 \times 10^{-6})(101325)}{(8314)(318)(2 \times 10^{-3})} \ln \frac{(101325 - 0)}{(101325 - 74)}$$

$$=9.68\times10^{-8} \text{ kg molA/s.m}^2$$

Solution

(2)
$$t_F = \frac{\rho_A r_1^2 RT}{2M_A D_{AB} P} \frac{1}{\ln \frac{(P - p_{A2})}{(P - p_{A1})}}$$

Data

From tables $\rho = 1140 \text{ kg/m}^3$ $M_{\Delta} = 128 \text{ g/mol}$

$$t_F = \frac{(1140)(2 \times 10^{-3)^2}(8314)(318)}{2(128/1000)(6.92 \times 10^{-6})(101325)} \frac{1}{\ln \frac{(101325 - 0)}{(101325 - 74)}}$$

$$t_F = 91931758$$
 s = 2.9 yr

Diffusion coefficients for gases

Usually, the diffusion coefficients are tabulated, as shown in the Table.

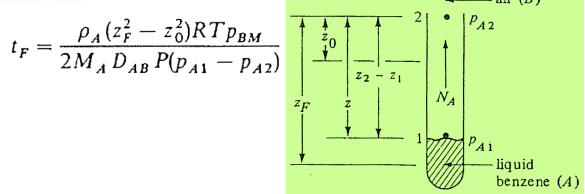
A number of experimental methods have been used to determine the diffusion coefficient.

From the given table we can conclude,

	Temperature		Diffusivity [(m²/s)104
System	°C	K	or cm ² /s]
Air-NH ₃	0	273	0.198
Air-H ₂ O	0	273	0.220
	25	298	0.260
	42	315	0.288
Air-CO ₂	3	276	0.142
	44	317	0.177
Air-H ₂	0	273	0.611
Air-C ₂ H ₅ OH	25	298	0.135
	42	315	0.145
Air-CH ₃ COOH	0	273	0.106
Air-n-hexane	21	294	0.080
Air-benzene	25	298	0.0962
Air-toluene	25.9	298.9	0.086
Air-n-butanol	0	273	0.0703
	25.9	-298.9	0.087
H ₂ -CH ₄	25	298	0.726
H_2-N_2	25	298	0.784
	0.0	250	1.062

Ringry	Diffusion	Coefficients at	One A	tmosphere ^{a,b}
Dinary	Durusion	Goefficients at	Onen	unosphere

Substance A	Substance B	<i>T</i> (K)	D _{AB} (m²/s)
Gases			
NH ₃	Air	298	0.28×10^{-4}
H ₂ O	Air	298	0.26×10^{-4}
CO ₂	Air	298	0.16×10^{-4}
H ₂	Air	298	0.41×10^{-4}
O ₂	Air	298	0.21×10^{-4}
Acetone	Air	273	0.11×10^{-4}
Benzene	Air	298	0.88×10^{-5}
Naphthalene	Air	300	0.62×10^{-5}
Ar	N ₂	293	0.19×10^{-4}
H ₂	O ₂	273	0.70×10^{-4}
H ₂	N ₂	273	0.68×10^{-4}
H ₂	CO ₂	273	0.55×10^{-4}
CO₂	N ₂	293	0.16×10^{-4}
CO ₂	O ₂	273	0.14×10^{-4}
O ₂	N ₂	273	0.18×10^{-4}
Dilute Solutions			
Caffeine	H ₂ O	298	0.63×10^{-9}
Ethanol	H ₂ O	298	0.12×10^{-8}
Glucose	H ₂ O	298	0.69×10^{-9}
Glycerol	H ₂ O	298	0.94×10^{-9}
Acetone	H₂O	298	0.13×10^{-8}
CO ₂	H ₂ O	298	0.20×10^{-8}
02	H₂O	298	0.24×10^{-8}
H ₂	H ₂ O	298	0.63×10^{-8}
N ₂	H₂O	298	0.26×10^{-8}
Solids			
02	Rubber	298	0.21×10^{-9}
N ₂	Rubber	298	0.15×10^{-9}
CO ₂	Rubber	298	0.11 × 10 ⁻⁹
He	SiO ₂	293	0.4×10^{-13}
H ₂	Fe	293	0.26×10^{-12}
Cd	Cu	293	0.27×10^{-18}
AI	Cu	293	0.13×10^{-33}


Diffusion coefficients for gases

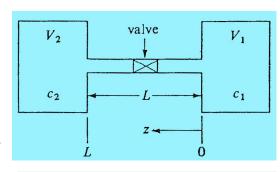
A number of experimental methods have been used to determine the diffusion coefficient for binary gas mixtures.

One method is to evaporate a pure liquid A in a narrow tube with a gas passed over the top.

The fall in the liquid level is measured with time and the diffusivity is calculated.

$$\rho_A(z_F^2-z_0^2)RTp_{BM}$$

Diffusivity measurement


Pure gas A is added to V_1 and pure B to V_2 at the same pressures. The valve is opened, diffusion proceeds for a given time, and then the valve is closed and the mixed contents of each chamber are sampled separately. Assuming quasi-steady-state diffusion

$$J_A^* = -D_{AB} \frac{dc}{dz} = -\frac{D_{AB}(c_2 - c_1)}{L}$$
(a)

where c_2 is the concentration of A in V_2 at

time t and c_1 in V_1 . The rate of diffusion of Agoing to V_2 is equal to the rate of accumulation in V_2 .

$$AJ_A^* = -\frac{D_{AB}(c_2 - c_1)A}{L} = V_2 \frac{dc_2}{dt}$$
...(b) Diffusivity measurement of gases by the two-bulb method.

<u>Material balance</u>: (c_{av} at equilibrium can be calculated using initial composition at t = 0.)

$$(V_1 + V_2)c_{av} = V_1c_1^0 + V_2c_2^0$$
 ...(c)

Material balance: (at any time t as the previous material balance)

$$(V_1 + V_2)c_{av} = V_1c_1 + V_2c_2 \qquad ...(d)$$

From eq. (d) find c_1 then substitute it in eq. (b) on rearrangement, integration between t = 0 and t = t, we get

$$\frac{c_{av} - c_2}{c_{av} - c_2^0} = \exp \left[-\frac{D_{AB}(V_1 + V_2)}{(L/A)(V_2 V_1)} t \right] \qquad \dots (e)$$

Note

From this eq. (e) we can obtain the diffusivity coefficient D_{AB} , where C_2 is found by sampling.

Diffusion coefficients for gases

Empirical correlations have been developed to calculate the diffusivity. For example, for a binary gas:

Chapman& Enskog

$$D_{A\!B} = \frac{1.8583 \times 10^{-7} \, T^{\frac{3}{2}}}{P \, \sigma_{A\!B}^2 \, \Omega_{D,A\!B}} \bigg(\frac{1}{M_A} + \frac{1}{M_B} \bigg)^{\frac{1}{2}}$$

T is in K

P is in atm

 σ and Ω are parameters

M is the molecular weight in kg mass/kg mol

Based on Boltzmann's kinetic theory of gases, the theorem of corresponding states, and a suitable intermolecular energy potential function.

Diffusion coefficients for gases

Another empirical correlations is:

Fuller et al.

$$D_{AB} = \frac{1.00 \times 10^{-7} T^{1.75} \left(\frac{1}{M_A} + \frac{1}{M_B} \right)^{\frac{1}{4}}}{P[(\sum v_A)^{\frac{1}{3}} + (\sum v_B)^{\frac{1}{3}}]^2}$$
atm

 $\sum v$: is called the sum of structural volume increments and is tabulated

Atomic Diffusion Volumes for Use with the Fuller, Schettler, and Giddinas Method*

		idatnys in ethola	
Atomi	ic and str	uctural diffusion vol	ume increments, v
С	16.5	(C1)	19.5
н	1.98	(S)	17.0
0	5.48	Aromatic ring	- 20.2
(N)	5.69	Heterocyclic ring	-20.2
Diffus	ion volun	nes for simple mole	cules, ∑ v
H_2	7.07	CO	18.9
D_2	6.70	CO ₂	26.9
He	2.88	N ₁ Ō	35.9
N_2	17.9	NH,	14.9
O ₂	16.6	H ₂ O	12.7
.Air	20.1	(CCl ₂ F ₂)	114.8
Ar	16.1	(SF ₆)	69.7
Kr	22.8	(Cl ₂)	37.7
(Xc)	37.9	(Br ₂)	67.2
Ne	5.59	(SO ₂)	41.1

^{*} Parentheses indicate that the value listed is based on only a few data points. Source: Recripted with permission from E. N. Fuller, P. D. Schettler.

3. Schmidt number of gases

The schmidt number of a gas mixture of dilute A in B is dimensionless and defined as

$$N_{\rm Sc} = \frac{\mu}{\rho D_{AB}}$$

where μ is viscosity of the gas mixture, which is viscosity of B for a dilute mixture in Pa·s or kg/m·s, D_{AB} is diffusivity in m²/s, and ρ is the density of the mixture in kg/m³. For a gas the Schmidt number can be assumed independent of temperature over moderate ranges and independent of pressure up to about 10 atm or 10 × 10⁵ Pa.

The Schmidt number is the dimensionless ratio of the molecular momentum diffusivity μ/ρ to the molecular mass diffusivity D_{AB} . Values of the Schmidt number for gases range from about 0.5 to 2. For liquids Schmidt numbers range from about 100 to over 10000 for viscous liquids.

Example 2: Estimation of diffusivity of a gas mixture

Normal butanol $C_4H_{10}O$ (A) is diffusing through air (B) at 1 atm abs. Using the Fuller et al. method, estimate the diffusivity D_{AB} for the following conditions:

- (a) For 0°C.
- (b) For 25.9°C.
- (c) For 0°C and 2.0 atm abs.

Solution

$$D_{AB} = \frac{1.00 \times 10^{-7} T^{1.75} \left(\frac{1}{M_A} + \frac{1}{M_B} \right)^{\frac{1}{4}}}{P \left[(\sum v_A)^{\frac{1}{4}} + (\sum v_B)^{\frac{1}{4}} \right]^2}$$

$$\sum v_A = 4(16.5) + 10(1.98) + 1(5.48) = 91.28 \text{ (butanol)} \quad C_4 H_{10} O$$

 $\sum v_B = 20.1 \text{ (air)}$

Atomic Diffusion Volumes for Use with the Fuller, Schettler, and Giddings Method*

Atomi	c and str	uctural diffusion vol	ume increments, a
C	16.5	(C1)	19.5
H	1.98	(S)	17.0
0	5.48	Aromatic ring	-20.2
(N)	5.69	Heterocyclic ring	-20.2
Diffus	ion volur	nes for simple mole	cules, $\sum v$
H ₂	7.07	CO	18.9
D_2	6.70	CO ₂	26.9
He	2.88	N ₂ O	35.9
N ₂	17.9	NH	14.9
O ₂	16.6	H ₂ O	12.7
Air	20.1	(CCl ₂ F ₂)	114.8
Ar	16.1	(SF _e)	69.7
Kr	22.8	(Cl ₂)	37.7
(Xe)	37.9	(Br ₂)	67.2
Ne	5.59	(SO ₂)	41.1

Solution

$$D_{AB} = \frac{1.00 \times 10^{-7} T^{1.75} \left(\frac{1}{M_A} + \frac{1}{M_B} \right)^{\frac{1}{2}}}{P[(\sum v_A)^{\frac{1}{2}} + (\sum v_B)^{\frac{1}{2}}]^2}$$

$$P = 1.00 \text{ atm}$$

$$T = 273 + 0 = M_A \text{ (butanol)}$$

$$M_B \text{ (air)} = 29$$

T = 273 + 0 = 273 K
M_A (butanol) = 74.1
M_B (air) = 29

$$\sum v_A = 4(16.5) + 10(1.98) + 1(5.48) = 91.28$$
 (butanol)
 $\sum v_B = 20.1$ (air)

$$D_{AB} = \frac{1.0 \times 10^{-7} (273)^{1.75} (1/74.1 + 1/29)^{1/2}}{1.0[(91.28)^{1/3} + (20.1)^{1/3}]^2}$$
$$= 7.73 \times 10^{-6} \,\mathrm{m^2/s}$$

Solution

$$D_{AB} = \frac{1.00 \times 10^{-7} T^{1.75} \left(\frac{1}{M_A} + \frac{1}{M_B} \right)^{\frac{1}{2}}}{P[(\sum v_A)^{\frac{1}{2}} + (\sum v_B)^{\frac{1}{2}}]^2}$$

- (b) T = 273 + 25.9 = 298.9 K Substituting into the correlation: D_{AB} = 9.05 x 10⁻⁶ m²/s.
- (c) Total pressure P = 2.0 atm

Using the value predicted in part (a) and correcting for pressure: $D_{AB} = 7.73 \times 10^{-6} (1.0/2.0) = 3.865 \times 10^{-6} \text{ m}^2/\text{s}$.