MASS DIFFUSION EQUATIONS




Introduction

* The derivation of the general diffusion equation will
include the spatial and time variable. On other
words, the derived equation will include the
accumulation term in order to account the
unsteady state problems.

* To simplify the derivation, assume one directional
differential element (control volume).

* In general, I-D S.S. (Fick’sFirst Law of Diffusion is
written as follows when C, is only a function of
z)equation is:

dC,

JA* = DAB dz




Introduction

* |-D unsteady State equation of Fick’s 1st law
becomes

aC Ca is a function of z
J ) = - D A - plus other variables
A AB az such as time t

* Note: Observe the use of ordinary and partial
derivatives as appropriate.



DERIVATION OF BASIC EQUATION

* The derivation of general mass transfer equation is
similar to that be done for the derivation of heat
transfer equation.

* We make mass balance on component A in terms
moles for no generation.

rate of input = rate of output + rate of accumulation



One-dimensional Unsteady-state Diffusion

Mass flow of species A into the
control volume:

- JA’ in X A X MA
, Where o
o
Jain= - Dag <
oz at z

Mass flow of species A out of the
control volume:

A: cross-sectional area
M. : ="'A,out"'l:\"'\/lA
Mo molecular weight of where
species A ao
A

JA, out = ~ DAB

oz atz+Az



One-dimensional Unsteady-state Diffusion

Accumulation of species A in the
control volume:

C
= —Ax(AxAZ) X MA
ot
zi- | 7+A\7 Mass balance for species A in the
| | control volume gives:
A: cross-sectional area —
'JA, in A MA - JA, out A MA

M,: molecular weight of
species A
oCa



One-dimensional Unsteady-state Diffusion

Mass balance can be simplified to:

- Dag a;;‘ﬂ‘ = - Das Cn + %Cn Az
Z

0z at z+Az ot

atz

The above can be rearranged to give

6Ca _ p,. [ (6CWO2),m - (8CH02),

ot IAV4



One-dimensional Unsteady-state Diffusion

In the limit as Az goes to O:

which is known as the Fick’s Second Law.

Fick's second law in the above form is applicable
strictly for constant D,g and for diffusion in solids, and
also in stagnant liquids and gases when the medium is

dilute in A.




One-dimensional

Fick’s second law, applies to one-dimensional unsteady-state
diffusion, is given below:

aC 32C
A _ Dpg A (2)
ot 0z2

Fick’s second law for one-dimensional diffusion in radial
direction only for cylindrical coordinates:

4C, Dy @ [ra_c,\]

ot r or (3)

- or

Fick’s second law for one-dimensional diffusion in radial
direction only for spherical coordinates:

3Cp Dg 0 [
gt rr o or

(4)



Three-dimensional

Fick’'s second law, applies to three-dimensional unsteady-state diffusion, is
given below:

3CA a DAB [ 32CA : ach ach] (53)
at =

ox2 T oy | oz

Fick's second law for three-dimensional diffusion in cylindrical coordinates:

oCa _ Dg [a [r a_CA] 3 [ac:,‘]+ 9 [r aCAH -

at r lar| ar |T o0|rae!|” az| &z

Fick's second law for three-dimensional diffusion in spherical coordinates:

3Cn Dps [a[rza_cAJ 1 a[sinea_q] 1 &C,

st 2 |or| or |Tsine o6 50 | ' sin%e o2




Note 2 Alterative approach
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Mass balance on a volume in space

Note that the principal terms will include accumulation, the
balance of the mass fluxes, and chemical reaction



The equation of continuity of A in various
coordinate systems

If we consider this in a differential element that we shrink to
an infinitesimal basis, we obtain (in rectangular coordinates)

BCA BNM BNAJ. 3N,43)
a:+(ax Ty T e )T Fa

Likewise, for cylindrical coordinates we obtain

18 1 3Nag N4,
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Note 3

* Note that similar equations would be written for
each of the molecular species present in the system.

* If you consider that N, = Fick’s Law = -D,, dc/dz, then
you will get the same equations as before, for

example (non reacting system )

dCp D 0°Cp 0°Cp  0°Cp
— AB + +
ot oX? ay? 0z°

-D g dc/dz con\lection
W

* Butif you consider Na=3.* +cuv,, ,in thiscase
yvou will get the following equation:



The equation of continuity of A for constant p and 2,,

rectangular coordinates
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Generalized Solution Procedure

Sketch the problem.
Write the suitable assumptions for the given problem.
Select a suitable coordination system.

Select the appropriate general mass diffusion equation “differential
form” .

Cancel the not needed terms in the differential equation according
to the assumptions in step 2.

|dentify the boundary conditions.
Write the flux equation with respect to species of interest.
Substitute the flux from step 5 in the differential equation of step 5.

Integrate using the boundary conditions to get the concentration
distribution.

10. Apply the Fick’s law to obtain the rate of diffusion.



