Unsteady-State Diffusion

Unsteady-State diffusion in Various Geometries

- Analytical method
- Chart method
- The techniques of solution are similar to transient or unsteady-state heat transfer by conduction.

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$
$$\frac{\partial c_A}{\partial t} = D_{AB} \frac{\partial^2 c_A}{\partial x^2}$$

• We are going to derive the solution for unsteadystate diffusion in the x direction for a plate of thickness $2x_1$

Conditions of the problem

- The initial profile of the concentration in the plate at t = 0 is uniform at $c = c_0$ for all x values, as shown in Fig. 1.
- At time t = 0, the concentration of the fluid in the environment outside is suddenly changed to c_1 .

 For a very high mass-transfer coefficient outside the surface, resistance will be negligible and the

concentration at the surface will be equal to that in the fluid, which is c_1 .

Fig. 1

Diffusion in a flat plate with negligible surface resistance "Analytical method"

One-dimensional Unsteady-state Diffusion

The initial and boundary conditions are

$$c = c_0,$$
 $t = 0,$ $x = x,$ $Y = \frac{c_1 - c_0}{c_1 - c_0} = 1$

$$c = c_1,$$
 $t = t,$ $x = 0,$ $Y = \frac{c_1 - c_1}{c_1 - c_0} = 0$

$$c = c_1,$$
 $t = t,$ $x = 2x_1,$ $Y = \frac{c_1 - c_1}{c_1 - c_0} = 0$

<u>Note</u>: The solution of Eq. (A) is an infinite Fourier series and is identical to the solution of the conduction 1-D heat transfer.

The solution to the previous equation is:

$$Y = \frac{c_1 - c}{c_1 - c_0} = \frac{4}{\pi} \left[\frac{1}{1} \exp\left(-\frac{1^2 \pi^2 X}{4}\right) \sin\frac{1\pi x}{2x_1} + \frac{1}{3} \exp\left(-\frac{3^2 \pi^2 X}{4}\right) \sin\frac{3\pi x}{2x_1} + \frac{1}{5} \exp\left(-\frac{5^2 \pi^2 X}{4}\right) \sin\frac{5\pi x}{2x_1} + \cdots \right]$$

where,

 $X = Dt/x_1^2$, dimensionless

c = concentration at point x and time t in slab

 $Y = (c_1 - c)/(c_1 - c_0)$, dimensionless

fraction of unaccomplished change, dimensionlesse,

$$1 - Y = (c - c_0)/(c_1 - c_0)$$
= fraction of change

 $c_0 \text{ at } t = 0$ $c_1 \qquad c_1$ $c_1 \qquad c_1 \qquad c_2$

The above solution is time consuming!

Charts for various geometries are available and usually used.

Unsteady-State Diffusion in Various Geometries- Chart Method

 Convection and boundary conditions at the surface.

In many cases when a fluid is outside the solid, convective mass transfer is occurring at the surface. A convective mass-transfer coefficient k_c , similar to a convective heat-transfer coefficient, is defined as follows:

 $N_A = k_c (c_{L1} - c_{Li})$

where k_c is a mass-transfer coefficient in m/s, c_{L1} is the bulk fluid concentration in kg mol A/m^3 , and c_{Li} is the concentration in the fluid just adjacent to the surface of the solid. The coefficient k_c is an empirical coefficient and will be discussed more fully in Next lectures.

Different Conditions of mass transfer coefficients.

Case a where a masstransfer coefficient is present at the boundary is shown. The concentration drop across the fluid is $c_{l1} - c_{lr}$. The concentration in the solid c_i at the surface is in equilibrium with c_{lr} .

<u>Note</u>: for case **a**, the concentration c_{ij} in the liquid adjacent to the solid and c_{ij} in the solid at the surface are in equilibrium and are equal.

Unlike heat transfer, where the temperatures are equal, the concentrations here are in equilibrium and are related by $K = \frac{c_{IJ}}{c_i}$ where K is the equilibrium distribution coefficient (similar to henry's Law coefficient for gas and liquid). K for case a = 1.

Note: If the mass transfer at the surface is not negligible, then the following conditions may present:

Interface conditions for mass transfer.

The concentration in the liquid is obtained from a relation similar to Henry's law for gases:

 $c_{Ii} = Kc_i$ This K is called the equilibrium distribution coefficient

Charts for Diffusion

Charts for diffusion in various geometries. The various heat-transfer charts for unsteady-state conduction can be used for unsteady-state diffusion and are as follows.

- 1. Semiinfinite solid, Fig. 5.3-3.
- 2. Flat plate, Figs. 5.3-5 and 5.3-6.
- 3. Long cylinder, Figs. 5.3-7 and 5.3-8.
- 4. Sphere, Figs. 5.3-9 and 5.3-10.
- 5. Average concentrations, zero convective resistance, Fig. 5.3-13.

See Geankoplis text Book for these charts

Unsteady-state heal conducted in a semiinfinite solid with Surface convection

One-dimensional Unsteady-state Diffusion _ Chart Method

• For a flat plate: Figure 5.3.5

Relation Between Mass- and Heat-Transfer Parameters for Unsteady-State Diffusion*

Table A

Figure 5.3-3.

	Mass Transfer	
Heat Transfer	$K = c_L/c = 1.0$	$K = c_t/c \neq 1.0$
$Y, \frac{T_1 - T}{T_1 - T_0}$	$\frac{c_1-c}{c_1-c_0}$	$\frac{c_1/K-c}{c_1/K-c_0}$
$1-Y, \frac{T-T_0}{T_1-T_0}$	$\frac{c-c_0}{c_1-c_0}$	$\frac{c-c_0}{c_1/K-c_0}$
$X, \frac{\alpha t}{x_1^2}$	$\frac{D_{AB}t}{x_1^2}$	$\frac{D_{AB}t}{x_1^2}$
$\frac{x}{2\sqrt{\alpha t}}$	$\frac{x}{2\sqrt{D_{AB}t}}$	$\frac{x}{2\sqrt{D_{AB}t}}$
$m, \frac{k}{hx_1}$	$\frac{D_{AB}}{k_c x_1}$	$\frac{D_{AB}}{Kk_c x_1}$
$\frac{h}{k}\sqrt{\alpha t}$	$\frac{k_c}{D_{AB}}\sqrt{D_{AB}t}$	$\frac{Kk_\epsilon}{D_{AB}}\sqrt{D_{AB}t}$
$n, \frac{x}{x_1}$	$\frac{x}{x_1}$	$\frac{x}{x_1}$

x is the distance from the center of the slab, cylinder, or sphere; for a semiinfinite slab, x is the distance from the surface.c₀ is the original uniform concentration in the solid, c₁ the concentration in the fluid outside the slab, and c the concentration in the solid at position x and time t.

For a flat plate

Chart for determining concentration at the center of a large flat plate for unsteady state diffusion

One-dimensional Unsteady-state Diffusion

For a long cylinder

Figure 5.3.7

For a long cylinder {Center point}

One-dimensional Unsteady-state Diffusion

• For a sphere

Figure 5.3.9

For a sphere {Center point}

Figure 5.3.10