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Dimensional analysis

Convection mass transfer

* Consider the mass transfer of solute A from a solid to a fluid
flowing past the surface of the solid. The concentration
profile is depicted in the Figure below. For such a case, the
mass transfer between the surface and the fluid may be

written as
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Since the mass transfer at the surface is by molecular diffusion, the mass transfer may

also be described by
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When the boundary concentration, Cy,s, is constant, this equation simplifies to
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Equations (1 )and( 2 ) may be equated, as they define the same flux of component A
leaving the surface and entering the fluid. This gives the relation

d
kc(cA,s - CA,::O) = —DAB_(CA - CA,:)
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which may be rearranged into the following form:
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Multiplying both sides of equation | 3 ) by a significant length, L, we obtain the
following dimensionless expression:
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Note

The right-hand side of equation (4) is the ratio of the

concentration gradient at the surface to an overall- or
reference-concentration gradient. Accordingly, it may be
considered a ratio of the molecular mass-transport
resistance to the convective mass transfer resistance of the

fluid.

This ratio is referred to as the Sherwood number, Sh



The relation between local and average
convection coefficients
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combining the two previous equations yield

1
ke =—— _[kc dA,
5 AS
since the width is constant, so the previous eq. can be written as

k. = %_{[ k. dx

Example

Determine the Schmidt number for methanol in air
at 298 K and 1.013 x 10° Pa and in liquid water at 298
K.

Data: At 298 K, the diffusivity of methanol in air

Dmclhuml uirP = 1.641 m2 Pa/s

1.641 m? Pa/s

————— = 1.62x 10 m%s
1.013 x 10°Pa

Dmethanol —air =

The kinematic viscosity of air is

» = 1.569 x 10> m>/s.



* The Schmidt number of methanol in air is
y 1569 x 1073 m?/s

Sc = iyl
“ T Dag_ 1.62x10-3mZls

(.968

* The Schmidt number of methanol in water

The diffusivity of methanol in water and the
kinematic viscosity of water are, respectively:

Dag = 1.738 1072 m?/s
p=0912 x 10 %m?/s
0912 x 10°° m:f'\'

Sc 525

Dag 1.738 x 1072 m%/s

Methods to determine mass-
transfer coefficients

In general, there are five methods of evaluating
convective mass-transfer coefficients. They are:

* Experimental;

dimensional analysis coupled with experiment;
exact laminar boundary-layer analysis;
approximate boundary-layer analysis;

analogy between momentum, energy, and mass
transfer




Experimental _ Example

In determining the mass-transfer coefficient to a sphere, Steele and Geankoplis
used a solid sphere of benzoic acid held rigidly by a rear supportina pipe.
Before the run the sphere was weighed. After flow of the fluid for a timed interval,
the sphere was removed, dried, and weighed again to give the amount of mass trans-
ferred, which was small compared to the weight of the sphere. From the mass transferred
and the area of the sphere, the flux N, was calculated. Then the driving force (c ;5 — 0)
was used to calculate k,, where c ;5 is the solubility and the water contained no benzoic

acid. Sphere of
/ benzoic acid
P
Flud—

(water) ——> ’I\

|

Support

DIMENSIONAL ANALYSIS OF
CONVECTIVE MASS TRANSFER

Variable Symbol Dimensions
Tube diameter D L
Fluid density p ML} Sh =f(Re,Sc)
Fluid viscosity M MILt '
Fluid velocity v 17
Fluid diffusivity Dy it
Mass-transfer coefficient k. Lt
Analogous to the heat-transfer correlation Nu = f(Re, Pr)

Note: The use of dimensional analysis is commonly used to predict the
different dimensional groups which are very useful in correlating experimental
mass transfer data.

See the Text for details “Geankoplis”



EXACT ANALYSIS OF THE LAMINAR
CONCENTRATION BOUNDARY LAYER

» Exactly, similar to what has been given in heat
transfer course. See Incropera for details.

* It is simply known “Blasius an exact solution for
the hydrodynamic, thermal and species
concentration boundary layer for laminar flow
parallel to a flat surface”.

» The boundary-layer equations considered in the
steady-state momentum transfer included the
two-dimensional, incompressible continuity
equation du v

* For the thermal boundary layer, the equation describing the
energy transfer in a steady, incompressible, two-
dimensional, isobaric flow with constant thermal diffusivity

(Energy)
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* For the species concentration boundary layer, the equation
describing the mass transfer in a steady, incompressible,
two-dimensional, isobaric flow with constant mass

diffusivity (species) (v, 9A . v, dc4 5 v,@“) =
, Tox Yoy Yoz
aC, dCy . 9°C, %c/  ca | ¥da
o v Dugy (G ge)



Summary
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Continuity: P =0
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with the boundary conditions
At x = 0O: u(0, y) = un, 70,y) =T, C(0,y)=Ca.
Aty = 0O: u(x, 0) = 0, vix, 0) =0, 7(x, 0) = T,
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With the foregoing simplification and approximations, the
overall continuity equation and the x-momentum equation
reduce to

And the species continuity equation becomes

s e

Boundary Layer Similarity Parameter

* Define the following dimensionless variables:

* * * Poo

s g Y =X,P 5
I L pV

* u % A%

g =— , V =—
V V

* T'T * C 'C s

=" =Lt —*%
Bl Era,

Where L is the characteristic length of the surface, and
V is the velocity upstream of the surface.

* Using the above definitions, the velocity and
temperature equations become as shown in the next
table. Neglect viscous dissipation term.




Similarity Parameters and the
dimensionless form of the B.L. Equations

TaBLE 6.1  The boundary laver equations and their y-direction boundary conditions in nondimensional form

- Boundary Conditions et
Layer Conservation Equation Wall Free Stream Parameter(s)
Velociy L . PO T e SR [P R
o At A Regy vatg)=0 Ty AR s
Thermal "%”‘%=ﬁ;—z 63  Pan=0 PErx)=l 6Y) R Pr=g (64
. 3(:; ‘“:A‘ | azq v
Concentration "‘FWF:WCF 63 GE0=0 CGtm=1 (640 Rey Se=p- (64)
* * Vi
o _ Ca—Cli i a2 € o | 0 Ci
A_C = 3 Qv ReLSc Qv“

A, “A.S

* The concentration eq. suggests the following
functional forms of solution

*

) = ey Rep, 8e,22) G

* Where the dependence on dp*/dx* originates from
the effect of the geometry on the fluid motion (u*
and v*),which, hence, affects the thermal conditions.

SR
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y*=0



". equation (i1) can be rearranged as

kL 4C,
D, oOdy*

this called Sherwood number

y*=0

. g kL _0C,
Dy dy*

dimensionless concetrati on gradient at surface
Sh — local Sherwood number

y*=0
Fora prescribed geometry equqtion (i) becomes
Sh=f (x*,Re;,Sc) (111)

Equation (iii) shows that Sh is a function of x*, Re , and Sc. If this
function is known, hence Sh can be computed for various fluids and
for various values of V and L. Consequently, the coefficient k, of
mass transfer can be found from the computed value of Sh.

Boundary Layer analogies
Heat and Mass transfer Analogy

* Definition:
‘If two or more processes are governed by
dimensionless equations of the same form, the
processes are said to be analogous’.

* The next table (6.3) shows the analogies between

Heat and Mass transfer via eq.® (6.47&6.51),
(6.4886.52), (6.49&6.53) and (6.5086.54)



Summary of the functional relations
and B.L. analogies

TABLE 6.3 Functional relations pertinent to the boundary layer analogies

Fluid Flow Heat Transfer Mass Transfer
wt=f (.r*. v, Re E) (6.44) T*= f(.r*. v¥, Re .Pr.@) (647) = f(.r*.\"‘ Re Sc.ﬁ) (6.51)
. L d\'* . L dl'* A J D d.l’*
) ot T kel dCy
e e \ = —= h— Y =—= 44— \ 2
f Re )" oo (6.45) Nu p + el (648) Sh D T bou (6.52)
R
C}=$ f(x*, Rey) (6.46) Nu = f(x*, Re,, Pr) (6.49) Sh= f(x*, Re,, Sc) (6.53)
L
N = f(Rey, Pr) 650)  Sh= f(Re, ¢) (6.54)
Conclusion

* |f one has performed a set of heat experiments to
find the functional form of equation 6.49, for
example, the results may be used for the
convective mass transfer involving the same
geometry. This could be obtained by replacing Nu
with Sh and Pr with Sc.

* In general, Nu and Sh are proportional to Pr" and
Sc", respectively.

Note:

Since the Pr and Sc dependence of Nu and Sh, respectively, is typically
of the form Pr" and Sc", where n is a positive exponent (0.30<n <

0.40),



* Use the following analogy equations:
Nu= f(x* Re ) Pr",  Sh= f(x* Re,) Sc"

in which case, with equivalent functions, f(x*,Re ),
Nu (x*,Re)— Sh

Pr” - Se”
Nu Sh Note
— For most
n n
Pr Sc engineering
applications,
LIk _ k. L/D g applicati
Prn Scn value of n=1/3
Or
ok 1 Le=pin
— . :p cp Le -n AB AB
kc DABLe SC = v
D
AB

Reynolds Analogy

* This analogy assumes the following:
dp*/dx*=0 and Pr = Sc =1.
and for a flat surface u,=V

* Hence, the velocity, the thermal and the concentration Equations and
boundary conditions become analogous and the functional form of the
solutions for u*, T*, and C*, egs. 6.44, 6.47, and 6.51 are equivalent.

TasLE 6.3 Functional relations pertinent to the boundary layer analogies

Fluid Flow

Heat Transfer

Mass Transfer

*

dp
u* = flx¥, y*, ReL'F (6.44)

2 ou*
= .45
Re, a".: P (6.45)
C==f(x* R 646
/-R—qf(-‘ , Kep) (6.46)

*

T‘=f(t‘ v¥, Re . Pr. dL) (6.47)
o 9 . Ll ‘d“-* 0

_WL_ T
Nu= P + =4 IR (648)
Nu = f(x*, Rey, Pr) (6.49)

Nu = f(Rey, Pr) (6.50)

*

dp
C: =f (.\". y*, Re,, Sc, d_r*) 6.51)

kel aCk A
==t l, 69
Sh = f(x*, Rey, Sc) (6.53)
Sh = f(Re. Sc) (6.54)




* From eqs. 6.45, 6.48 and 6.52 it follows that (see table

6.3)
Re,

/ 2

* Replacing Nu and Sh by the Stanton number, St, and

the mass transfer Stanton number, St_,

= Nu =

Sh

(6.66)

respectively,

h Nu
St = =
pVe, RePr
g koS
V. ReSc
¢, XL _ iRe=S1,Re {Note:Pr=Sc=1)
=St=S5t,,

* Eq. 6.66 may be expressed as

=R
2

_\..-..n -«o.m-

Pr=Sc=1

and dp*/ dx* =0

* The mOdIerd Reynolds or Chllton Colburn analogles

TITIEIT

<IIITIT

— Applicable to laminar flow if dp*/dx™ ~ 0.
— Generally applicable to turbulent flow without restriction

on dp”/dx”.




Chilton-Colburn, analogies _ Summary

= St PR3 = St 5S¢

2
St _ (&)”
Stuass ~ \Pr
Ppea _ Sc\*”? _ a | —
ke P (Pr =ro\p,,) =P’

For air-water vapor mixtures:
hbeat = Py k. (air-water vapor mixtures)

This relation is commonly used in air-
conditioning applications.

0.6 < Pr < 60 and 0.6 < Sc < 3000

Chilton-Colburn Analogy
General:

c P, a
(o]

Special case: v=a=Dyp

h 1
k. = et =chv ’I/S
e

Thisis k' use conversion table to g

—otherunits

When the friction or heat transfer coef-
ficient is known, the mass transfer
coefficient can be determined directly
from the Chilton-Colbum analogy.



