Convection Mass
Transfer

Exact Solution: Blausius or
Similarity solution

In Brief: Exact solution(Blausius or Similarity
solution)

The major convection parameters may be obtained by solving the appropriate form of
the boundary layer equations. Assuming steady, incompressible, laminar flow with
constant fluid properties and negligible viscous dissipation and recognizing that
dpldx =0, the boundary layer equations reduce to

Continuity:
o+ %’ -0 (7.4)
Momentum:
ug—z+v%=v% (7.5)
Energy:
oL+ g — ::: (7.6)
Species: C
ui—’i‘A+ v {—;}}EA: D,y ‘ifziA 7.7



Hydrodynamic Solution _ similarity solution

The hydrodynamic solution follows the method of Blasius;

Define a stream function y (x, y), such that e
4 o

HEW and v=—E

* Hence continuity eq. win ve suusjieu. e
* New dependent and independent variables fana n, resp@‘Envely, are
then defined such that
f(??)fL n=yVu,lvx
uVxhu, . . » )
* Use of these vainiauigs, reuucing the parual airrerential equation,

momentum eq., to an ordinary differential equation.

* The Blasius solution is termed a similarity solution, and n is a
similarity variable. This terminology is used because, despite growth of
the boundary layer with distance x from the leading edge, the velocity
profile u/u_ remains geometrically similar. This similarity is of the
functional form ;o

U _ (f’( l)
u, 4 8

where & is the boundary layer thickness. We will find from the Blasius solution that &
varies as (vx/u,.)"%; thus, it follows that

u _
= o)
Hence the velocity profile is uniquely determined by the similarity variable 7,
which depends on both x and .
* Conversion of momentum eq. into ordinary differential edq.

Yy Apan m df ,u iy df

Ty (™ g
Oor u df
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* For details, See the text Incropera.




Definition& transformation

Similarity variable, 1, is defined as

u,
=Y\
%8
Using this variable, transform the momentum equation into the following
nonlinear,3" order ordinary differential equation

d’ d’
2 ]: + f f =0
dn dn-
With appropriate B.Cs, the solution may be obtained by a series expansion
or numerical integration. Selected results are given in the following table or
graph.

B.C® wx,)=v(x,00=0 and wulx,®)=u,
in terms of the similarity vanables
df df

—_ =f(0)=0 and -— = ]
dnn=0 f() dnn-'*

Fapre 7.1 Flat plate laminar boundary
I )
layer funections [3]

_y [u f b _u 4
n=y \ X dn U dn
0 0 0 0.332
0.4 0.027 0.133 0.331
0.8 0.106 0.265 0.327
1.2 0.238 0.394 0.317
1.6 0.420 0.517 0.297
2.0 0.650 0.630 0.267
24 0.922 0.729 0.228
2.8 1.231 0.812 0.184
3.2 1.569 0.876 0.139
3.6 1.930 0.923 0.098
4.0 2.306 0.956 0.064
44 2.692 0976 0.039
48 3.085 0.988 0.022
5.2 3482 0.994 0.011
5.6 3.880 0.997 0.005
6.0 4.280 0.999 0.002
6.4 4.679 1.000 0.001

6.8 5.079 1.000 0.000
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Exact laminar boundary-layer analysis

* The similarity in the three differential equations, (6-
35), (6-36), and (6-37), and the boundary conditions
suggests that similar solutions should be obtained for
the three transfer phenomena.

* |n Chapter 7, the Blasius solution for equation (7-17)
was modified and successfully applied to explain
convective heat transfer when the ratio of the
momentum to thermal diffusivity v/a = Pr = 1.

* The same type of solution should also describe
convective mass transfer when the ratio of the
momentum to mass diffusivity v /D, = Sc = 1.



* The Blasius solution to the momentum boundary
layer

Ju —
T, = W d_v 0.332 (table)
u u, df
&y
7. = 0.332u..V puu./x ou_ fu, dYf
» N
Cpo=—2_ = 0,664 Rey ™2 Fu_ i dYf
pusi2 " apg
 Mass Transfer Solution v
d%c | Sc .dck e, TV MAT
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d‘r,z + 2f dn 0 B.C n=oo A
* The solutionis _
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Combining (1) and (11) gives

u,,

k. =D 5(—)"20.3325¢"7  "local coefficient"

VX



ke =Dy ~(—2)"20.3325¢"
X W

ko =Dy~ (P25 2033250
X

ke x

=0.332Re!/? Sc!'?

D i

Sh. =0.332Rel? Sc''?
Sh =0.664Re"'? Sc''?
Note k, =2k,

Also,similar toheat transfer, the ratio of boundary layer thicknesses is

~

— =83
()C

Sc>20.6
Sc>0.6 (iii)

! Sh!ocn/"

Equation (iii) has been experimentally verified and shown to give accurate results
for values of Re, < 3 x 10°.

Sherwood number relations in mass convection for specified concentration at the surface corresponding to the Nusselt

number relations in heat convection for specified surface temperature

Convective Heat Transfer

Convective Mass Transfer “Average”

1.

Forced Convection over a Flat Plate
(a) Laminar flow (Re < 5 x 10%)
Nu = 0.664 Re®*® Pr', Pr> 0.6

(b) Turbulent flow (5 X 105 < Re < 107)
Nu = 0.037 Red® Prl53, Pr > 0.6

Fully Developed Flow in Smooth Circular Pipes
(a) Laminar flow (Re < 2300)
Nu = 3.66

(b) Turbulent flow (Re > 10,000)
Nu = 0.023 Re%8 Pro4, 0.7 <Pr< 160

Natural Convection over Surfaces

(a) Vertical plate

Nu = 0.59(Gr Pr)V4, 10° < Gr Pr < 109
Nu = 0.1(Gr Pr)13, 10° < Gr Pr< 1013

(b) Upper surface of a horizontal plate
Surface is hot (T, > T,)

Nu = 0.54(Gr Pr)V4, 10 < GrPr< 107

Nu = 0.15(Gr Pr)1/3, 107 < GrPr< 101

(c) Lower surface of a horizontal plate
Surface is hot (T, > T,)
Nu = 0.27(Gr Pr)V4, 105 < Gr Pr< 101

Sh = 0.664 Re?5Sc!®, Sc>0.5

Sh = 0.037 Re?® Sc'?, Sc>0.5

Sh = 3.66

Sh = 0.023 Re®® Sc®4, 0.7 < Sc 160

Sh = 0.59(Gr Sc)'*4, 10® < Gr Sc < 10°
Sh = 0.1(Gr Sc)'?, 10° < Gr Sc < 102

Fluid near the surface is light (p, < p.)
Sh = 0.54(Gr Sc)'4,  10* < Gr Sc < 107
Sh = 0.15(Gr Sc)'?3, 107 < Gr Sc < 10!

Fluid near the surface is light (p, < p.)
Sh = 0.27(Gr Sc)#,  10% < Gr Sc < 101!



Example

A large volume of pure water at 26.1°C is flowing parallel to a flat plate of

solid benzoic acid, where L = 0.4 m in the direction of flow. The water
velocity 1s 0.061 m/s. The solubility of benzoic acid in water is 0.02948 kg
mol/m’. The diffusivity of benzoic acid is 1.245 x 10 m?/s. Calculate the

mass-transfer coefficient k, and the flux N ,.

Solution

* Since the solution is quite dilute, the physical properties of

water at 26.1 °C from Appendix A.2 can be used.
p=287x 10"* Pa-s

p = 996 kg/m?>
D, p= 1245 x 107° m?/s
8.71 x 10™#

~ 996(1.245 x 10~°)

Lvp 0.244{0.0610%996) Laminar
[ = 871 x 10_4 = 1.700 x 104 < 3x10°

* Find the k¢’ from a suitable formula, for example, for liquid
it is recommended to use

K (Noy#=d p = 0.99N S = 0.99(1.700 x 10%)~ %5 = 0.00758
D

NSc

= 702

NRe,L=



k. = 0.00758(0.0610X702) /> = 5.85 x 10~¢ m/s

In this case, diffusion is for A through nondiffusing B, so k. in Eq.
(7.2-10) should be used.
N,= 3 (€1 = Cad) = klegy = ¢0)
XM
Since the solution s very dilute, xg,, = 1.0 andk; = k ., Also,c,, = 2948 x
107* kg mol/m’ (solubility) and ¢,, = 0 (large volume of fresh water).

Substituting into Eq. (7.2-10),
N, = (585 x 10760.02948 - 0) = 1.726 x 10”7 kg mol/s- m



