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Existence of Gradients

When a concentration gradient exists for one component of a binary mixture in any 
direction, there must be a concentration difference for the other component of the 
mixture in the opposite direction. 
As a result of these concentration differences, both components of the mixture diffuse in 
the opposite directions. 
If the rates of these diffusions are not equal in molar units, then the mixture itself drifts 
in the direction of the component whose molar diffusional rate is greater. 
So, it is obvious that total molar flux of each component for a fixed observer will be 
different than the diffusional fluxes of the components. 



Stefan-Maxwell Formalism

Early experimental investigations of molecular diffusion were unable to 
verify Fick’s law of diffusion.

Attributed to mass is often transferred simultaneously by two possible means: 
as a result of the concentration differences as postulated by Fick, and
by convection induced by the density differences resulting from the concentration variation.

Stefan (1872) and Maxwell (1877), using the kinetic theory of gases, showed 
that the mass flux relative to a fixed coordinate evolves as a result of two 
contributions: the concentration gradient contribution and the bulk motion 
contribution;
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The Molar-Average Velocity and Relative Velocity

The molar-average velocity (bulk velocity relative to stationary coordinates) 
for a multicomponent mixture is defined in terms of the molar 
concentrations of all components by:

Where vi is the velocity of each type of molecule in the specified direction.
The velocity of a particular species relative to the molar-average velocity is 
termed diffusion velocity .
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The Molar Diffusive Flux

The molar diffusive flux of A in B (in a binary mixture) is given by:

The velocity of the diffusive flux of A in B (diffusion velocity of A) can be 
given by:
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Bulk Velocity and Total Molar Flux

The bulk velocity for a binary mixture is given by:

The total molar flux of components A and B relative to fixed coordinates is:

Hence, the bulk velocity is:
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Total Molar Flux of Species and Net Velocity

The total molar flux of species i (Ni) by convection (diffusion plus advection) 
with respect to a stationary point is defined as the rate of transfer by unit 
area:

Hence, the velocity of the net flux of A in B (relative to stationary 
coordinates) can be given by:
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General Flux Equation

Hence, for species A,

Multiplying by CA provides the general flux equation
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General Flux Equation

Substituting JA
* for the diffusive flux from Fick’s first law yields:

A special case arises when the mixture is dilute in A which results in 
neglecting the bulk flow term and the flux reduces to:
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General Flux Equation: Gases at Low Pressures

Making use of the definition of partial pressure and ideal gas equation of 
state provides a general flux equation suitable for gases at low pressures:

Hence the general flux equation becomes
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Net Diffusional Flux of All Species 

Sum the general flux equation to obtain

The net diffusional flux of all species is zero

Provides a relationship between various diffusion coefficients.
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Example: what will be the relation between diffusion coefficients DAB and DBA for a 
binary system along the x-dimension?

A B

( )

* 0

0

1

0

i
i ik

A B
AB BA

A B A B

A
AB BA

AB BA

dcJ D
dx

dy dyD c D c
dx dx

y y dy dy
dyD D c
dx

D D

= = −

− − =

+ = ⇒ = −

− + =

=

∑ ∑



Diffusional Flux in 3D

The extension from one dimension to 3D is straightforward using the ∇ (del) 
operator.
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