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Chapter 2 Mathematical Modeling of Chemical Processes 

 Basic concepts and definitions 

 Steady-state model vs. dynamic model 

 Degree of freedom analysis 

 Models of representative processes 
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Chapter 2 

Basic concepts and definitions: 

 Mathematical Modeling : mathematical representation of 

the essential aspects of an existing process (or a process to 

be constructed) in a usable form. 

  Process modeling is both an art and a science. Creativity 

is required to make safe assumptions that result in an 

appropriate model. Note that the mathematical model should 

be made as simple as possible, but no simpler. 

  The model equations are at best an approximation to the 

real process.  

 Adage: “All models are wrong, but some are useful.” 

Mathematical Modeling of Chemical Processes 
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  Modeling inherently involves a compromise between 

model accuracy and complexity on one hand, and the cost 

and effort required to develop the model, on the other 

hand. 

  Where to use mathematical modeling: 

• To improve understanding of the process 

• To train plant operating personnel 

• To design the control strategy for a new process 

• To select the controller setting 

• To design the control law 

• To optimize process operating conditions 

Chapter 2 Mathematical Modeling of Chemical Processes 

Chapter 2 Mathematical Modeling of Chemical Processes 

 Classification of Models: 

 – Theoretical models 

 –  Empirical (experimental) models 

 –  Semi-empirical models (combined approach) 
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Chapter 2 Mathematical Modeling of Chemical Processes 

 Theoretical Model: 

– Based on physical/chemical/biological relationships and 

conservation laws: 

Material/energy balances 

 Heat, mass, and momentum transfer 

 Thermodynamics, chemical kinetics 

 Physical property relationships 

–  Difficult to develop and it can become quite complex. 

–  Variables and parameters have physical meaning. 

–  Can be computationally expensive (not real-time). 

Chapter 2 Mathematical Modeling of Chemical Processes 

 Theoretical Model: 

 – Extrapolation is usually valid thus it can be used for 

rigorous prediction of the process behavior. 

  – Does not require experimental data to obtain (data 

required for validation and fitting) 
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• Conservation Laws 

Conservation of Mass 

rate of mass rate of mass rate of mass
(2-6)

accumulation in out
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Conservation of Component i 

rate of component i rate of component i

accumulation in

rate of component i rate of component i
(2-7)

out produced
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Chapter 2 Mathematical Modeling of Chemical Processes 

Conservation of Energy: 

The general law of energy conservation is also called the 

First Law of Thermodynamics. It can be expressed as: 

     
      

     

 
 

  
 
 

rate of energy rate of energy in rate of energy out

accumulation by convection by convection

net rate of heat addition net rate of work

to the system from performed on the sys

the surroundings

 
 
 
 
 

tem (2-8)

by the surroundings

The total energy of a thermodynamic system  is the sum of 

its internal energy, kinetic energy, and potential energy. 

Chapter 2 Mathematical Modeling of Chemical Processes 
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Chapter 2 Mathematical Modeling of Chemical Processes 

 Empirical Model: 

–   Based on curve fitting and analysis of experimental data. 

–   Requires well-designed experiments. 

–   Easy to develop and usually quite simple. 

– The behavior is usually correct only around the experimental 

  conditions considered (dangerous to extrapolate). 

–   Parameters of the model may not have physical meaning. 

–   Used for control design and simplified prediction model.  

Chapter 2 Mathematical Modeling of Chemical Processes 

• Steady-state model: 

– Steady state: No further changes in all variables with time. 

– Can be obtained by setting the time derivative term zero. 

– Steady-state model of chemical processes consist of: 

 –  Algebraic equations (AE)  if all variables do NOT change in 

space.  

 –  DE and AE if some variables do change in space.  

 Dynamic Versus Steady-State Models 

• Dynamic (unsteady) model: 

 –  Describes time behavior of a process. 

 – Dynamic models of chemical processes consist of ordinary 

differential equations (ODE) and/or partial differential 

equations (PDE), plus related algebraic equations. 

In this course, we will NOT going to consider spatial variations. 
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Chapter 2 Mathematical Modeling of Chemical Processes Chapter 2 Mathematical Modeling of Chemical Processes 

 Linear versus Nonlinear Models: based on the 

linearity of the dependent variable. 

• Linear model: No nonlinear terms of dependent variable. 

   Examples: 

     -First-order linear ODE: 

 

    

  and K are constants 

 - nth-order linear ODE:  

Chapter 2 Mathematical Modeling of Chemical Processes Chapter 2 Mathematical Modeling of Chemical Processes 

• Nonlinear Linear model: there are nonlinear terms of 

dependent variables. 

  Examples:  
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Systematic Approach for Developing 

Dynamic Models: 

1. State the modeling objectives. 

2. Draw a schematic diagram of the process and label all 

process variables.  

3. Make safe assumptions (The model should be no more 

complicated than necessary to meet the modeling 

objectives). 

4. Determine whether spatial variations of process 

variables are important.  If so, a partial differential 

equation model will be required.  

Chapter 2 Mathematical Modeling of Chemical Processes 

5. Write appropriate conservation equations (mass, 

component, energy, ….etc). 

6. Introduce equilibrium relations and other algebraic 

equations (from thermodynamics, transport phenomena, 

chemical kinetics, equipment geometry, ..etc). 

7. Perform a degrees of freedom analysis to ensure that the 

model equations can be solved. 

8. Simplify the model.  It is often possible to arrange the 

equations so that the dependent variables (outputs) 

appear on the left side and the independent variables 

(inputs) appear on the right side.  This model form is 

convenient for computer simulation and subsequent 

analysis. 

9. Classify inputs as disturbance variables or as manipulated 

variables. 

Chapter 2 Mathematical Modeling of Chemical Processes 
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Chapter 2 Mathematical Modeling of Chemical Processes 

 Degree of Freedom (NF) Analysis: 
   
 
        NF = NV - NE 

NF : Degree of freedom (# of input variable to be specified). 
NV : Number of variables 
NE : Number of independent equations ( # of output variables 

to be found/controlled) 

 
–  If NF = 0 : system is exactly specified. Unique solution exists. 
 
– If NF > 0 : system is underspecified. Infinity number of   
solutions exist. 
 
–  If NF < 0 : system is overspecified. No solutions exist. 

Chapter 2 Mathematical Modeling of Chemical Processes 

A Systematic Approach for NF Analysis: 
1. List the model parameters: quantities in the model that are 

known constants (or parameters that can be specified) on 

the basis of equipment dimensions, known physical 

properties, etc. 

2. Determine the number of equations NE and the number of 

process variables, NV.  Note that time t is not considered 

to be a process variable because it is neither a process 

input nor a process output. 

3. Calculate the number of degrees of freedom, NF = NV - NE. 

4. Identify the NE output variables that will be obtained by 

solving the process model.  

5. Identify the NF input variables that must be specified as 

either disturbance variables or manipulated variables, in 

order to utilize the NF degrees of freedom.  
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Chapter 2 Mathematical Modeling of Chemical Processes 

Solution of Model: 

•   ODE model 

 – Linear case: find the analytical solution via Laplace 

transform, or other methods of calculus. 

 – Nonlinear case: analytical solution is difficult or 

usually does not exists. 

 • Use a numerical integration, such as Runge-Kutta                        

 (RK) method, by defining initial condition, time   

 behavior of input/disturbance. 

 • Linearize around some condition (usually steady 

  state) and then find the analytical solution. 

Chapter 2 Mathematical Modeling of Chemical Processes 

Solution of Model: 

Linearization of non-linear term is performed using Taylor 

Series expansion around equilibrium (steady state):  

)x-(x
dx

df
)xf( f(x)

xx



Where overbar denotes the steady-state. 

• If   PDE model: Convert to ODE by discretization of 

spatial variables using finite difference approximation and 

etc. Example: 
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Chapter 2 Mathematical Modeling of Chemical Processes 

Example 1:  Liquid storage tank 

h cylindrical tank 

D=1  m 

qi 

q 

d =5 cm 

(a) Find the steady-state outlet 

volumetric flow rate(  )and 

liquid height (   )  
q

h

Chapter 2 Mathematical Modeling of Chemical Processes 

Assumptions:  

 Adiabatic and isothermal process. 

 Incompressible fluid (Liquid). 

 Friction in the outlet pipe segments is negligible (short 

segment). 

  Steady-state Mechanical Energy Balance (MEB) is 

applicable for this unsteady flow. 

  The valve loss coefficient , Cv, does not vary with flow rate. 

Example 1:  Liquid storage tank 



Process Dynamics and Control Course 

Dr. Mohammad Al-Shannag 11/41 

Chapter 2 Mathematical Modeling of Chemical Processes 

q
D

q
Ddt

dh

qq
dt

h
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d
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
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 

Let us first model the dynamic behavior of this process 

rate of accumulation rate of rate of
(2-1)

of mass in the tank mass in mass out

     
      

     

 Apply Mass Balance (MB) : 

(1) 

Example 1:  Liquid storage tank 

Chapter 2 Mathematical Modeling of Chemical Processes 
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 Apply Mechanical Energy Balance (MEB) between a point at 

liquid free surface( point 1) and at the outlet section (point 2): 

 Energy losses (w losses ) are due to: 

 Valve; its loss coefficient is Cv  

 Sudden contraction; its loss coefficient is Cc  

2
)(

2

2u
CCw vclosses 

Example 1:  Liquid storage tank 
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Chapter 2 Mathematical Modeling of Chemical Processes 

h
CC

g

CC

gh
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
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1

2

1

2
2MEB becomes: 

But:  h
CC

gd
u

d
uAq

vc 

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2
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h
CC

gd
q

q
D

q
Ddt

dh

vc

i





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44
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 The process has the following 1st-order nonlinear 

dynamic model: 



(1) 

(2) 

Example 1:  Liquid storage tank 

Chapter 2 Mathematical Modeling of Chemical Processes 

 Now, Degree of Freedom Analysis: 

NF = NV - NE 

NV  = 3  (qi, q, h) 

NE = 2 (MB, MEB) 

NF = 3-2 = 1→ one input variable should be specified. 

The output variables: q and  h 

Input variables: qi 

 Parameters: D, d, and , Cv , Cc 

Example 1:  Liquid storage tank 
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Chapter 2 Mathematical Modeling of Chemical Processes 

Input variables and parameters must be specified:  

Let: qi  = 6 L/s, Cv = 0.9  , and Cc = 0.5  

 d = 0.05 and D=1 m  (given parameters) 

 To find the steady-state values of h and q, set the time 

derivative equals to zero: 

m148.1

/sm006.00056.0
1

2

4

/sm006.0L/s6
44

0

3
2

3

22










h

hh
CC

gd
q

qqq
D

q
Ddt

dh

vc

ii





Example 1:  Liquid storage tank 

Chapter 2 Mathematical Modeling of Chemical Processes 

(b) Suppose that inlet volumetric flow rate, qi, changes 

suddenly from 6 to 9 L/s and remains at this new value (step 

change in qi), how the liquid height varies with time. How 

long does it take to reach the new steady state value? 

 Now the dynamic model should be solved 

h
CC

gd

D
q

Ddt

dh

h
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q

q
D

q
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qi =0.009 m3/s and 

Example 1:  Liquid storage tank 
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Chapter 2 Mathematical Modeling of Chemical Processes 

m1.148:)statesteadyold(0at

0.007130.01146





oldhht

h
dt

dh

Remarks:  

 

Note that t = 0 does NOT mean startup from rest, it 

mean the old steady-state situation. 

 

 The above 1st–order nonlinear ODE can be solved 

analytically be separation of variables. 

Example 1:  Liquid storage tank 

Chapter 2 Mathematical Modeling of Chemical Processes 

tdt
h

dh
th





0148.1 0.007130.01146

th280.505-300.52972+)h1.866-.9992450.85ln(2-

Integrate by substitution method to have: 

m2.5830.0090056.0:MEB

L/s9:MB





new

i

hhq

qq

At qi= 9 L/s the new steady-state value of h is:  

Analytical solution:  

To know how long does it take  to reach this news 

steady state height: 

hr136502.583280.505-300.52972      

+)2.5831.866-2.9992-450.85ln(t





s
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Chapter 2 Mathematical Modeling of Chemical Processes 

time, s

0 2000 4000 6000

h
; 
m

1.25

1.50

1.75

2.00

2.25

2.50

2.75
m2.583 newhh

Plot  h versus t to see the dynamic response:  

m1.148:0  hhtat

Remark. Without introducing controller and when qi changes 

from 6 to 9 L/s the steady state height will change from 1.148 

to 2.583 m during a period of around one hour.  

Chapter 2 Mathematical Modeling of Chemical Processes 

 Approximate solution (linearization of the model) : 

m1.14800.007130.01146  hhtath
dt

dh

Let us linearize the nonlinear term ;       : h

h

hhh
h

h

hh
dh

df
hfhf

hh

h

0.4666580.535724

)1.148(
1.1482

1
1.148)(

2

1

)()()(







hhf )(Let: 

Taylor series expansion around: m1.148 hh

Example 1:  Liquid storage tank 
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Chapter 2 Mathematical Modeling of Chemical Processes 

Then, the linearized 1st-order ODE  is: 

tth 00333.01.1462e2.294)( 

tdt
h

dh

h

h
dt

dh

th











0148.1

00333.000764.0

00333.000764.0

)0.4666585357240.00713(0.0.01146

Solve ( by substitution) to obtain: 

The new steady-state value of h can be found by 

setting(t=∞):  2.294h

Example 1:  Liquid storage tank 

Chapter 2 Mathematical Modeling of Chemical Processes 

“Comparison between exact solution and approximate 

solution resulted from linearized model” Remarks. 

 The linearized model gives the same results as the 

nonlinear one for time t  400 s (6.67 min). 

 The percent relative error in the new-steady state value 

resulted from linearized model is:  

  
11%2.5832.583-2.294100 

time, s

0 2000 4000 6000

h
; 
m

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Exact solution

Approximate solution
(Linearized model)

Example 1:  Liquid storage tank 
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Chapter 2 Mathematical Modeling of Chemical Processes 

Example. Suppose that you would like to introduce a level 

controller to control the liquid height, h, by manipulating the 

outlet flow rate, q.  What is the dynamic model required for 

such control task?. 

NF = 0 = NV – NE = 1 – NE NE = 1  

The degree of freedom must be zero: 

Since q is manipulated variable, it must be now 

classified as input variable. 

 Now, the input variables: qi , q 

The output variables: h 

q
D

q
Ddt

dh
i 22

44






This means that dynamic model of this process with 

level controller must have only one dynamic equation 

which is the unsteady MB: 

An unsteady-state MB for the blending system: 

rate of accumulation rate of rate of
(2-1)

of mass in the tank mass in mass out

     
      

     

Chapter 2 Mathematical Modeling of Chemical Processes 

Assumptions: 

 Perfect mixing: The composition in the 

tank is uniform and it is the same as the 

outlet composition. 

 The liquid density , , is constant everywhere.  

Example 2:  Blending Process; see Topic I 
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 Apply unsteady-state component  MB: 

 
1 1 2 2

ρ
(2-3)

d V x
w x w x wx

dt
  

The corresponding steady-state model was derived (topic I): 

1 2

1 1 2 2

0 (2-4)

0 (2-5)

w w w

w x w x wx

  

  

 Apply unsteady-state overall MB: 

 

 

 

where w1, w2, and w are mass flow rates and V is liquid 

volume in the tank. 

 
1 2

ρ
(2-2)

d V
w w w

dt
  

Chapter 2 Mathematical Modeling of Chemical Processes 

Example 2:  Blending Process; see Topic I 

For constant  density (    ), unsteady equations become: 

1 2 (2-12)
dV

w w w
dt

   

 
1 1 2 2 (2-13)

d Vx
w x w x wx

dt


  

Chapter 2 Mathematical Modeling of Chemical Processes 

The above second equation can be simplified by expanding 

the accumulation term using the “chain rule” for 

differentiation of a product: 

 
(2-14)

d Vx dx dV
V x

dt dt dt
   

1 1 2 2 (2-15)
dx dV

V x w x w x wx
dt dt

    

Thus, component MB becomes: 
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Substitution of the overall mass balance for        in 

component mass balance gives: 
/dV dt

 1 2 1 1 2 2 (2-16)
dx

V x w w w w x w x wx
dt

      

After canceling common terms and rearranging the mass 

balance equations, a more convenient dynamic model form 

is obtained as follows: 

 

   

1 2

1 2
1 2

1
(2-17)

(2-18)

dV
w w w

dt

w wdx
x x x x

dt V V



 

  

   

Chapter 2 Mathematical Modeling of Chemical Processes 

(Overall MB) 

(Component MB) 

 Note that this model is classified as: 1st-order 

nonlinear dynamic model 

Chapter 2 Mathematical Modeling of Chemical Processes 

Degree of Freedom Analysis:  NF = NV - NE 

NV  = 7  (w1, w2, w, V, x1  , x2, , x ) 

NE = 2  

NF = 7-2 = 5 → 5 input variables should be specified. 

 

Input variables : w1, w2, V, , x1  , x2  

The output variables:  w and  x 

Parameters:  

)()( 2
2

1
1

21

xx
V

w
xx

V

w

dt

dx

dt

dV
www









Based on this classification the dynamic model is 

rewritten as: 
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Chapter 2 Mathematical Modeling of Chemical Processes 

Example. A stirred-tank blending process with constant liquid 

holdup of 2 m3 is used to blend two streams whose densities 

are both approximately 900 kg/m3. The density does not 

change during the mixing. 

(a) Assume that the process has been operating for a long 

period of time with flow rates of w1=500 kg/min and w2=200 

kg/min, and the feed composition(mass fraction) of x1 = 0.4 

and x2 = 0.75. What is the steady state value of x  and w? 

kg/min700500200

02121





w

www
dt

dV
www 

Constant liquid holdup means:  0
dt

dV
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Chapter 2 Mathematical Modeling of Chemical Processes 

5.0
200500

)75.0)(200()4.0)(500(

)()(0

2211

21

2211

2
2

1
1

















w

xwxw

ww

xwxw
x

xx
V

w
xx

V

w

dt

dx



To find the steady-state outlet composition, x, set the 

time derivative equals to zero: 

Solve for      to have: x
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Chapter 2 Mathematical Modeling of Chemical Processes 

(b) Suppose w1 changes suddenly from 500 to 400 kg/min 

and remains at this new value, how is the response of the 

composition x(t), plot it ? 

Cx
dt

dx


The component MB equation can be rearranged as: 

Overall MB: 

Component  MB: 

)()( 2
2

1
1 xx

V

w
xx

V

w

dt

dx




min3
900/600

2

/





w

V

517.0)( 2211  wxwxwC

 where 

(  is space time or mean residence time) 

 and 

kg/min600400200

02121





w

www
dt

dV
www 

Chapter 2 Mathematical Modeling of Chemical Processes 

Analytical solution:  

5.0:0  oldxxtatCx
dt

dx
  “Old steady state” 

 


tx dt

xC

dx

05.0 
 Integrate to have:  /)5.0()( teCCtx 

 But  517.0andmin3  C

3/017.0517.0)( tetx 

The new steady-state value of x can be found by: 

 using steady-state model 

 

 

 

 or setting (t=∞) in x(t) equation :  0.517newx

517.0
200400

)75.0)(200()4.0)(400(

21

2211 










ww

xwxw
xnew



Process Dynamics and Control Course 

Dr. Mohammad Al-Shannag 22/41 

Chapter 2 Mathematical Modeling of Chemical Processes 

(c) Repeat part (b) for the case where w2 (instead of w1) 

changes suddenly from 200 to 100 kg/min and remains at this 

new value, how is the response of the composition x(t), plot 

it? 

5.0:0  xxtatCx
dt

dx
  “Old steady state” 

min3
900/600

2

/





w

V

458.0600)75.01004.0500(

)( 2211



 wxwxwC

 Where (Space time) 

 and 

kg/min60050010021  www

Analytical solution:  

3/

3/

042.458.0

)5.0()(

t

t

e

eCCtx









0.458newx

Chapter 2 Mathematical Modeling of Chemical Processes 

(d) Repeat part (c) for the case where x1 changes suddenly 

from 0.4 to 0.6 and remains at this new value, how is the 

response of the composition x(t), plot it ? 

5.0:0  oldxxtatCx
dt

dx
  “Old steady state” 

min3
900/600

2

/





w

V

625.0600)75.01006.0500( C

 Where (Space time) 

 and 

kg/min60050010021  www

Analytical solution:  

3/

3/

125.625.0

)5.0()(

t

t

e

eCCtx









0.625newx
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Plot  x versus t for different cases to see the 

dynamic response:  

time, min

0 5 10 15 20 25

x

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Step change in w
1

Step change in w
2

step change in w
2
 and x

1

Chapter 2 Mathematical Modeling of Chemical Processes 

(e) For part (b) to (d), plot the normalized response xN(t) 

defined as: 

)0()(

)0()(
)(

xx

xtx
tX N






 part (b): 3/
3/

1
5.0517.0

5.0017.0517.0
)( t

t

N e
e

tX 








 part (c): 3/
3/

1
5.0458.0

5.0042.0458.0
)( t

t

N e
e

tX 








 part (d): 3/
3/

1
5.0625.0

5.0125.0625.0
)( t

t

N e
e

tX 







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Plot xN(t) versus t for different cases to see the 

dynamic response:  

time, min

0 5 10 15 20 25

x

0.00

0.25

0.50

0.75

1.00

Normalized composition

Chapter 2 Mathematical Modeling of Chemical Processes 

Example. Suppose that you would like to introduce a level 

controller to control the liquid volume, V, by manipulating the 

outlet flow rate, w and composition controller to control x by 

manipulating w2. How the dynamic model will be for such 

control tasks?. 

Since w and w2 are manipulated variables they must be 

classified now as input variables. In addition, since x and V 

are controlled variables they must be classified as output 

variables. Moreover,  the process dynamic model has two 

equations( NE =2) thus we must have only two output 

variables to have zero degree of freedom. 
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The input variables: :  x1 , x2 , w1, w2, w 

Classification of 5 input variables:  

 Disturbances variables :  x1  , x2 , w1 

 Manipulated variables: w and w2 

The output variables: V and  x 

 Now the process dynamic model with controllers must 

be rewritten as: 

)()( 2
2

1
1

21

xx
V

w
xx

V

w

dt

dx

www
dt

dV







Chapter 2 Mathematical Modeling of Chemical Processes 
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A continuous stirred-tank reactor( CSTR) is used to produce a 

compound R in the liquid-phase elementary reaction A→ R. 

Feed enters the reactor at rate of qi (L/s): the concentration of 

reactant in the feed is CA0 (mol A/L). The volume of the tanks 

content is V (L). The vessel may be considered perfectly 

mixed, so that the concentration of A in the product stream 

equals that in the tank. For this process the rate of 

consumption of A is -rA (mol A /s. L). All fluids (the feed, the 

tank content , and the product) may be taken to have the 

same density)  (g/L). The reaction takes place under 

isothermal conditions. 

 

(a) Write the mathematical model to describe the variation of 

reactant concentration with time. 

Example 3 :  CSTR 

Chapter 2 Mathematical Modeling of Chemical Processes 

Feed 

)mol/L(

)g/L(

)L/s(

0A

i

C

q



)mol/L(

)g/L(

)L/s(

AC

q



Product stream stream 

AC

V

;

)L(



Mixer 
 Total mass balance: 

qq
dt

dV

qq
dt

Vd

mm
dt

dm

i

i

outin












(1) 

 Component A mole balance:  

Accumulation =  

        In – Out + Generation - Consumption 

0

,

0,







Generation

qCNOut

qCNIn

AoutA

iAinA




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 

 

)(

)(

0

0

AA
i

A
iA

AAiA
A

iA

A

A
iA

A
A

AA

rC
V

q
C

V

q

dt

dC

VrqCqC
dt

dC
VqqC

VrnConsumptio

dt

dC
VqqC

dt

dC
V

dt

dV
C

dt

VdC

dt

dN
onAccumulati









Elementary reaction Reaction rate Eq. :  AA kCr  )(

  0

0

1 AA
A

AA
i

A
iA

CCk
dt

dC

kCC
V

q
C

V

q

dt

dC





 (2) Or 
iqV

Example 3 :  CSTR 

Chapter 2 Mathematical Modeling of Chemical Processes 

(b) Do Degree of Freedom Analysis: 

NV  = 5  (CA0, CA,V, qi, q ) 

NE = 2  

NF = 5-2 = 3 → 3 input variables should be specified. 

Input variables: qi , CA0, V 

Output variables: CA and q 

 

 The dynamic model is: 

Parameters: , k 

  01 AA
A CCk

dt

dC
 

dt

dV
qq i 
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(c) Find the steady-state concentration and conversion if 

the reaction rate constant is k=0.01 s-1, the liquid volume 

is 250 L, the reactant feed concentration is 0.6 mol/L, and 

the feed flow rate is 0.4 L/s?. 

 
 

  L

mol
083.0

62501.01

6.0

s625
4.0

250

1
10 0

0











A

i

A
AAA

A

C

q

V

k

C
CCCk

dt

dC






The corresponding steady-state conversion is: 

86.0
6.0

083.06.0

0

0 






A

AA
A

C

CC
X

Chapter 2 Mathematical Modeling of Chemical Processes 

(d) Suppose the feed flow rate changes suddenly from 

0.4 to 0.8 L/s and remains at this new value, plot the 

response of concentration CA(t). 

   

   

  

 

 
 

 

  
 

 





















keCkCCC

tk

CkC

CkC

t

k

CkC

dt

CkC

dCdt

CkC

dC

CkC
dt

dC
CCk

dt

dC

tk

oldAAAA

oldAA

AA

C

CAA

tC

oldC AA

A

AA

A

AA
A

AA
A

A

oldA

A

A























































11

1

1

1
ln

1

1ln

11

11

1

,00

,0

0

0

0, 00

00

,
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  
 

 

t

A

AoldA

tk

oldAAA

A

etC

CkC

k

eCkCC
tC

0132.0

0,

1

,00

062.0145.0)(

6.0;01.0;s5.312
8.0

250
;Lmol083.0

1

1
)(



















 



76.0
6.0

145.06.0

0

,0

,








A

newAA

newA
C

CC
X

    L

mol
145.0

5.31201.01

6.0

1

0
, 







k

C
CC A

AnewA

And the new steady-state conversion is: 

L

mol
145.0062.0145.0)( )(0132.0

,
 etCC AnewA

The new steady-state concentration (t): 

It can be found from the st. st. Eq.:  

Chapter 2 Mathematical Modeling of Chemical Processes 

Time; s

C
A
;

m
o
l/

L

0 250 500 750 1000
0.075

0.1

0.125

0.15 New st. st. concentration:  

Old st. st. concentration:  

L

mol
145.0

,


newAC

L

mol
083.0

,


oldAC

Time to reach new st. st. 

concentration(settling time)  392 s 

Example 3 :  CSTR 
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(e) Suppose that you would like to introduce a level controller 

to control the liquid volume, V, by manipulating the outlet flow 

rate, q, and concentration controller to control CA by 

manipulating qi. How the dynamic model will be for such 

control tasks?. 

Input variables: qi , CA0, q 

Output variables: CA and V 

 

 The dynamic model of the controlled process is: 

 


 01 A
A

A C
C

k

dt

dC





qq
dt

dV
i 

Where                 is the mean residence time. 
iqV

Chapter 2 Mathematical Modeling of Chemical Processes 

Exercise.  

 

-  Suppose feed concentration changes suddenly from 0.6 to 

0.2 mol/L and remains at this new value and all other 

values are kept as in part (c). plot the response of 

concentration CA(t). 

  

- Repeat the previous example if the reaction is non-  

elementary(2nd-order reaction): -rA=kCA
2  with k=0.1 

L/(mol.s). Solve the original model, compare its results with 

the linearized one. 
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Example 4. 

 Stirred-tank heating process with constant holdup, V: 

 Heating rate added to 

the liquid by electric 

heater 

:Q

Rate of work done by 

mixer on the liquid 

V 

T, q 
 d 

Ti, qi 
 d 

Mixer;  

Electric heater ;  

shaftW

Q

:shaftW

Assumptions: 

1. Perfect mixing; thus, the exit temperature T is also the 

temperature of the tank contents. 

2. The liquid holdup, V, is constant because the inlet and 

outlet flow rates are equal. 

3. The density, , and heat capacities of the liquid are 

assumed to be constant. Thus, their temperature 

dependence is neglected. 

4. Heat losses are negligible. 

5. The net rate of shaft (mixer) work can be neglected 

because it is small compared to the rates of heat transfer 

and convection→ 

Chapter 2 Mathematical Modeling of Chemical Processes 

0shaftW

(a) Write the dynamic model to describe the temperature 

response, T(t): 
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 Total mass balance: 

i

i

outin

qq

dt

dV

qq
dt

Vd

mm
dt

dm









0

)(






Constant liquid holdup( V is constant)  

 Here, MEB is NOT applicable since this process is neither 

adiabatic nor isothermal. Energy balance must be applied 

instead: 

)
2

ˆ(

)Assumption(0;

2

gz
u

UmE

WWQEE
dt

dE
shaftshaftoutin



 

(1)  

Chapter 2 Mathematical Modeling of Chemical Processes 

outoutoutoutout

ininininin

gz
u

Hmgz
u

VpUmE

gz
u

Hmgz
u

VpUmE

)
2

ˆ()
2

ˆˆ(

)
2

ˆ()
2

ˆˆ(

22

22









:

:

:ˆ

z

u

U Specific internal energy of liquid in the system (tank) 

Velocity of the system (liquid in tank) 

Vertical position of the system 

 For flowing streams, another form of energy must be 

added which is the pressure energy: 

:

:ˆ

p

V Specific volume of the liquid 

Pressure 
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 
Qgz

u
Hmgz

u
Hm

dt

gzuUmd
outoutinin

 


)
2

ˆ()
2

ˆ(
)2ˆ( 222

Constant liquid holdup ( V is constant) and constant density: 

 
Qgz

u
Hqgz

u
Hq

dt

gzuUVd
outin




)
2

ˆ()
2

ˆ(
)2ˆ( 222




 
q

Q
gz

u
Hgz

u
H

dt

gzuUd
outin








)

2
ˆ()

2
ˆ(

)2ˆ( 222

q

V
Where  is the space time:  
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q

Q
zzg

uu
HH

dt

Ud
outin

outin
outin








 )(

2
)ˆˆ(

ˆ 22

 
dt

dz
g

dt

du

dt

Ud

dt

gzuUd


 2/ˆ2ˆ 22

0
22


dt

dz

dt

udSince the tank is not moving: 

 
dt

Ud

dt

gzuUd ˆ2ˆ 2






inout uu 

But the cross-section area of the inlet pipe is the same as 

that of the outlet one: 

q

Q
zzgHH

dt

Ud
outinoutin





 )()ˆˆ(

ˆ
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q

Q
HH

dt

Ud
outin





 )ˆˆ(

ˆ

inout zz 

Assume that the vertical distance between inlet ad outlet 

streams is negligible: 

Finally,  the unsteady energy balance becomes: 

We know from thermodynamics: 

dTCUdC
dT

Ud
vv  ˆ

ˆ

 
T

T
p

H

H
p

refref

dTCHdC
dT

Hd ˆ

ˆ
ˆ

ˆ

:vC Constant volume heat 

capacity 

:pC Constant pressure heat capacity 

Chapter 2 Mathematical Modeling of Chemical Processes 

 refpref

T

T
p

H

H
TTCHHdTCHd

refref

  ˆˆˆ
ˆ

ˆ

 

 
refprefout

refiprefin

TTCHH

TTCHH





ˆˆ

ˆˆ

One of the assumption is that heat capacities of the liquid are 

assumed to be constant. Thus, their temperature dependence 

is neglected: 

Then, the unsteady energy balance in terms of inlet and 

outlet temperature becomes: 

q

Q
TCTC

dt

dT
C pipv







Note that for liquids: CCC vp 

Thus,  the final energy balance is:                                      (2) 
qC

Q
TT

dt

dT
i






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(b) Perform Degree Of Freedom analysis: 

NV  = 5  (                         ) 

NE = 2  

NF = 5-2 = 3 → 3 input variables should be specified. 

Input variables:   

Output variables:  

 

 The dynamic model is: 

Parameters: , V, C 

ii qTQ ,,

qT ,

qTqTQ ii ,,,,

qC

Q
TT

dt

dT
i







iqq 

Chapter 2 Mathematical Modeling of Chemical Processes 

(c) Assume that the process has been operating for a long 

period of time with   flow rate of qi=10 m3 /hr, heating rate of 

                         cal/hr and inlet temperature of 40 oC. In 

addition, the liquid density is 1000 kg/m3 and liquid heat 

capacity is 1 cal/g.oC, and the liquid volume in the tank is 20 

m3. What is the steady-state temperature inside the tank? 

81098.4 Q

C8.89
1010001000

1098.4
40

hrcal1098.4

;mkg1000;Ckg.cal1000;C40

0

o
8

8

3oo













T

Q

CT

qC

Q
TT

qC

Q
TT

dt

dT

i

ii










hr

m
qq i

3

10
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Remark. In process dynamic and control, it is common to 

use the deviation of variables about their corresponding 

steady state(set point). This can be obtained by 

subtracting the steady state equations from the 

corresponding dynamic equation 

cal/hr1096.91098.42 88 Q (Step change in heating 

rate) 

(d) Suppose that the heating rate increases to double its old 

value and remains at this new value, plot the time response 

of temperature deviation about its old steady-state value? 

hr2
10

20


q

V

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0:)st.st.desiredold(0 



TTytat

Kuyy
dt

dy
i

)2(0:Eq.St.St.

)1(:Eq.Dynamic

qC

Q
TT

dt

Td

qC

Q
TT

dt

dT

i

i















Subtract Eq. 2 from Eq. 1: 

       
qC

QQ
TTTT

dt

TTd
ii




 





Let: 
qC

KQQuTTyTTy iii


1
;;;  
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In this part of example, the inlet temperature remains 

constant:  
0C40 o  iiiii TTyTT

0:0  ytatKuy
dt

dy


Analytical solution: 



















t

eKuy 1

C8.49

cal/hr1098.41098.41096.9

C.hr/cal101
1010001000

11

o

888

o7








 

Ku

QQu

qC
K





 tey 5.018.49 

   tt eTeTTyor 5.05.0 18.498.8918.49  

Chapter 2 Mathematical Modeling of Chemical Processes 

Useful information: the space time can be estimated by 

drawing the tangent line at t=0 (the blue line in the plot 

above) .  

time, hr

0 2 4 6 8 10 12 14

y
; 

o
C

0

10

20

30

40

50

60

  C6.13918.498.89 )(5.0 o

new eT  
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(e) Suppose that now you turned off the electric heater, how 

long does it take for temperature to return from its new value 

(139.6) oC to the original steady-state value( 89.8 oC) ? 

 

Now:  

8.49:08.49  ytaty
dt

dy


81098.400  QuQ 

C8.49

C.hr/cal101

o

o7



 

Ku

K

Analytical solution: 8.496.99: /   tey

Thus, the time required for liquid temperature to return back 

to its original  st. st. value is:  

hr386.18.496.9900 2/   tey t

Example 5.  Biological Reactions 

• Biological reactions that involve micro-organisms and 

enzyme catalysts are pervasive and play a crucial role in 

the natural world.  

• Without such bioreactions, plant and animal life, as we 

know it, simply could not exist.  

• Bioreactions also provide the basis for production of a 

wide variety of pharmaceuticals and healthcare and food 

products.   

• Important industrial processes that involve bioreactions 

include fermentation and wastewater treatment.   

• Chemical engineers are heavily involved with 

biochemical and biomedical processes.  

Chapter 2 Mathematical Modeling of Chemical Processes 
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• Typically, they are performed in a batch or fed-batch reactor. 

• Fed-batch is a synonym for semi-batch. 

• Fed-batch reactors are widely used in the pharmaceutical  

and other process industries. 

• Bioreactions: 

 

• Yield Coefficients: 

         

 

  

 

 

 

substrate more cells + products (2-90)
cells



/ (2-92)P S

mass of product formed
Y

mass of substrate consumed to form product


/ (2-91)X S

mass of new cells formed
Y

mass of substrate consumed to form new cells

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Example 5.  Biological Reactions 

Fed-Batch Bioreactor: 

 

 The rate of cell growth (Monod 

Equation): 

    

    

 Specific Growth Rate: 

    

    

    

(2-93)gr X

max (2-94)
s

S

K S
 


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• Modeling Assumptions 

 1. The exponential cell growth stage is of interest. 

2. The fed-batch reactor is perfectly mixed. 

3. Heat effects are small so that isothermal reactor 

operation can be assumed. 

4. The liquid density is constant. 

5. The broth in the bioreactor consists of liquid plus solid 

material, the mass of cells. This heterogeneous mixture 

can be approximated as a homogenous liquid. 

6. The rate of cell growth rg is given by the Monod equation. 

Chapter 2 Mathematical Modeling of Chemical Processes 

/ (2-96)P X

mass of product formed
Y

mass of new cells formed


7. The rate of product formation per unit volume rp can be 

expressed as: 

/ (2-95)p P X gr Y r

where the product yield coefficient YP/X is defined as: 

8. The feed stream is sterile and thus contains no cells. 

Chapter 2 Mathematical Modeling of Chemical Processes 
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 Individual Component Balances: 

 

• Cells:        

 

• Product:       

 

• Substrate:       

 

• Overall Mass Balance:     

  

( )
(2-98)g

d XV
V r

dt


1 1
(2-100)f g P

X / S P / S

d( SV )
F S V r V r

dt Y Y
 

( )
(2-101)

d V
F

dt


 
(2-99)p

d PV
Vr

dt


• General Form of Each Balance: 

       (2-97)Rate of accumulation rate in rate of formation 
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Exercise. Solve problem 2.17 in your textbook 
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