Process Dynamics and Control Course

Process dynamic behavior

» In analyzing process dynamic and process control
systems, it is important to know how the process responds to
changes in the process inputs U(s).

» A number of standard types of input changes are widely
used for two reasons:

1. They are representative of the types of changes that
occur in plants.
2. They are easy to analyze mathematically.

U(s) =7 Process Y(s)
N >

G(s) )

Process dynamic behavior

»Standard types of input changes :

1. Step Input
. U(s) Process Y(s)
A sudden change in a process O
input  variable can be ——, JL,

approximated by a step change

of magnitude, M: 0 t<O
Us(t): ; Us(s):M/S
M t>0

» The step change occurs at an arbitrary time denoted as t = 0.

» Special Case: If M = 1, we have a “unit step change”. We
give it the symbol, S(t).

* Example of a step change: A reactor feedstock is suddenly
switched from one supply to another, causing sudden
changes in feed concentration.
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Process dynamic behavior

»Standard types of input changes :

2. Ramp input

Up/a
The process input variable 1}“,

increases linearly with time a 1 >
rate of change , a:

0 t<O
t) = - U,(s)=als?
Ug (1) {at >0 r(S)

Example of ramp changes: Ramp setpoint to a new
value; feed composition; heat exchanger fouling; catalyst
activity.

Process dynamic behavior

»Standard types of input changes :

3. Rectangular Pulse

It represents a brief sudden
change in the input process  Yze(r)

input variable: A
0 for 1<0
Up(t)y=4h for 0<t<t, o, !
0 for r=t,

h s
U ="|1-¢%
rp($) S[ e }
Example of rectangular pulse changes: Reactor feed is
shut off for one hour; the fuel gas supply to a furnace is
briefly interrupted.
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Process dynamic behavior

»Standard types of input changes :
4. Sinusoidal disturbance (Frequency Response)
u

sin

Processes are also subject to

periodic, or cyclic disturbances. A
They can be approximated by a m

sinusoidal disturbance: | U /

0 for <0
u, (t)= -
S‘“(I) Asin(a)t) for >0 U (8)=7—=
S+

where: A =amplitude, ® =angular frequency

Example of sinusoidal changes: 24 hour variations in
cooling water temperature; electrical noise.

Process dynamic behavior

»Standard types of input changes :

5. Impulse input
It represents a short, transient disturbance. It is the limit of a
rectangular pulse for t,—0 and h = 1/t

0 fort>1, 7/‘5(’)
Ug(r) = 11_11)"(1] 1/t, fort, =t=0 1,
0 fort<0

| & t
Ug(s) =1 ‘

Example of impulse changes: Electrical noise spike in a
thermo-couple reading; Injection of a tracer dye.
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Process dynamic behavior

» Dynamic behavior of 1st —order systems:

= First-order linear ODE (assume all deviation variables):

r% = —y(t) + Ku(t)—L>(rs + DY (5) = KU(s)

= Transfer function: Y(s) K Gain
— — > Time constant
U(S) (TS + 1) (Space time)

Step change input:U(s)=A/s

K4 L e
= > V(1) =KA(l—-e™'")
s(zs+1)
— y(r)=KA(l-e ")~ 0.632K4
— KA(-¢"")>099KA =t ~4.67 (Settling time=47 ~57)

~ Y(0)=KAe""" /7| =KA/r#0 (Nonzero initial slope)

1=

Process dynamic behavior

» Dynamic behavior of 1st —order systems:

V(1)) step change input:U(s)= A/ s

K4 p-—---===
0.632KA =~ -
| R
T t
* Impulse Input: [/(s) =1
Y(s)= ‘ »
(rs+1) .
KIT
-
y(ry=2e !
T
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Process dynamic behavior

» Dynamic behavior of 1st —order systems:
*Ramp input: U(s)=a/s’ u(t) = at
-1
Y(s)=— Ra L > (1) = Kare™'" + Ka(t — 1)
s (rs+1)
M —re"" +(t-1) "
Ka 47— i
u(t) ¥
u(t) _y @ 31l u_a(tl Ka
a or
& 21
Ka
T S (t - 7)S(t - 7)
0 L il | | | 1 >
0 T 27 37 4r 57 t

Process dynamic behavior

» Dynamic behavior of 1st —order systems:

» Sinusoidal input: [/(s) = L[ Asinat] = Aw/(s* + @)
K Aw a oS o
Y(s) = : =0 4 A= 4 2
®) s+l s’ +0° s+l S+’ S+’

By partial fraction decomposition:

o - oKAT? o _—oKAT | o wKA
R R O |
wKA { 72 75 1 }

- +
0’7’ +1] 5+1 S°+w® $*+w?

O

Y(S)=

— l(a)z'e"’r—a)rcosa)t+sina)t)
@'’ +
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Process dynamic behavior

» Dynamic behavior of 1st —order systems:

Ultimate sinusoidal response (f — o)

0
. KA 4 .
v, () =lim—— %”wrcosa}tv%mwr)
=0 7" +1
KA

= P (—wt coswrt +sinwt)

T+
= sin(wt (¢ =—tan"' @7)
Phase angle
Amplitude

— For large t, y(t) is also sinusoidal

Process dynamic behavior

» Dynamic behavior of 1st —order systems:

— The output has the same period of oscillation as the

input.
— But the amplitude is attenuated and the phase is
shifted. |
Normalized _ <1 -1
Amplitude Ratio [, 2.2 | Phase angle = —tan @7
(ARy)

— High frequency input will be attenuated more and phase is
shifted more.

()

¢=—tan" o7
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Process dynamic behavior

» Dynamic behavior of 1st —order systems:
» Pode plot for 1st order system:

wy = 1/
* AR plot asymptote 1 e
5 1 i :
AR\(G) - O) - }}_I’}'(l] \/m - 1 ARN 0.1
AR, (» — ») = lim ! 0 T
AT = —_—_ = 0.01 0.1 1 10 100
! o> o't +1 ar
oF T T
* Phase angle plot asymptote: %
#(w — 0)=—limtan ' wr =0° P o T
@—0 _90
_ . -1 _ o gl = R T B
¢(0) - oo) - _r!grulc tan " o7 =-90 lzg.m 0.1 a)l 10 100
.

Process dynamic behavior

» Examples of 1st—order processes:
» Continuous Stirred Tank (Isothermal):

V ﬂ =qcy; —4qc¢, oo
dt /
v Ca 9
CA(S) = q = 1 .L 1 ]
C,(s) Vs+q (V/igs+l v h
(chjand c, are deviated variables)

= Non-isothermal with constant liquid volume, heat capacity
and density and neglecting shaft work: ixer

g, Q —sioy
Tdt =T, T+Cpq

T(s) _ 1 .T(s) _YCpq
T.(s) wm+1'Q(s) w+1

(T, T,and Q are deviated variables) Electric heater ;g
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Process dynamic behavior

» Dynamic behavior of 1st —order (integrating systems):

ay(t
= DO pui—L sy(s) = KU(s)
= Transfer Function: Y(S) = £
U(s) s
y(1)
» Unit step change response:
With U(s)=1/s, Slope=K
vy =2 L )=k P
)

— The output is an integration of input.

— Impulse response is a step function output.

— Integrating system is non self-regulating system.

— Steady-state gain is not defined for integrating system.

Process dynamic behavior

» Example of 18t —order integrating processes:

* Storage tank with constant outlet flow:

—Ouitlet flow is pumped out by a constant-speed, constant-
volume pump.

— Qutlet flow is not a function of head.

dh di

A—r=4=49

H(s) 1

O(s) s V. h o
H(s) =— ! Area=A Q
O(s)  As

( 0;,0,and h are deviated variables)
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Process dynamic behavior

» Dynamic behavior of 2nd—order systems:

= Composed of one 2"d-order system: U(s) —» G(s) F» Y(s)

= Or it is composed of two 1st-order subsystems (G; and G,):

Y,(s)
U(s) —P Gi(s) |—P1 G, (s) —» Y(s)

, d*(t
r? dyz() 24t y()+y(f) Ku(r)

L 1 28rs 4 )Y (5) = KU (s)
= Transfer Function:

Y(s) K
U(s) - (775 +2(7s +1)

L————————— Damping Coefficient

Gain

» Time constant

Process dynamic behavior

» Dynamic behavior of 2nd—-order systems:
= Unit step response

* Roots of the denominator of TF:
* Real part of roots should be negative for stability: ¢=20
+ Two distinct real roots ( ¢ >1): overdamped (no oscillation)
* Double root ( { =1 ): critically damped (no oscillation)
* Complex roots ( ) < <1 ): underdamped (oscillation)
+ Casel({>1)
V==K L
s(ros +24ts+1)  s(rs+D(r,5+1)

e Casell({=1)

— K — K Ll - — —I/'T
¥(s)= s(r7s7 +2rs+1) B s(rs+1)° ) KE] (1+f/r)e :I
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Process dynamic behavior

» Dynamic behavior of 2nd—order systems:
= Unit step response: with Uls)=1/s

1.2 T T T T T T T I !

1.0 =
=1.0
0.8 L5 ) B
.0

V() o6l - _
04 1
0.2 ]

0 1 | ] I 1 1 1 1 1

0 4 8 / 12 16 20
T

“Step response of critically-damped and overdamped
2nd-order processes”

Process dynamic behavior

» Dynamic behavior of 2nd—order systems:
= Step response:
. Caselll (0 < é- < l) Nfatural frequency
-1 / _ 2
Y(s) = ——— L ym—K[l—e-’”{cosmismazH (=5,
s(r7s” +24rs+1) ar T
1.6 — T T T T T T T T
1.4 _5“0-2
“Step response of underdamped ,,| [
2nd-order processes” o
].Ul—
0 ogl /"
K 0.6 -
0.4
0.2
0 L | 1 l i | I | I
0 4 8 12 16 20
!
?
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Process dynamic behavior

» Performance characteristics of the step response of
underdamped process:

b+bexp(—71{%r] b+bexp(—§t/1‘)

— Rise time (7,)

t =t —cos ') II=-CF (n=1) | | oo |

— Time to 1% peak (7,) R i i i S 1.056

o 4l o - .
ty =t/ J1-¢7

|
— Settling time (7,) : [
t, = —t/¢{ In(0.05) l

A |
t tp
— Overshoot (OS) ft 2\ ,\
(73 (7,3 2T
OS:a/b:exp(—jTC/Jl—;’z) 1-¢7 Jfi=22 i

— Decay ratio (DR): a function of damping coefficient only!

DR=c/a=(0S) = exp(fZJTQ’/\/lfg'z)
— Period of oscillation (P) P2/ 1_4,2

Process dynamic behavior

= 1st order vs. 2nd order (overdamped)

* Initial slope of step response

. 5 . KA KA
Ist order: y'(0) = hm{s“Y(s)} =lim Sl =—=#0
§—»C §—>0 Z-S + z‘
KAs

2nd order: y'(0) = lim {SQY(S)} =lim —— rst] -
s s s+ 20Ts +

* Shape of the curve (Convexity)
Ist order: y"(1)=—(KA/7%)e™" <0 (For K >0) = No inflection
e—z«’n e—:.frz

2nd order: y"(7) = — K4 ( - )
-1 4 ()

(+ > —as¢T) = Inflection
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Process dynamic behavior

» Some remarks on underdamped processes:

* Many examples can be found in mechanical and electrical
system.

« Among chemical processes, open-loop underdamped
process is quite rare.

» However, when the processes are controlled, the responses
are usually underdamped.

» Depending on the controller tuning, the shape of response
will be decided.

 Slight overshoot results short rise time and often more
desirable.

» Excessive overshoot may results long-lasting oscillation.

Process dynamic behavior

> Examples of 2"d —order processes:
* Non interacting storage tanks (Constant flow rates,
and constant liquid level) : e q
Air i
» The first tank affects the
second tank but second tank 1 /
does not affect the first tank. V-‘
This is called “non-interacting’”. -
. . / Cas 9
* Transfer Function: gy >
C,(s) _ 1 v,
Culs) (W /q@)s+ DV q)s+1)
1 T =77,
Tt ) (s +1) c=htt
21,7,
a 1 N 1
1,080 (1, +7,)5+1 st +2¢Ts+1
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Process dynamic behavior

> Examples of 2"d —order processes:

* Non interacting storage tanks with constant flow
rates:

T,+7 T+7T 271
» Casel.V,=V, =q=r,=r=¢=-1"2= 1=

2\17, “oJrr 2r

“Critically damped response”

= Casell. V;#V,:

always ¢ <1= “Overdamped response”

= Remember that (C, @andc, ) are deviated concentrations.

Process dynamic behavior

> Examples of 2"d —order processes:

* Non interacting two CSTRs with constant flow rates
and first-order elementary reaction:

2 + (1"' kz,)Cp =Cy

Mixer

(1) =kC,

7

7, dg;A +(1+ er)CA =C,

q=0.7=V,/d;7, =V,/q;

Note that deviated concentrations are used
in the above equations.
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Process dynamic behavior

» Take L.T:
= Transfer functions: C,, 1 _ Y@+kn) K
Cy ns+(l+ke) m o g zs+l
(1+kz,)
Ch _ 1 _ Y@+ke,) K,
Cu os+(l+ke,) T (g z,5+1
(1+kz,)
Ch KK, B K
Cy (25+1)z,5+1) (z5+1)z,5+1)
K K

- 2,2,8° +(z, +2,)s+1 T &t 428 +1
Where K, =1(1+kz,);K, =1/(1+kz,);K = KK,
Z, = b ., __ B

(1+ krl)’ 2 (1+ krz)

Process dynamic behavior

Mixer

* Casel.V;=V,: Feed

=71,=7, 4q;

C,
Z,+12, Z+17 At
:>21=22=Z:>é’:1—= =
2\zz, 21z

U

“Critically damped response”

» Casell. V;#V,:

always ¢ <1= “Overdamped response”
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Process dynamic behavior

* Interacting two storage tanks :

— Many chemical processes exhibit interacting nature.
qa

R

R R2
Vo oMb e Ve 4™} s
q. 9.
d dh
= MBs (deviated variables): 4 dhy =q, —q A,—*=q,—q,
dt dt
= MEBs and after linearizing the resulting flow rate equations:
1 1
=—/(h —h, ¢, =—h
QI R] (hl H) R2
Where R, is the resistance to flow rate g, and R, is the resistance to

flow rate g, .

Process dynamic behavior

* Interacting two storage tanks :

dh, 1 dh 1 l
A—L=q,——(h—nh 2= — (I~ ) ——h,

U 4q; Rl(l 2) Ry Rl(?l h) R "
ARsH,(s)+ H\ (s)—H,(s) = RO,(5)
AZRIRE SH7(S)+H~,(S)= ‘RZ HI(S)$H2(5)= R?. /(R1+R2)
R+R, 7 R +R, H/(s) ARR,/(R+R)s+]1
H,(s) _ R,
Q.(s) xfIlAg}%Eles2 +(AR + AR, + AR,)s+1
HZ(S)z _ Rz WhCI‘CT: IAIAZRIRE, C:(A1R1+A2R2 +A1R2)
O(s) 7°s*+2lrs+1 2JAARR,

¢>1 (overdamped)
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Process dynamic behavior

»Poles and Zeros:

G(s) = N(s)  K(bus" +bnas" ' +---+bs+1)
D(s)  (ans" +ap1s"" +--+as+1)

= Poles (D(s)=0):

- Where a transfer function cannot be defined.

- Roots of the denominator of the transfer function.

- Determine modes of the response.

- Decide the stability.

= Zeros (N(s)=0)

— Where a transfer function becomes zero.

— Roots of the numerator of the transfer function

— Decide weightings for each mode of response

— Decide the size of overshoot or inverse response
= Zeros and poles can be real or complex.

Process dynamic behavior

» Effects of Poles:
Example. Real pole from D(S) =zs+1
y()

* One pole: D(s) =s+1=0

—)S:—1 7t
T

A,

= Exponential Mode: e™*'*
Imll

» [f the pole is at the origin, it

becomes “integrating pole”. PRV )
= Unstable response if the pole is in @ >
RHP, i.e. the response increases -1/t Re

exponentially.
= Stable response if the pole is in
LHP.
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Process dynamic behavior

» Effects of Poles:

Example. Complex poles: D(s)=(r’s* +2{ts+1) (-1<{ <)

= Two poles: D(s)=0 —)SZ_éij_\ﬂ_gz:_aijﬁ

T T
=gt _
ufs|= == f 7 onl
ls| = . (function of 7 only) Sl ime

. AS=itan"7‘M (function of ¢ only) X é’l J1-&* it

</ R
& —J1-¢%
¢ =cost

Process dynamic behavior

» Effects of Poles:

= Modes: e ““/"" =¢ “(cos Bt £ jsin SBt)

’ _ 2 1_ 2
(cosit J_rjsin—gt)
T T

=e—§.’fr
— For positive 7:

o If £< 0, the exponential part will grow as t increases: unstable
o If £ > 0, the exponential part will shrink as t increases: stable
o If £= 0, the roots are pure imaginary: sustained oscillation.

Dr. Mohammad Al-Shannag 17/21



Process Dynamics and Control Course

Process dynamic behavior

= Poles Locations:

P Im(s) 4+

Unstable Region

S Shorter

N !
9 "'{;-@ period of IE E Q {
If}z ,‘tosc!"

R More
. oscill.
Less-,

Faster response

I _
/ .\ Reis)
E’ period of \

1 oscill. $Q AN

i oscill. ™

Process dynamic behavior

* Effects of Zeros:
N(s) 1 1
= =w Fot W,
(S+p])“'(S+pn) (S+p1) (S+pn)
» [t is clear that the numerator (zeros) will change the
weighting factors(wy,...w,).

» The effects on weighting factors are not always obvious.

N(s)  K(tas+1)—> Lead

Example. Lead-Lag module: G(s)=
D(s) (ns+1)—— Lag

» For M step change input:

Y(s) = KM (7a5+1) =KM{1+1:"_&} y(z)zKM{l[lr—“Je""”}

s(ns+1) s s+l

Dr. Mohammad Al-Shannag 18/21



Process Dynamics and Control Course

Process dynamic behavior

» Effects of Zeros

=lf: @7 >70>0 y(z)=KM{l—[1—T—“Je”“}
The lead dominates the lag. 2

MO <nm
The lag dominates the lead.

© 0>r,

Inverse response

Process dynamic behavior

» Effects of Zeros

Example. Overdamped 2"-order+single zero system:

G(s) = N(s) _ K(tas+1)
D(s) (nis+1)(r25+1)

(assume 71 > 72)

» For M step change input:

Y(s) = KM (zas +1) —KAJ{IJrTI(T”ﬁ) I a@-n) 1 }

Cs(ns+D)(ms+1) s n—r> ns+l -0 s+l

Ta—T1 _y Ta—T2 _ip
YOy =KM|1+———e " + ="
n—1T2 2—0
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Process dynamic behavior

» Effects of Zeros
wi)= KM[H—T“ " im0 e'““}
= |f: (a) Ta>1n>0 - -0
The lead dominates the lags.

(b) 0 <Ta < Tl
The lags dominate the lead.

© 0>1,

Inverse response

Process dynamic behavior

» Effects of Zeros: o K(rs+) _ K s K>
= Another Analysis: (ns+1)(z2s+1)  (ms+1) (725 +1)
o« (75 +1) _K(@n-7) K [N
st | | (n—n) UGs) (ns+1) Y(s)
= K(z.s+1) g K(za—12) K }_—»
(@s+)) |_,. (n-n) (r2s+1) [¥5(6)

* Since 71 > 72, 1 is slow dynamics and 2 is fast dynamics.
To > T a T127a>0 T, <0

lvl ”/T yl { V—— .V] (ﬁ
> Ki>0
’\ K <0 >0 | ' -
T

" Ty (1
Walt Nt Kles Yofih
Kg =0 N . Kg <0
| f P~ ————— t i
1(.’)If\ K| <|K» WV— .WT K=K,
‘ ) > | ) > v p >
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Process dynamic behavior

= Zeros Locations:
Im(s) T
Zero at origin: I Inverse response
i Com#lex LHP zero: region
“&-ﬁ [}
i
Complex RHP zero:
] . .
! Re(s)
: 1
|
Real LHP zero: i Real RHP zero:
More : More Bigger
overdamped :overshoot inverse response
<) i 1 ~ef—— N I
I V/ r—
|
I
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