Process Dynamics and Control Course

Dynamic Behavior and Stability of Closed-Loop

Control System
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Ysp(s) E(s) P(s X(s
—_—1 G, G.(s) »1 G,(s) P G,(s) — Y (S
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“Standard block diagram of closed-loop feedback control system with
one disturbance”

Dynamic Behavior and Stability of Closed-Loop

Control System
= Closed-Loop Transfer Functions:

» Using additive and multiplicative properties of transfer
functions, previously explained:
» Transfer function between controlled variable and its
set point (Servo problem: change in set point; no
changes disturbances):

Y(s)  G,G.G,G,
Ye(S) 1+G,G,G,G,

sTransfer function between controlled variable and its
disturbance/load (Regulatory problem: changes in set
disturbance; no change in set point disturbances:

Y(s) Gy

D(s) 1+G,G,G,G,
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Dynamic Behavior and Stability of Closed-Loop

Control System

» The closed loop becomes open when the feedback path is
broken. The open-loop transfer function is:

GoL =6G,,G.G,G,

Y(S) _ Go || Y() _ G,
Yor (S) 1+Gg, D(s) 1+Gg.

» For simultaneous changes in set point and disturbance:

G.G,G.G, G
P20 () + ot D(s)

Y(s) =
©=1 G.G,G,G, 1+G,G,G,G,,

Dynamic Behavior and Stability of Closed-Loop

Control System

= Mason’s Rule: for closed-loop control systems with negative
feedback, the transfer function between Y and X is given by:
Y(s) _ 7
X(s) 1+m,
7T+ . Product of the transfer functions in the path from X to Y

7, * Product of all transfer functions in the entire feedback loop

— If the control loop has positive feedback:

Y(s) _ 7
X(s) 1-x,
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Dynamic Behavior and Stability of Closed-Loop

Control System

Example. For the control loop shown below, find the transfer
functions Y/R, Y/L,, and Y/L,, :
Inner loop L, L,
E“Km1+ G : G+ Gy 0%} G, 5% Gsl
Gm2
Gm1 ™
Solution:
Inner loop
x1
> G G »X
¢ 2 " 2 X, = Glez X,
1+GWZGIGCZ
Gm2=

Dynamic Behavior and Stability of Closed-Loop

Control System
—Transfer function Y/R:

Tp= K, GG, & G, z,=G,G,0, i el
) 1 + GIHZGIGCB ) 1+ GmZGlGCZ
z — KmlGSG2Gch2G('1
R 1+G,GG,+G, ,GG,GG.,G,
—Transfer function Y/L,:
Y GSG2 (1 + Gm'.’Gch’.’)

L, 14G,GG.+G

ml

G3 GZ Gl Gc 2 Gc'l
—Transfer function Y/L,:

X — G3 (1 + Gm2Gch'2)

]‘2 ] + GmZGI GCZ + G GEGZGIGCZGCI

ml
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Dynamic Behavior and Stability of Closed-Loop

Control System

Example. For the control loop shown below, find the transfer
functions Y/R and Y/L:
R 40 6,
Solution:
m=—G X,
1= G,G.
G G
I = - 1 ‘Te = - G]
1-G,G. 1-G,G.
Z_ 1 B l—GzGC £= Gch — Gch
L Tim 156 -G)G R 1-G,G,+GG.  1+(G,-G,)G,
_1-GG,
1-G,G. + GG,

Dynamic Behavior and Stability of Closed-Loop

Control System
= Stability of closed-loop control system:

General stability criterion: A linear system is stable if
and only if all roots (poles) of the denominator in the
transfer function(TF) are negative or have negative real
parts. Otherwise, the system is unstable.

— To find the roots (poles) of the denominator in TF:

Denominator of TF=0 “Characteristic Eq.”

» For standard closed-loop feedback control system, the
characteristic Eq. is:

1+G,G,G,G, =0 or 1+Gy =0
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Dynamic Behavior and Stability of Closed-Loop

Control System
= Stability of closed-loop control system:

» The roots (poles) of the characteristic equation (s - p,)
determine the type of response that occurs:

1. Real positive roots = Unstable response.

2. Real negative roots = Stable system without oscillation

3. Complex root with negative real part = Stable
oscillatory response.

4. Complex roots with positive real parts = Unstable
response.

Remark. Stability criterion help us to decide the action of
controller whether reverse or direct.

Dynamic Behavior and Stability of Closed-Loop

Control System
= Stability of closed-loop control system:

Stability regions in the complex plane for the roots of

L

\St ble oscillatory r

\\\\\\\\\\
L

\Stbl iilatory regi x

\\\\\\\\\\\\\\\\\\\\\\\\\&\&\\

- Stable cillatory

— If all roots in left half of complex plane — stable system
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Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Standard closed-loop feedback control system has
proportional controller, A/C control valve, and transmitter. The
process has first-order transfer function with positive gain and
space time of 9 min. Does the controller have reverse or direct
action to achieve stable response?

K
Characteristic Eq.:1+ G,G.G,G, =0 =1+ K K K, —2—=0
7,5+1
Multiply by 7,S+1:
1+ K, KKK,

Tp

= 1+ K, K K,K,)>0= K, KKK, >-1

Since : K, <0 (A/C control valve); K >0 ;and K, >0;
the controller gain must be negative(K <0 ):
— Direct action

(r,5+1)+ K, KKK, =0=> 5= <0

Dynamic Behavior and Stability of Closed-Loop

Control System

» Example. Study the stability of standard closed-loop
feedback control system with:

G, =K;:;G, =1/(2s+1);G, =1,G, =1/(5s +1)
Characteristic Eq.:

1+G,G.G,G, =0=1+ (K, -~ T

2s+155+1
(2s+1)(5s+1)+ K, =0=10s* +7s+K_+1=0

_ —7+,/49-40(K, +1)

s= >0 <0=,/49-40(K +1) <7
49-40(K, +1) <49=-40(K_, +1) <0
K.+1>0

. K. >—1 Forstability>Reverse acting controller
(K. > O)satisfies this condition.
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Dynamic Behavior and Stability of Closed-Loop

Control System

= Stability of closed-loop control system:

» Sometimes it is difficult to determine the nature of the
poles of characteristic equation. In such case, root-finding
techniques can be used to estimate the roots.

= Example. Study the stability of standard closed-loop
feedback control system with:

G, =K;:;G, =1/(2s+1);G, =1/(s+1);G, =1/(5s +1)
Characteristic EqQ.:

1+G,6.G,G,=0=1+

1, 1 1
s+1 °2s+15s+1
(s+1)(2s+1)(5s+1)+ K, =0=10s* +17s* +8s+K_+1=0

— Difficult to determine values of K, such that s<0.
— Any alternative?! Yes, there are other stability criteria.

Dynamic Behavior and Stability of Closed-Loop

Control System
= Stability of closed-loop control system:
A. Routh-Hurwitz stability criterion:

It is applicable for characteristic Eq. of the form:

n n-1 2 .
a,5" +a,,8  +..+&,8" +as+8,=0 “Polynomial form”

— Construct the Routh array: b |% ol
1 -1
1 [@ &= @4 ... Coefficients determinations: Ot Ons
2 ot s s bl = (an—lan—l i auan—-3)/an—l bj == o s /(7,,_1
3 | b b 30 - Ay Qs
4 [ Cy - bZ = (au—lan-4 T auau—S)/an—l
- - 5= “;-1 “;-3 /b,
¢o=(0a,;—a,b)lb ' !
n+l] Z, C: = (b]a"_S = a”_lb3)/b1 o = — Ayy Gys /bl
: b bl bs

Dr. Mohammad Al-Shannag

7/48



Process Dynamics and Control Course

Dynamic Behavior and Stability of Closed-Loop

Control System
= Stability of closed-loop control system:
A. Routh-Hurwitz stability criterion:

= A necessary condition for stability:
— all coefficients of characteristic Eq. (a,’s) are positive:

as"+a _s"'+..+as°+as+a,=0(a >0 i=0,..n)
= A necessary and sufficient condition for stability:

— All of the elements in the left column of the Routh
array are positive.”

1 @] G- [P

2 dpoy| Gpy Gps  -n-

3 b| bz bs

4 |G| @
n+1ld [~ 5

Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Use Routh-Hurwitz stability criterion to study the
stability of standard closed-loop feedback control system given
in previous example:

Characteristic Eq.: 10s®+17s*+8s+K_+1=0

— Necessary condition: a, =10>0

a,=17>0
a,=8>0
=K, +1>0=K_,>-1

“For stability”

— If any coefficient is not positive, stop and conclude the
system is unstable.
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Dynamic Behavior and Stability of Closed-Loop

Control System
- Necessary and sufficient condition:

Routh array: 1 a, a, 1 |10 8
2 la, @& L2 |17 Ko+l
3 |b; b, 3 |7.41-0588K, O
4 |[c, 4 | 1+K,
_ 17(0)—10(0
G 13(1”(6) —7.41-0.588K. ,,2:%:0
- AUTKINTO)  y

Stable region: K ,+1>0=K_>-1
7.41-0.588K, >0=K_ <12.6

. —=1< K, <12.6 “For stability without oscillation”

Dynamic Behavior and Stability of Closed-Loop

Control System
= Stability of closed-loop control system:

B. Direct substitution stability criterion:

» This stability criterion is based on the fact that the
imaginary axis is the dividing line between stable and
unstable systems.
» Procedure:
1. Substitute s = jw into characteristic equation.
2. Obtain two equations: one for real part and the
another for imaginary part,
3. Solve the two equations to obtain values of K, and
o. Where K, the maximum controller gain at which
the roots of characteristic equation crosses the
imaginary axis.
4. Determine the stable region by trying test values of
K_in the characteristic Eq.
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Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Use direct substitution stability criterion to study
the stability of standard closed-loop feedback control system
given in previous example:

Characteristic Eq.: 10s®+17s*+8s+K_+1=0

— Set s =jw

100’ -170* +8 jo+1+ K, =(1+K

cm _17w2)+16f)(8—]0(()2):0
Real part Eq. 1 (1+ K, —170*)=0

e Solve to obtain:

Imaginary part Eq. : @(8—100") =0 w=0orw =0.8
=K, =-lor
— Try a test point such as: K.=0 K, =126

10s® +17s? +8s+1=0 — Stable: All +ve coefficients:

— Thus, the stable /non-oscillation region is: —1<K_ <12.6

Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Use direct substitution stability criterion to study
the stability of the system with the following characteristic Eq.:

1+5s5+2K.e* =0
set s = jw: 1+5jw+2K_e’” =0

But, € =cosw— jsinw
=1+5jo+2K, (cosw— jsinw) =0
1
COS @
Imaginary part EQ.: 5w — 2K, Sin@=0=5w+tanw =0
Solve to obtain: ®=1.69
K, =4.25

— Try atest point such as: K.=0: 1+5s=0
— Stable: All +ve coefficients: K, <4.25

Real part Eq.:1+ 2K, coso=0=2K_, =—
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Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Use Routh-Hurwitz stability criterion to study the
stability of the system with the following characteristic Eq.:

1+55+2K.e* =0

This characteristic Eq. does NOT have polynomial form to
use Routh-Hurwitz stability. It can be rewritten in a
polynomial form using 1/1 Pade Approximation:

1-%5
-6 2

1+Qs
2

€

14554 2K, 1298

1+0.55
— (1+0.55)(1+55) + 2K _(1—0.55) = 0

— 2557+ (55— K_)s+(1+2K_ ) =0

Dynamic Behavior and Stability of Closed-Loop

Control System
— Necessary condition:a1 =55-K,>0=K_<55
a,=1+2K,>0= K, >-0.5
. —0.5< K, <5.5 “For stability without

oscillation”
— Necessary and sufficient condition:
Routh array: 1 |a, a, 1 [25 142K,
2 |a 0 5.5-K 0
1 > 2 c
3 |b, 3 |1+2k, 0

5.5-K,>0=K_ <55
=1+2K, >0= K, >-0.5

.. —05<K, <55

Remark. In this example, Routh array does not add
additional information but it confirms the stable region.
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Dynamic Behavior and Stability of Closed-Loop

Control System

= Stability of closed-loop control system:
» Routh-Hurwitz  stability  criterion  with 1/1  Pade
approximation of the exponential term gives maximum
controller gain of K_,=5.5. The exact value resulted from
direct substitution criterion is K.,=4.25. The percent relative
error is around 28%.

» Exercise. Resolve the previous example using 2/2 Pade
approximation( more accurate than 1/1) given by:

2 2
e~ 1—Qs+—s2 1+Qs+6’—s2
2 12 2 12

* Routh-Hurwitz ~ stability  criterion  with  2/2  Pade
approximation of the exponential term gives maximum
controller gain of K.,=4.29. The percent relative error is
around 1%.

Dynamic Behavior and Stability of Closed-Loop

Control System
= Stability of closed-loop control system:

Root locus diagram: Complex plane diagram shows the
location of closed-loop poles (roots of characteristic
equation) depending on the parameter value such as
controller gain K, (single parametric study).

= |t can be built by finding the roots at a different values of
the parameter under investigation such as K..

= Example. Consider a feedback control system with open-
loop transfer function: 4K

Cou () = (s+1)(s+2)(s+3)

Plot the root locus diagram for 0 < K <20
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Dynamic Behavior and Stability of Closed-Loop

Control System
= Stability of closed-loop control system:

Root locus diagram
Characteristic Eq. :
1+G, (8)=0=(s+D(s+2)(s+3)+4K. =0

- At K, = 0 (no controller; open loop): roots= -1,-2,-3
-AtK, =0.1: roots=......

- At K.=1; roots=......

- At K.=5; roots =.....

- At K.=15, roots= -6,3.5j,-3.5]

» Localize these roots at each K. on the complex
plane to plot the root locus diagram.

Dynamic Behavior and Stability of Closed-Loop

Control System
= Stability of closed-loop control system:

imaginary

Root locus diagram part,

| | | Real
T I T 1
3 4Pt

= [t is clear from root locus diagram that:
1. The closed loop system is unstable for K, >15.
2. The closed loop response will be stable for 0.1<K,<15.

Dr. Mohammad Al-Shannag
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Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank with two inlet streams and

one outlet stream as shown below:

Cylindrical tank
A=10 ft?

==q

a) What is the dynamic model that describe the liquid
height variation with time? Perform DOF analysis.

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

* DOF Analysis:
— Parameters: A, p, C, , and C, (See topic II).

Ny =4 (9, g2 g, h)
N = 2 (MB, MEB)

Ng = 4-2 = 2— two input variables should be specified.

— The output variables: gand A

— Input variables: g;and g,
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Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

= Dynamic model:

» Mass Balance (under constant density assumption):

dh
AE:%"'Qz_q

= Mechanical Energy Balance(MEB); (see topic Il):

2

Q=R\/ﬁ where R=7Zd 29
4 \1+C_ +C,

SA%:Ql"'qz_R\/ﬁ

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

b) Write the model in deviated form:
Linearize the nonlinear terms in the dynamic equation
around the desired steady state (denoted by overbar):
the only nonlinear term nonlinear term is \/h :

f(h)zJﬁ—)f(h)zf(ﬁ)+£ (h—ﬁ)=\/ﬁ+i_(h—ﬁ)
dhl,_n 2\/F
= R
A g rq,—RVA - (NP, 1
=Gt =M @
Steady state Eq.: O:G1+c_|2—R\/ﬁ—O .................. 2
and g=Rvh |
H R
Subtract Eqg. 2 from Eq. 1 to have: A—=0.+0.————H
q q = at Q +Q, 2\/ﬁ
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Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

c) Write the transfer functions between the liquid height and
flow rate of stream 1 and stream 2. Is this stable process?
Take Laplace transform of deviated dynamic model:

AsH (s) +% H(s) = Qu(8) + Q,(5)

H(s) =

1 1
As+R/(2v/n) Qe T R/(2Vh) Q2(5)
H(s) _ H(s) _ 1/ A
OO

=G(s)

2.JhA “First-order TFs”
—lt is stable process since the root of characteristic Eq. is

always negative: s = — R/ (2\/ﬁ A)<0

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

d) If the outlet flow rate was 18 ft3/min at liquid height of 9
ft what is the value of the coefficient R?

> MEB: g =R+vh =18=R+9 = R =6 ft**/min

e) It is desired to operate the process steadily with liquid
height of 4 ft. If the inlet flow rate of stream 2 is 5 ft3/min,
find the steady-state flow rates of stream 1 and outlet
stream.

— MEB: @ =6+/4 =12ft*/min
— Steady MB:
qul"'qz -q

g, = 5ft*/min; § =12ft*/min = q, =q -, = 7 ft*/min
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Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

f) Now a step change disturbance occurs suddenly in the
flow rate of stream 2 to become q,=8 ft3/min and remains at
this new value. While flow rate of stream 1 remains as
before (q,=7 ft3/min). Find the liquid height response and
the steady-state offset. Approximate the settling time.

H(s) = G(s)Q.(s) + G(s)Q, (5)

No change in flow rate of stream 1 —» Q,(s) =0

Step change in flow rate of stream 2— Q,(s) #0

_ . 3
Q,(t) =q,(t)—a, =8-5=3ft*/min —Q,(s) :g
1/ A 1/10 0.1

G(s) = — =
®) s+R/(2JhA) s+6/(2x+/4x10) s+0.15

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

01 3 0.3
H(s)=G(s)Q,(s) = s
= HE) =600 = 7575 s(s+0.19)
A, B 2 2 -

+—= — H(@)=2-2¢"
s (s+0.15 s s+0.15

— Steady-state offset e(t—o0):
e(t»>owo)=H —H({—>0)=0-2ft=0

= When disturbance occurs, the liquid height will not

return to the desired steady-state height. This means

that there is a need for controller.

— The actual height, A, varies with time according:
H(@)=h(t)-h

— h(t) = 62
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Control System
= Example. Liquid storage tank

— The new steady-state value(t—) of height is:
h(t — ) =61t
This is approximate value since it came from the linearized

model. The exact ultimate steady-state value of the liquid
height can be calculated from steady-state mass balance.

— — 2
0=g,+q,-RVh =h_, :(LR%) —6.25ft

= The percent error is 4 % (acceptable error, linearization is
good approximation).
— Settling time: to reach either 0.99 or 1.01 of the ultimate
steady state value (choose a suitable value to avoid
logarithm of negative value) :  0.99(6) ~ 6 —2e**"

=t ~23.4min

Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Liquid storage tank

= Response of deviated = Response of liquid height
liquid height to step change: to step change:

8 8

6 7]

4 1 6

2 5

0 T T T 4 T T T
0 10 20 30 40 0 10 20 30 40

time, min time, min

Offset = -2 ft #0 = A need for controller to keep height at 4 ft
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Dynamic Behavior and Stability of Closed-Loop

Control System
» Example. Liquid storage tank

g) A feed-back closed-loop control system is built now to
remove/reduce the offset in the liquid height. The flow rate
of stream 1 is chosen as manipulated variable. The
controller signal is electric. The control valve on stream 1
is A/O pneumatic one with a linear trim. When the control
valve is fully opened, the flow rate is 24 ft3/min. The level
transmitter has a span of 8 ft.

» Draw the liquid height closed-loop feedback control system.
» Draw the corresponding closed-loop transfer function block
diagram.

» Write the closed-loop transfer functions between deviated
liquid height, H and deviated manipulated variable, Q,, and
deviated disturbance Q,.

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

J, a.

q:ﬁ‘ || Control valve E
Cylindrical tank @@ hsp
h

A=10 ft?

==q

“Liquid level closed-loop feedback control system”
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Dynamic Behavior and Stability of Closed-Loop

Control System
» Example. Liquid storage tank Q,
Hsp

\\ E Q,
O~ P P PR

Hin H

| Wi

“Transfer function block diagram for liquid level closed-loop
feedback control system”

GchKnDGme Gd
= HSP(S) + Qz (S)
1+ GCGVKlpGme 1+ GCGVKlpGme

H(s)

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

— K p: Gain of current-to-pressure transducer

15-3 .
=—=0.75psiggmA
P =50 2 psig/
— G,,,(s): Assume zero —order level-to-current transmitter:

G, (s)=K_ :%=2mA/ft

— G,(s): Assume zero—order control valve: G,(s) =K,

A .
Valve with linear trim = AQ Oro = 24ft*/min

AL
3 -
V:AQl AL:24 1-0 :zft/rr_un
AL AP 15-3 psig
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Control System

» Example. Liquid storage tank
H(s 0.1
5 Gy(5):G,(s) = 1)
Q(s) s+0.15
H(s 0.1
— Gy(8):G4(s) = ©) =
Q,(s) s+0.15
(0.75)(2)(2)G.G G
MO = omeocs. O T omeass, = ©
+(0.75)(2)(2)G,G, +(0.75)(2)(2)G.G,
0.1 0.1
=S 9+ 4000 (9)
1+3G, — 1+3G, —
s+0.15 s+0.15
0.3G 0.1
= < H..(s)+ S
s+0.15+0.3G, se (%) s+0.15+0.3GCQ2()

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

h) Suppose that a proportional controller is used. Verify
that the controller must work on the reverse mode.

— P controller: G.(s)=K,

0.3K 0.1
H(s) = ; Hep(S) + S
) s+0.15+0.3K, se (%) $+0.15+0.3K, ()

— Characteristic Eq. : $+0.15+0.3K; =0
— Root of characteristic Eq. :
s=—(0.15+0.3K,;)<0=0.3K, >-0.15=K_ >-0.5

. To have regulatory or servo problem with stable non-
oscillatory response, K, must be positive. Thus, the
controller must work on the reverse mode.
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Dynamic Behavior and Stability of Closed-Loop

Control System
» Example. Liquid storage tank

i) If step change of 3 ft3/min occurs in the disturbance and
the liquid height set point remains the same, will the P
controller remove the offset? Show controller gain effect
on the offset.

— This is regulatory problem: Hgp(S) =0
— Step change in g, of 3 — Q,(S)=3/s

0.1 0.1 3
®) s+0.15+0.3K, () s+0.15+0.3K_ s
0.3 A B

= =—+
s(s+0.15+0.3K,) s s+0.15+0.3K,
_0.3/(0.15+0.3K,) 0.3/(0.15+0.3K,)
S s+0.15+0.3K,

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

H(t) = L [H(s)] = L‘1[0'3/(0'15+0'3KC)} e 0.3/(0.15+0.3K,)
s s+0.15+0.3K,

0.3 (1_ e_(0'15+0'3K°)t)

T 0.15+0.3K,
— For regulatory problem; steady-state offset e(t—w) is given
by:
e(t > o) = Iirrg SE(s) = Iing s(Hy,(s)—H(s)=- Iirrg s(H(s))
CHEow) 03
0.15+0.3K,

= For regulatory problem:

= as K, increases the steady-state offset decreases.

= For regulatory problem with first-order open-loop TF:
K.—, offset = 0
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Dynamic Behavior and Stability of Closed-Loop

Control System

» Example. Liquid storage tank
— The actual height varies with time according:
h(t) —4+ 03 (1_e—(0.15+0.3KC)t)
0.15+0.3K, 10
9 No controller, K =0
---- P controller, K =0.2
Ke | Offset ft 8 7 - - - P controller, K =0.5
0 -2.000 =4 — — - P controller, K =5.0
0.2 -1.429 < - —. P controller, K =100
0.5| -1.000
5 0182 | ] e
10| 0095 | | LT TTTTTTTTTTTT
100/ -0.010 | = g ¥ oo oo ===
30 40
time, min
* |t is clear that as K, increases settling time and offset
decreases.

Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Liquid storage tank
J) For step change in the set point from 4 to 9 ft and flow
rate of stream 2 remains at 5 ft3min, Will the P controller

remove the offset? Study the effect of controller gain on
the offset.

— This is servo problem: Q,(s)=0
— Step changein hof 3: H(S)=(9-4)/s=5/s

0.3K 0.3K 5
H (S) = : HSP(S) = ; -
5+0.15+0.3K, 5+0.15+0.3K, s
~ 1.5K, 15K, /0.15+0.3K, 15K, /0.15+0.3K,
s(s+0.15+0.3K,) s (s+0.15+0.3K,)
15K
Hit) =L H(s)] =z =20 1_e—(0.15+0.3Kc)t
O=L"H) 0.15+o.3|<c( )
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» Example. Liquid storage tank

— For servo problem; steady-state offset e(t—) is given

by:
Y et > o0) = lim sE(s) = lim s(?— H(s)) =5-lims(H (s))
S5 H(t—>o0) =5
0.15+0.3K,

— Without controller:K_ =0:e(t — o) =5
— With controller: K. —o0:e(t — ) =5-1.5/0.3=0

= For servo problem:
= As regulatory problem, as K, increases the offset
decreases. Offset becomes zero when K —co.

Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Liquid storage tank
k) Suppose that the control valve transfer function is first-
order with time constant of 0.1 min and there is step
change in the set point of 5 ft. With P-controller only,
minimize the offset such that the decay ratio does not
exceed 0.25:
— Now: G,(s) =K, /(z,s+1) =2/(0.1s+1)

— This is servo problem: H (s)=5/s ; Q,(s)=0

H(s) G.G,KpG,G,
HSP(S) 1+GCGVKIPGme

2 0.1
K 0.75 2
K151 5015® 0.3K,
14K, 2 (07591 (3 (01s+1(s+0.15)+0.3K,
0.Is+1 s+0.15 “2nd-order open-loop TF”
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» Example. Liquid storage tank

0.3K 5
H(s)= £ -
(0.1s+1)(s+0.15) +0.3K, s

et > o) = Islgg SE(s) = LILT(]) s(g —H(s))=5- Ll_r)r(]) s(H(s))

. . 0.3K 5 1.5K
lims(H(s))=Ilim| s c = c
s—0 s>0|  (0.1s+1)(s+0.15)+0.3K, s | 0.15+0.3K,
e(t—>oo):5_&

0.15+0.3K,

K., — oo:offset =0

— Again, as controller gain increases the offset
decreases. However higher value of K. will give
oscillatory response.

Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Liquid storage tank
— We have already studied the dynamic behavior of 2nd-
order TF with step change of the general form:

K
H(s)=
®) s(z%s® + 255 +1)
— Let us rewrite the response equation to have this form:
H(s) = 0.3K, 5
(0.1s+1)(s+0.15)+0.3K_ s
_ 1.5K,/(0.15+0.3K,) _ K
s 0L @, 105 T v 2ms+])

0.15+0.3K,  0.15+0.3K,

_ 15K, . _ 0.1 oo 1.6049
0.15+0.3K_ "’ (0.15+0.3K,)"” ,/(0.15+0.3K,)
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1

» Example. Liquid storage tank
— At critical damping coefficient; {=1:
= K, =8.086

.6049

£=1= J(0.15+0.3K,)

= The response is:
— Critically damped (£=1 :K.=8.086): H(t) = K[l—(1+t/r)e*‘/f]

— Overdapmed (£>1 :0 < K < 8.086):
re ' — el . e
T =417, ¢ 2@

H(t)= K{l—
L7
— Underdapmed (£<1: K.> 8.086):
H(t) = K{l—e?{cos(athmﬂ ya =1;§2
atT T

T, +7,

Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Liquid storage tank

. Overdapmed response: Underdamped response
L mmmmmmmmmoos 8 Kc=10
el : - —- Kc=100
i i - Ke=200
/ 6 Ly
3 / Py
// = II_ '\\/ TN e s o o e e e
r s 4 :
2 A Ke=1 _'II
/ -—- Ke=5 !
11 / Kc=8 2
1
0 0
10 20 30 40 50 0.0 0.5 1.0 15 2.0
time; min

time; min

— For underdamped response: as K. increases oscillations

and overshooting increase.
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» Example. Liquid storage tank

— At decay ratio, DR=0.25:

DR = 0.25 = 2% =5 — £ _ 0,215
1.6049

£=0.215=
J(0.15+0.3K,)

— K, =185.2

— Therefore, the controller gain must not exceed 185.2 to
have decay ratio less than or equals to 0.25. At this gain
value, the offset is: 1 5185 2

et —>00) =5 SK, .5(185.2)

_5_ =0.013ft
0.15+0.3K, 0.15+(0.3)(185.2)

T= 0.1 =0.0424 min
(0.15+0.3K,)

— Settling time: t; = —7In0.05/& = 0.59 min

Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. Liquid storage tank
L) If PI controller is used instead of P controller. Do you
think that this controller is able to eliminate the liquid
height offset for step changes in either set point or flow
rate of stream 2? Assume zero-order TF for control valve.

—Pl controller: G (s) = KC(1+—1 ) =K, nstl
7,8 7S
0.3G, 01

=<t H . () +—mmm—— S
$+0.15+0.3G, () s+0.15+0.3G, % ()

03K, 7,5+1
7,8 0.1

= Hgp(s)+
$+0.15+0.3K,

H(s)

Q,(8)

5+0.15+0.3K, 1S+ nstl
7,8 7,8

3 0.3K, (7,5 +1) Heo(s)+ 0.1z;s
7,5(s+0.15)+0.3K (r,s+1) "~ 7,5(s+0.15)+0.3K (7,5 +1)

Q,(s)
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= Example. Liquid Storage tank

0.3K,7,5+0.3K,

_ 0.1zrs
7,8° +(0.15+0.3K,)7,5+0.3K,

H(s) ;
7,52+(0.15+0.3K )7,5+0.3K,

Hep(S)+

Q,(s)

—Step change in set point: Hg(s)=a/s;Q,(s)=0

— Using final value theorem:

H(t = 00) = lim sH (s) = lim| —,—20:3Ke S 0.3K,) .
550 20| 7,8° +(0.15+0.3K;)7,5+0.3K,

et >0)=H, (t >0)-H({t —>x)=a-a=0

= For servo problem, PI controller eliminates the offset for
any value of gain and integral time.

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

0.3K,7,5+0.3K,

- 0.1zs
7,8°+(0.15+0.3K ) 7,5 +0.3K,

7,87 +(0.15+0.3K ) 7,5 +0.3K,

H(s) Hsp(8)+

Q,(8)

—Step change in g,: Hg(S)=0;Q,(s)=b/s

— Using final value theorem:

H (t — o) = lim sH (s) = lim| — b0.1z;s =0
50 >0/ 7,8°+(0.15+0.3K,)7,5+0.3K,

et >0)=H,(t—>0)-H({t—>x)=0-0=0

= For regulatory problem, PI controller eliminates also the
offset for any value of gain and integral time.
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Control System

» Example. Liquid storage tank
m) For regulatory problem in the previous part, how the
integral time affects the response for step changein g, of 3
ft3/min:
— This is regulatory problem: Hg.(s) =0

— Step change in g, 0f 3: Q,(s)=3/s

H(s)= 0.1s7, g

7,5’ +(0.15+0.3K )7,5+0.3K,
0.3

s?+(0.15+ 0.3K,)s+ 0.3&
7

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank
H(s) = 0.1s7, 3
7,5°+(0.15+0.3K,)7,5s+0.3K, s
_ 0.3r,
7,8° +(0.15+0.3K,)7,5 +0.3K,
7, /K, _ K
T, 52 n (015+03Kc) TIS+1 (TZS+ZT§S+1)
03K, 0.3K,
(0.15+0.3K,) .

7

7
T=
0.3K,

K="l
K

0.6K, -1 ‘
0.3K,

— From Laplace transform tables:

K i
H(t) = ——— e sin(y1- 2t/ 7); 0< 1

;&=
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Control System
» Example. Liquid storage tank

= Response for regulatory problem with Pl controller:

0.4
03 —— K_=0.5; 1,=0.2 min
’ — — . K.=0.5; ,=0.5 min
0.2 K.=0.5; t,=1 min
; - = - K.=0.57=2 min
01§
0.0 - - -
. L Ve
-0.1 -
0 10 20 30 40
time; min

— With PI controller, decreasing t, lead to more overshooting,
less oscillation and less settling time(faster response).

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

= Response for regulatory problem with PI controller:

0.8
06 7,=5 min; K =1
5 — — 1,=5min; K.=3
0.4 " ! 7,=5 min; K .=6
=
. - == 1,=5min; K =20

0.2

0.0

-0.2

0

20 30 40
time; min

— With PI controller, increasing K, lead to more overshooting,
less oscillation and less settling time (faster response).
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» Example. Liquid storage tank
n) If PID controller is used. How the derivative time
constant will affect the response of regulatory problem
with step change disturbance. The control valve TF is zero
order. K

—PID controller: G (s) =K, +_;+ K.rps =K,

’ 0.1 b
§)=————Q,(s
) s+0.15+0.3G, % ()

- 0.1 Q,(5)

2
5+0.15+0.3K, "1ToS F7isHL

7,758° +7,5+1

7,s

7,5
3 0.1zs
7,5(5+0.15) +0.3K, (7,752 +7,5+1)
3 0.1zs
* (r, +0.3K 7,7,)s? +(0.157, +0.3K 7, )5 +0.3K )

Q,(s)

Q,(8)

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

— This is regulatory problem: Hg(S) =0

— Step change in g, of , for example, 3: Q,(s)=3/s
H(S) = : 0.1s7, 3
(r, +0.3K,7,75)s" +(0.157, +0.3K,7,)s +0.3K, s
) 0.37, /0.3K, _ K
7, +0.3K, 7,7, e (0.15¢, +0.3KCT|)S+1 (r%s+ 2155 +1)
0.3K, 0.3K,

L |4 +0.3K,7,7p e (0'15+O'3K°);K _ T
0.3K, 0.6K.7 K.

—From Laplace transform tables:

1 .
H(t) = ———e ¥ sin(y1- 2t/ 7): 0<|d<1

Dr. Mohammad Al-Shannag 31/48



Process Dynamics and Control Course

Dynamic Behavior and Stability of Closed-Loop

Control System
» Example. Liquid storage tank

= Response for regulatory problem with PID controller:

0.4

0.2

=
—~ 00

=2 min; K=0.5;15=0 min

-0.2

—— =2 min; K=0.5;1p=2 min

04 SoE2 min; K=0.5;1p=5 min

- 1122 min; KC:O.S;rDzlo min

0 10 20 30 40 50 60
time; min
— With PID controller, increasing t, lead to less
overshooting, less oscillation and large settling time (slower
response).

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

0) A feed-back control system with P controller is built now
in which the flow rate of the outlet stream is chosen as
manipulated variable. The controller signal in electric. The
control valve on the outlet stream is A/O pneumatic one
with a linear trim. When the control valve is fully opened
the flow rate is 24 ft3/min. The level transmitter has a span
of 8 ft.

» Draw the liquid height closed-loop feedback control system.
» Draw the corresponding transfer function block diagram.

» Derive the closed-loop transfer functions between H, Q, Q;
and Q..

» Will the P controller eliminate the offset for servo and
regulatory problems of step changes? Why?
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» Example. Liquid storage tank

Cylindrical tank @
A=10 ft2 ?
h
(Lo} e
£ q

Control valve

“Liquid level closed-loop feedback control system”

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

HSP

0 N T T o 1D

H

m IG IA
ol

“Transfer function block diagram for liquid level closed-loop
feedback control system”
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GGK.GG
H(s) = ——eovoe®etn g oy Gy Q.(s) +
1+ G.G,K,G,G, 1+G.G,KG,G,

G
4z Q,(s)
1+ G.G,K,.G,G,

= Since the outlet flow rate is now manipulated variable, it is
classified as input variable. This means that the only output
variable is the controlled variable 4. This means that the
dynamic model consists now of MB only:

dH L 1 1 1

A =Q+Q-QoH() = Qi+ Q- Q

=G0 =n & L. (RO _ 1.5 HO__ 1
Q(s) As Q,(s) As Q(s) As

— This is integrating system

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

~0.3K, /s 0.1/s

H(s) = Hep(8) + —————Q,(s) +
(%) 1-0.3K_/s 5o (S) 1—0.3KC/sQ1()
0.1/s
————Q,(s
1—0.3KC/SQ2( )
— Servo problem: Hgp(s)=a/ls ; Qi (s)=Q,(s)=0
H(s) = -03K, a
s—-0.3K, s

H (t = o0) = lim sH (s) = lim| —2=2Ke [_ 5
s—0 s—0 S_O'3Kc

et >0)=H_ (t >o)-H({ —>x)=a-a=0
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» Example. Liquid storage tank

— Regulatory problem: Hg,(s)=0 ; Q,(s)orQ,(s)=b/s

01s b

H(S)=————F—
=) s—0.3K; s

H (t — o0) = lim sH (s) = lim| —225 _ [_¢
s—0 s—0 S—0.3KC

e(t >o)=H(t—>00)-H({—>w0)=0-0=0

= For integrating systems, P controller eliminates the
offset.

Dynamic Behavior and Stability of Closed-Loop

Control System
= Example. Liquid storage tank

— Response of regulatory problem for step changein q;

01s b 0.1b

H(s) = —=
s—0.3K,s s-0.3K,

— H(t) = 0.1be’3!

= To have stable response, the controller must work on
the direct mode (K, <0).
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Control System
» General conclusions on feedback closed-loop control
systems:
* As K, increases: less offset, the response will be faster,
more overshooting, less oscillation.
* Integral mode eliminates the offset.
* As 1, decreases: the response will be faster, more
overshooting, less oscillation.
* As 1pincreases: the response will be slower, less oscillatory,
less overshooting ( when there is no noise).
* Increasing 1, gives the opportunity to increase K_ in order to
enhance the speed of the response.
* P controller eliminates the offset of integrating process
* For integrating process, the controller must work on the
direct mode (K, <0).
* The derivative control does not change the order of the
open-loop transfer function of the closed-loop control system.

Dynamic Behavior and Stability of Closed-Loop

Control System

Example. A continuous stirred-tank reactor( CSTR) is used
to produce a compound B according to the liquid-phase
elementary reaction 2A— B. The reactor has a constant
volume of 1 m3. The reaction rate constant is 0.2 m3/mol. The
desired steady-state conditions are: feed flow rate is 0.05
m3/min and the feed concentration of component Ais 1 mol/m3.
A feedback control system is built to control the concentration
of component A inside the reactor by manipulating the feed
volumetric flow. The control loop has: concentration transmitter
with zero-order transfer function and gain of 0.8 mA/(mol/m3);
A/O control valve with zero-order transfer function and gain of
0.04 m3/min/psig. If the loop has P-controller only with gain of
10 and a step change of 1 mol/m3 occurred in the feed
concentration of component A, Find:

a) The offset in concentration of componentA .

b) The corresponding settling time.
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Control System
Example. CSTR

Feed stream:(; ;Cy

._ : Crsr Mixer

Dl
Effluent stream
0;CaiCq
V =1m?
CarCq

“Concentration closed-loop feedback control system”

Dynamic Behavior and Stability of Closed-Loop

Control System
Example. CSTR Cai

E Q;
o L P o I e N o O

Cam Ca

| i

“Transfer function block diagram for concentration closed-loop
feedback control system”

GCGVKlpGme G,
Ca(s)= CA,SP (s)+ CLi(5)
1+ GCGVKlpGme 1+GCGVK|PGme
C,(s)=1/s

Carsp(8)=0  “Regulatory problem”
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Example. CSTR

= Total MB:dd—\t/:qui—q:>q=qi
= Component A mole balance:

dn, _dc,V v dc,
dt dt dt

=Cnli —C Q- (_rA)V

Elementary reaction: (—r,) =kc,’
dc 2
=V d_tA =Cili —CAG; _kCA V
= | inearize the nonlinear terms:

fl(CAi’qi):CAiqi ;fz(cmqi); fa(CAZ)

Dynamic Behavior and Stability of Closed-Loop

Control System
Example. CSTR

_ _, of _ _
f(Ca 0) =Cul = fl(CAiiqi)+a_1 (0 -0)+— (Ci —Cu)
i1oy.0; Al ley
=Cp0; +Cy (qi _qi)+qi(CAi _(_;Ai)
_ _, of _, of _
fZ(CA’qi):CAqi = fl(CA’qi)+a_1 (qi _qi)+a_1 (CA_CA)
A

Ca:Gi

Ca:Ti

=C,0; +CA(qi _qi)+qi(CA_6A)

(CA _(_:A) = CAZ + 2CA (CA - CA)

Ca

df
fo(Ca) =Ca" = f,(Cy) +—=
3(Ca) =¢y = T5(Ch) ac,

de, _ _ _ N - _
:>Vd_tA:CAiqi+CAi(qi_qi)+qi(CAi_CAi)_

€0, —Ca(q, —G,)—G;(C, —C,) —kVE,” —2KVE, (Cp —Cp)ervennnn(l)
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Example. CSTR
= Steady-state component A mole balance:
=0=CyT, —Co0 —KVC," oo (2)

g =0.05m*/min; ¢, =1mol/m*k =0.2m*mol; V =1 m®
0= (1)(0.05) - 0.05¢, — (0.2)(1)c,’

0.2¢,”+0.05¢, —0.05=0
— Solve to obtain the steady state concentration:

C, = 0.64 mol/m®
= Subtract Eq. 2 from (1) to obtain dynamic equation in
deviation form:

\% d;iA =CxQ +7,C, —C,Q, —7,C, —2kVC,C,
dc, . _ _ _
\Y at =(Cy —Ca)Q; +T,C, — (T +2kVC,)C,

Dynamic Behavior and Stability of Closed-Loop

Control System
Example. CSTR

A — (1-0.64)Q, +0.05C,, —[0.05+(2)(0.2)(1)(0.64)]C,

dc
4

d

dc,

=~ A +031C, =0.36Q +0.05C,

» Take Laplace Transform and rearrange:
0.36 0.05

510312 1031

_C,(s) 036

T Q(s) s+031

C.(s)  0.05

C,(s) s+0.31

G, (s) = 0.8mA/(mol/m?);G, (s) = 0.04 (m*/min)/psig ;G_(s) =10

CA(S) =

=G, (s)

Gy(s)=
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Example. CSTR

0.05
1_ 0.05
CA(S) — s+0. 31

1+(10)(0.04)(0.75) 2, o (08) ~ 5(5+0.396)

C,(t > )= Img sC,(s) = 0.126 moI/m
Offset =0—C, (t — o) = —0.126 mol/m*®

» Take Laplace Inverse of C,(s):
C,(t) =C,(t)—0.64 =0.126 —0.126e ****
= C,(t) =0.766—0.126e %%

= Settling time: ¢_ () = (0.99)(0.766) = 0.766 —0.126e ****
=t =7.1min

Dynamic Behavior and Stability of Closed-Loop

Control System
= Effect of dead time, ty on the closed-loop performance:

» In most real chemical processes, the
closed-loop response has a delay of a
dead time t;. %

= In such circumstances, it is evident
that the nominator of the open-loop _. <_ Time
transfer function of the real closed-loop t
system has the exponential term ;g ~%°

» This mean that the real transfer function of some
closed-loop elements has this exponential term.

K eftds
m
7,S+1

EXx.: G, (s)=
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= Effect of dead time, ty on the closed-loop response:

» The presence of dead-time exponential term in the
nominator of the open-loop transfer function of the closed-
loop system will be principal source of instability for the
chemical process systems.

Exercise. Try G, (s) = 2e " in the previous example.

» In the absence of dead time:

= a closed-loop system is stable (overdamped or
underdamped) if its open-loop transfer function is of first-
or second-order. In this case it is NOT difficult to decide
the optimum controller parameters.

» a closed-loop system may become unstable if its open-
loop transfer function is of third-order or higher. In this
case, it is difficult to decide the optimum controller
parameters = There is a need for controller tuning.

Dynamic Behavior and Stability of Closed-Loop

Control System

= Controller tuning: deciding what values of the controller
parameters (K., 1,, Tp) to be used in order to achieve stable
response with convincing performance.
» Remark. Controller tuning is very important if the open-
loop transfer function of the closed-loop system has dead
time exponential term or if it is of third-order or higher.
Otherwise, unstable response may arise.

» There are some simple criteria used in controller tuning
such as one-quarter decay ratio, minimum settling time,
minimum largest error, minimum offset, and so on.
» The most common criteria are based on minimizing the
offset with one-quarter decay ratio such as:

= Open-loop Cohen-Coon method.

» Closed-loop Ziegler-Nichols method.
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= Controller tuning

» Other tuning criteria are based on minimizing the following
integral errors:

= Minimize Integral of the Absolute Error (IAE):

Min IAE = [ e(t)dt
0

» Minimize Integral of the Square Error(ISE):

Min ISE =T[e(t)]2dt

» Minimize Integral of the Time-weighted Absolute Error
(ITAE):

Min IAE = [tje(t)|dt
0

Dynamic Behavior and Stability of Closed-Loop

Control System
= Cohen-Coon tuning method:

= |t is developed experimentally by Cohen and Coon.

= [tis known as process reaction curve method.

» Procedure:
1. Open the feedback control loop by disconnecting the

controller output line. Q.
P(s)=Als

Q \/
e Lo RE PR

| St
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Dynamic Behavior and Stability of Closed-Loop

Control System
» Cohen-Coon Tuning Method:

2. Introduce a step change of magnitude A in the variable P(s):
P(s)=Als
3. Write the transfer function between H,,(s) and P(s):

H,.(s)
P(s) =Gpre () =G, KpG, G,

A
Hm(S) = Gpgc (S)P(s) = GVKIPGme g

4. Obtain H,,(t) by taking the Laplace inverse of H(S).

H_(t) = L‘l[GVK,F,Gme ﬂ

5. Draw H,,(t) versus t. If the resulted curve has sigmoidal
shape (S shape) which is called process reaction curve, go

to step 6. Otherwise, stop and conclude that Cohen-Coon is
not applicable for controller tuning.

Dynamic Behavior and Stability of Closed-Loop

Control System
= Cohen-Coon Tuning Method:

6. Determine the following parameters from the process
reaction curve:

H_(s) Ke™®
G §)=—I"">+=
ere (9) P(s) 5+1
K_AOutput_ H,t>o)-H,t—>0) _B
Alnput P(t —»x)-P(t—0) A
—>7=B/S

Where S is the slope of the “Sigmoidal curve”
sigmoidal curve at the point of #:®

inflection. Sloper=3
t, is the dead time approximated &
at the intersection of the tangent Inflection point

line(of slope S) with t-axis. 0 ta :

“Cohen coon relation”
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Dynamic Behavior and Stability of Closed-Loop

Control System
» Cohen-Coon Tuning Method:

7. Calculate the controller parameters as follows:

= For P controller: K. =ii(1+tij
K t, 3r

» For Pl controller: K, 1z 0.9+ o
K t4 127
30+3t, /7

ST g o0t It

4 td . 32+6t, /7
R P

3 4r 13+8t, /7

B S
P2t /r

= For PID controller: K, i ‘ (

Dynamic Behavior and Stability of Closed-Loop

Control System

= Example. In the previous example, suppose that the
control valve transfer function is first-order with time
constant of 2 min, and the level transmitter has also first-
order transfer function with time constant of 1 min. Use
Cohen-Coon method to tune the parameters for P, PI, or
PID controller.

P(S)=A/s=1/s;Gm=i;GV:L Kp =0.75G, = 0.1
s+1 2s+1 s+0.15
1 2 2 01

H, () =Gpe (5 —KGGG 0.75

(%) =Cerc (5)° GG =0 s 08

B o.3
s(2s+1)(s+1)(s+0.15)
H, () =L" 0.15 _
s(s+0.5)(s+1)(s+0.15)

=2+1.7143e %% —3.3613e %™ —0.3520¢™
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Dynamic Behavior and Stability of Closed-Loop

Control System
» Cohen-Coon Tuning Method:

3.0
2.5
2.0 7 ]
=) Vi /
= 1.5 V4
£ o
—> Draw H,,(t) versus t. T A =
— Draw the tangent line at 10 ]
the inflection point (red linflection pojnt
. 0.5
dashed line). /
— Pick up two points that )

0.0
coincide on the tangent line o/ 5 10 15 20 25 30
to calculate the slope S:

(t1,H1)=(3.5,0.3) t,=1.75 min
(t,Hmo)= (12,1.7)

= Slope= S =(1.7-0.3)/(12/3.5)=0.165 ft/min
» B =2-0=2ft; t=B/S=2/0.165 =12.12 min; K=B/A=2/1=2 fUmA

time; min

Dynamic Behavior and Stability of Closed-Loop

Control System
= Cohen-Coon Tuning Method:

— Calculate now the controller parameters using: K=2 ;t=
12.12 min ; £71.75 min

= If P controller: K, =11(1+ti)=3.63
K t, 3r
) 1< ty
= |If Pl controller: K,=——|0.9+—-|=3.16
K t, 127
7, =t, 3043 /7 _ 4.48min
9+20t, /7
=If PID controller: K, :ii(ﬂ+tij:4.74 ;
Kty \3 4r
7, =t 32+—Gt"/1=4.06min ;7o 4 =0.62min

1= 4 =ty
13+8t, /7 11+2t, /7
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Dynamic Behavior and Stability of Closed-Loop

Control System
= Ziegler-Nichols tuning method:

= [tis developed by Ziegler-Nichols.

» Unlike Cohen Coon method, it is a closed-loop tuning
technique.
* Procedure:
1. Bring the system to the desired steady-state.
2. Use proportional controller only with feedback loop
closed.
3. Introduce a set point change.
4. Vary the proportional gain K, until the system oscillates
continuously. The frequency of continuous oscillation is
called crossover frequency .,
For open-loop transfer function of the form:

. (S)_ Ke s
T (s + D (7,5 + 1) (7,5 +1)

Dynamic Behavior and Stability of Closed-Loop

Control System
= Ziegler-Nichols Tuning Method:

The crossover frequency o, can be found from:
— 7 =-t,m, +tan " (-r,m,, ) +tan (-1, ) +...+tan (-7, @, )

5. Find the amplitude ratio AR at that crossover frequency
using:

1 1 1
log AR = |OQ[WJ + Iog{m} +.o.+ Iog[m]

6. Compute the following two quantities:
» Ultimate gain; K,=1/AR

» Ultimate period of sustained cycling, P,=2x/ w,,
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Dynamic Behavior and Stability of Closed-Loop

Control System
= Ziegler-Nichols Tuning Method:

7. Calculate the controller parameters as follows:

Controller K. T T
P Ku/2 - -

Pl Ky/2.2 Py/1.2 -

PID Ky/1.7 Pyu/2 P./8

Note that for PID controller, 1, =4 1

Remark. According to Bode criterion the value of amplitude
ratio at cross over frequency decides the stability of the
closed-loop system:

If AR<1: Closed-loop response is stable

If AR>1 : Closed loop response is unstable

Dynamic Behavior and Stability of Closed-Loop

Control System
= Ziegler-Nichols Tuning Method:

= Example. Use Ziegler-Nichols method to tune P, PI, or
PID controller parameters of the previous example.

2 2 01
G. (s)= K. GG G.G. =(0.75)K
o (8) =KpG.G, GG, = (0.79K. 5 = o S 015
0.3K, Ke™*

B (2s+1)(s+1)(s+0.15) - (7,8 +D (7,5 +1) (7,5 +1)
=1,=27,=17,=1/0.15;t, =0; K = 2K,
-7 =tan*(—q,m,, ) +tan (-, @, ) +tan " (—r,m,,)
—r=tan* (2w, ) +tan ™ (-lw, ) + tan (-, / 0.15)
Solving this Eq., gives crossover frequency:
®., =0.852 rad/min
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Dynamic Behavior and Stability of Closed-Loop

Control System
= Ziegler-Nichols Tuning Method:

1 1 1

=log ! +log 1 +
J(0.852x1) +1 J(0.852x2) +1

s
J(0.852/0.15) +1

= AR =0.2133
— Ultimate gain; K,=1/AR=4.69

— Ultimate period of sustained cycling:
P,=2n/®., =21/0.852=7.38 min/cycle

Dynamic Behavior and Stability of Closed-Loop

Control System
= Ziegler-Nichols Tuning Method:

K, = 4.69; P,=7.38 min/cycle

= |If P controller:  K,=K./2=2.34

= |If Pl controller: : K.=K,/2.2=2.14
1= Py/1.2=6.15 min

= |If PID controller: K, =K, /1.7=2.76
1= Py/2=3.69 min
1p= P/8=0.92 min
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