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“Standard block diagram of closed-loop feedback control system with 

one disturbance”
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 Closed-Loop Transfer Functions:

 Using additive and multiplicative properties of transfer

functions, previously explained:

 Transfer function between controlled variable and its

set point (Servo problem: change in set point; no

changes disturbances):

Transfer function between controlled variable and its

disturbance/load (Regulatory problem: changes in set

disturbance; no change in set point disturbances:
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 The closed loop becomes open when the feedback path is

broken. The open-loop transfer function is:
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 For simultaneous changes in set point and disturbance:
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 Mason’s Rule: for closed-loop control systems with negative

feedback, the transfer function between Y and X is given by:
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 Product of the transfer functions in the path from X to Y

Product of all transfer functions in the entire feedback loop

 If the control loop has positive feedback: 

e

f

sX

sY








1)(

)(



Process Dynamics and Control Course

Dr. Mohammad Al-Shannag 3/48

Chapter 2Mathematical Modeling of Chemical ProcessesChapter 2Dynamic Behavior and Stability of Closed-Loop 

Control System

Example. For the control loop shown below, find the transfer

functions Y/R, Y/L1, and Y/L2, :

Solution:
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Transfer function Y/R:

Transfer function Y/L1 :

Transfer function Y/L2:



Process Dynamics and Control Course

Dr. Mohammad Al-Shannag 4/48

Chapter 2Mathematical Modeling of Chemical ProcessesChapter 2Dynamic Behavior and Stability of Closed-Loop 

Control System

Example. For the control loop shown below, find the transfer

functions Y/R and Y/L:

Solution:
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 Stability of closed-loop control system:

General stability criterion: A linear system is stable if

and only if all roots (poles) of the denominator in the

transfer function(TF) are negative or have negative real

parts. Otherwise, the system is unstable.

 To find the roots (poles) of the denominator in TF:

Denominator of TF=0 “Characteristic Eq.”

 For standard closed-loop feedback control system, the

characteristic Eq. is:

0101 OL  GorGGGG pvcm
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 Stability of closed-loop control system:

 The roots (poles) of the characteristic equation (s - pi)
determine the type of response that occurs:

1. Real positive roots  Unstable response.

2. Real negative roots  Stable system without oscillation

3. Complex root with negative real part  Stable

oscillatory response.

4. Complex roots with positive real parts  Unstable

response.

Remark. Stability criterion help us to decide the action of 

controller whether reverse or direct.
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 Stability of closed-loop control system:

Stability regions in the complex plane for the roots of 

characteristic Eq.:

 If all roots in left half of complex plane  stable system



Process Dynamics and Control Course

Dr. Mohammad Al-Shannag 6/48

Chapter 2Mathematical Modeling of Chemical ProcessesChapter 2Dynamic Behavior and Stability of Closed-Loop 

Control System

 Example. Standard closed-loop feedback control system has

proportional controller, A/C control valve, and transmitter. The

process has first-order transfer function with positive gain and

space time of 9 min. Does the controller have reverse or direct

action to achieve stable response?
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Since :             (A/C control valve);               ; and            ;

the controller gain must be negative(           ): 

 Direct action

0vK 0pK0mK

0cK
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 Example. Study the stability of standard closed-loop

feedback control system with:

)15/(1;1);12/(1;  sGGsGKG pmvcc
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Reverse acting controller

(Kc < 0)satisfies this condition.
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 Sometimes it is difficult to determine the nature of the

poles of characteristic equation. In such case, root-finding

techniques can be used to estimate the roots.

 Stability of closed-loop control system:

 Example. Study the stability of standard closed-loop

feedback control system with:

)15/(1);1/(1);12/(1;  sGsGsGKG pmvcc
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 Difficult to determine values of Kc such that s<0.

 Any alternative?! Yes, there are other stability criteria.
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 Stability of closed-loop control system:

A. Routh-Hurwitz stability criterion:

It is applicable for characteristic Eq. of the form:

0.... 01
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 Construct the Routh array:

Coefficients determinations:

“Polynomial form”
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 Stability of closed-loop control system:

A. Routh-Hurwitz stability criterion:

 A necessary condition for stability:

 all coefficients of characteristic Eq. (ai’s) are positive:

 A necessary and sufficient condition for stability:

 All of the elements in the left column of the Routh

array are positive.”
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 Example. Use Routh-Hurwitz stability criterion to study the

stability of standard closed-loop feedback control system given

in previous example:

0181710 23  cKsssCharacteristic Eq.:

– Necessary condition:
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 If any coefficient is not positive, stop and conclude the

system is unstable.

“For stability”
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- Necessary and sufficient condition:

Routh array: 1 a3 a1

2 a2 a0

3 b1 b2

4 c1

1 10 8

2 17 Kc+1

3 7.41-0.588Kc 0

4 1+Kc



Stable region:

“For stability without oscillation”

6.120588.041.7
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6.121  cK
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 Stability of closed-loop control system:

B. Direct substitution stability criterion:

 This stability criterion is based on the fact that the

imaginary axis is the dividing line between stable and

unstable systems.

 Procedure:

1. Substitute s = j into characteristic equation.

2. Obtain two equations: one for real part and the

another for imaginary part,

3. Solve the two equations to obtain values of Kcm and

. Where Kcm the maximum controller gain at which

the roots of characteristic equation crosses the

imaginary axis.

4. Determine the stable region by trying test values of

Kc in the characteristic Eq.
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 Example. Use direct substitution stability criterion to study

the stability of standard closed-loop feedback control system

given in previous example:

0181710 23  cKsssCharacteristic Eq.:

 Set s = j

 Try a test point such as: Kc=0

0181710 23  sss

 Thus, the stable /non-oscillation region is:

 Stable: All +ve coefficients:

6.121  cK

Real part Eq. :  

Imaginary part Eq. :  

Solve to obtain:
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 Example. Use direct substitution stability criterion to study

the stability of the system with the following characteristic Eq.:

0251  s

ceKs

set s = j: 0  e2  5  1 -   j

cmKj

 sin cose-  jj But, 

0)sin cos(2  5  1   jKj cm

Real part Eq.:  



cos

1
20cos2 1  cmcm KK

0tan50sin2 5   cmKImaginary part Eq.:  

Solve to obtain: 

4.25 

1.69





cmK



 Try a test point such as: Kc=0: 051  s

 Stable: All +ve coefficients: 25.4cK
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 Example. Use Routh-Hurwitz stability criterion to study the

stability of the system with the following characteristic Eq.:

0251  s

ceKs

This characteristic Eq. does NOT have polynomial form to

use Routh-Hurwitz stability. It can be rewritten in a

polynomial form using 1/1 Pade Approximation:
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 Necessary condition:

5.55.0

5.0021

5.505.5

0

1







c

cc

cc

K

KKa

KKa

“For stability without 

oscillation”

 Necessary and sufficient condition:

Routh array: 1 a2 a0

2 a1 0

3 b1

1 2.5 1+2Kc

2 5.5-Kc 0

3 1+2Kc 0


5.55.0

5.0021

5.505.5







c

cc

cc

K

KK

KK

Remark. In this example, Routh array does not add

additional information but it confirms the stable region.
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 Exercise. Resolve the previous example using 2/2 Pade

approximation( more accurate than 1/1) given by:

 Routh-Hurwitz stability criterion with 1/1 Pade

approximation of the exponential term gives maximum

controller gain of Kcm=5.5. The exact value resulted from

direct substitution criterion is Kcm=4.25. The percent relative

error is around 28%.

 Routh-Hurwitz stability criterion with 2/2 Pade

approximation of the exponential term gives maximum

controller gain of Kcm=4.29. The percent relative error is

around 1%.

 Stability of closed-loop control system:
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 Stability of closed-loop control system:

Root locus diagram: Complex plane diagram shows the

location of closed-loop poles (roots of characteristic

equation) depending on the parameter value such as

controller gain Kc (single parametric study).

 It can be built by finding the roots at a different values of

the parameter under investigation such as Kc.

 Example. Consider a feedback control system with open-

loop transfer function:

Plot the root locus diagram for 0  Kc20

)3)(2)(1(

4
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 Stability of closed-loop control system:

Root locus diagram

04)3)(2)(1(0)(1  COL KssssG

Characteristic Eq. :

- At Kc = 0 (no controller; open loop): roots= -1,-2,-3

- At Kc =0.1: roots=……

- At Kc=1; roots=……

- At Kc=5; roots =…..

- At Kc=15, roots= -6,3.5j,-3.5j

 Localize these roots at each Kc on the complex

plane to plot the root locus diagram.
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 Stability of closed-loop control system:

Root locus diagram

 It is clear from root locus diagram that:

1. The closed loop system is unstable for Kc >15.

2. The closed loop response will be stable for 0.1<Kc <15.
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 Example. Liquid storage tank with two inlet streams and

one outlet stream as shown below:

a) What is the dynamic model that describe the liquid

height variation with time? Perform DOF analysis.

h

Cylindrical tank

A=10  ft2

q2 q1

q
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 Example. Liquid storage tank

 DOF Analysis:

 NF = NV - NE

NV = 4  (q1, q2, q , h)

NE = 2 (MB, MEB)

NF = 4-2 = 2→ two input variables should be specified.

 The output variables: q and h

 Input variables: q1 and q2

 Parameters: A, , Cv , and Cc  (See topic II).
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 Example. Liquid storage tank

 Mass Balance ( under constant density assumption):

qqq
dt

dh
A  21

 Dynamic model:

 Mechanical Energy Balance(MEB); (see topic II):

hRq 

vc CC

gd
R




1

2

4

2
where

hRqq
dt

dh
A  21
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 Example. Liquid storage tank

b) Write the model in deviated form:

)(
2

1
)()()()( hh

h
hhh

dh

df
hfhfhhf

hh




Linearize the nonlinear terms in the dynamic equation

around the desired steady state (denoted by overbar):

the only nonlinear term nonlinear term is :

)1(....................)(
2

21 hh
h

R
hRqq

dt

dh
A 

hRq 

Steady state Eq.: )2........(..........00 21  hRqq

and

Subtract Eq. 2 from Eq. 1 to have: H
h

R
QQ

dt

dH
A

2
21 

h
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 Example. Liquid storage tank

c) Write the transfer functions between the liquid height and

flow rate of stream 1 and stream 2. Is this stable process?

)(

2

/1

)(

)(

)(

)(

)(
)2(

1
)(

)2(

1
)(

)()()(
2

)(

21

21

21

sG

Ah

R
s

A

sQ

sH

sQ

sH

sQ
hRAs

sQ
hRAs

sH

sQsQsH
h

R
sAsH















Take Laplace transform of deviated dynamic model:

“First-order TFs”

It is stable process since the root of characteristic Eq. is

always negative: 0)2(  AhRs
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 Example. Liquid storage tank

d) If the outlet flow rate was 18 ft3/min at liquid height of 9

ft what is the value of the coefficient R?

min/ft6918 2.5 RRhRq MEB:

e) It is desired to operate the process steadily with liquid

height of 4 ft. If the inlet flow rate of stream 2 is 5 ft3/min,

find the steady-state flow rates of stream 1 and outlet

stream.

/minft7/minft12;/minft5

0

3

21

33

2

21





qqqqq

qqq

min/ft1246 3q

 Steady MB:

 MEB:
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 Example. Liquid storage tank

f) Now a step change disturbance occurs suddenly in the

flow rate of stream 2 to become q2=8 ft3/min and remains at

this new value. While flow rate of stream 1 remains as

before (q1=7 ft3/min). Find the liquid height response and

the steady-state offset. Approximate the settling time.

)()()()()( 21 sQsGsQsGsH 

No change in flow rate of stream 1  0)(1 sQ

Step change in flow rate of stream 2 0)(2 sQ

s
sQqtqtQ

3
)(/minft358)()( 2

3

222 

15.0

1.0

)1042(6

10/1

)2(

/1
)(










ssAhRs

A
sG
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 Example. Liquid storage tank

tetH
sss

B

s

A

ssss
sQsGsH

15.0

2

22)(
15.0

22

)15.0(

)15.0(

3.03

15.0

1.0
)()()(















1
L

0ft20)()(  tHHte
sp

 Steady-state offset e(t):

 When disturbance occurs, the liquid height will not

return to the desired steady-state height. This means

that there is a need for controller.

 The actual height, h, varies with time according:

teth

hthtH
15.026)(

)()(



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 Example. Liquid storage tank

 The new steady-state value(t) of height is:

ft6)( th

This is approximate value since it came from the linearized

model. The exact ultimate steady-state value of the liquid

height can be calculated from steady-state mass balance.

ft25.60

2

21
21 







 


R

qq
hhRqq new

 The percent error is 4 % (acceptable error, linearization is

good approximation).

 Settling time: to reach either 0.99 or 1.01 of the ultimate

steady state value (choose a suitable value to avoid

logarithm of negative value) :

min4.23

26)6(99.0
15.0






s

s

t

e
t

Chapter 2Mathematical Modeling of Chemical ProcessesChapter 2Dynamic Behavior and Stability of Closed-Loop 

Control System

 Example. Liquid storage tank

time, min

0 10 20 30 40

H
; 
ft

0

2

4

6

8

time, min

0 10 20 30 40

h
; 
ft

4

5

6

7

8

Offset = -2 ft 0  A need for controller to keep height at 4 ft

 Response of deviated

liquid height to step change:

 Response of liquid height

to step change:
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g) A feed-back closed-loop control system is built now to

remove/reduce the offset in the liquid height. The flow rate

of stream 1 is chosen as manipulated variable. The

controller signal is electric. The control valve on stream 1

is A/O pneumatic one with a linear trim. When the control

valve is fully opened, the flow rate is 24 ft3/min. The level

transmitter has a span of 8 ft.

 Draw the liquid height closed-loop feedback control system.

 Draw the corresponding closed-loop transfer function block

diagram.

 Write the closed-loop transfer functions between deviated

liquid height, H and deviated manipulated variable, Q1, and

deviated disturbance Q2.
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 Example. Liquid storage tank

h

Cylindrical tank

A=10  ft2

q2

q

“Liquid level closed-loop feedback control system”

q1

LT LC

I/P

Control valve

hSP
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-
+

HSP E
Gc

Q1 +
+

Gm

Hm H

H

Q2

P
GvKI/P Gp

Gd

Gm

“Transfer function block diagram for liquid level closed-loop

feedback control system”

)(
1

)(
1

)( 2 sQ
GGKGG

G
sH

GGKGG

GGKGG
sH

mpIPvc

d
SP

mpIPvc

mpIPvc






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 Gv(s): Assume zero–order control valve:

/minft24 31 



FOq

L

Q

vv KsG )(

Valve with linear trim 

psig

/minft
2

315

01
24

3

1 














P

L

L

Q
Kv

 Gm(s): Assume zero –order level-to-current transmitter:

mA/ft2
8

420
)( 


 mm KsG

 KI/P: Gain of current-to-pressure transducer

psig/mA75.0
420

315





IPK
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)(
3.015.0

1.0
)(

3.015.0

3.0

)(

15.0

1.0
31

15.0

1.0

)(

15.0

1.0
31

15.0

1.0
3

)(
)2)(2)(75.0(1

)(
)2)(2)(75.0(1

)2)(2)(75.0(
)(

2

2

2

sQ
Gs

sH
Gs

G

sQ

s
G

ssH

s
G

s
G

sQ
GG

G
sH

GG

GG
sH

c

SP

c

c

c

SP

c

c

pc

d
SP

pc

pc























15.0

1.0

)(

)(
)(

1 


ssQ

sH
sGp

 Gp(s): 

15.0

1.0

)(

)(
)(

2 


ssQ

sH
sGd

 Gd(s): 
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h) Suppose that a proportional controller is used. Verify

that the controller must work on the reverse mode.

 P controller: Gc(s)=Kc

03.015.0  cKs Characteristic Eq. :

)(
3.015.0

1.0
)(

3.015.0

3.0
)( 2 sQ

Ks
sH

Ks

K
sH

c

SP

c

c







 Root of characteristic Eq. :

5.015.03.00)3.015.0(  ccc KKKs

 To have regulatory or servo problem with stable non-

oscillatory response, Kc must be positive. Thus, the

controller must work on the reverse mode.
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i) If step change of 3 ft3/min occurs in the disturbance and

the liquid height set point remains the same, will the P

controller remove the offset? Show controller gain effect

on the offset.

0)( sHSP This is regulatory problem:

ssQ 3)(2  Step change in q2 of 3 

c

cc

cc

cc

Ks

K

s

K

Ks

B

s

A

Kss

sKs
sQ

Ks
sH

3.015.0

)3.015.0/(3.0)3.015.0/(3.0

3.015.0)3.015.0(

3.0

3

3.015.0

1.0
)(

3.015.0

1.0
)( 2




















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 

 tK

c

c

cc

ce
K

Ks

K

s

K
sHtH

)3.015.0(
1

3.015.0

3.0

3.015.0

)3.015.0/(3.0)3.015.0/(3.0
)()(






























 
 111

LLL

 For regulatory problem; steady-state offset e(t) is given

by:

c

s
sp

ss

K
tH

sHssHsHsssEte

3.015.0

3.0
)(

))((lim))()((lim)(lim)(
000







 For regulatory problem:

 as Kc increases the steady-state offset decreases.

 For regulatory problem with first-order open-loop TF:

Kc, offset = 0
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time, min

0 10 20 30 40

h
; 
ft

4

5

6

7

8

9

10

No controller, K
c
=0

P controller, K
c
=0.2

P controller, K
c
=0.5

P controller, K
c
=5.0

P controller, K
c
=100

Kc Offset; ft

0 -2.000

0.2 -1.429

0.5 -1.000

5 -0.182

10 -0.095

100 - 0.010

 It is clear that as Kc increases settling time and offset

decreases.

 tK

c

ce
K

th
)3.015.0(

1
3.015.0

3.0
4)(







 The actual height varies with time according:
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j) For step change in the set point from 4 to 9 ft and flow

rate of stream 2 remains at 5 ft3/min, Will the P controller

remove the offset? Study the effect of controller gain on

the offset.

sssHSP /5/)49()( 

 This is servo problem: 0)(2 sQ

 Step change in h of 3 :

   tK

c

c

c

cccc

c

c

c

c
SP

c

c

ce
K

K
sHtH

Ks

KK

s

KK

Kss

K

sKs

K
sH

Ks

K
sH

)3.015.0(
1

3.015.0

5.1
)()(

)3.015.0(

3.015.0/5.13.015.0/5.1

)3.015.0(

5.1

5

3.015.0

3.0
)(

3.015.0

3.0
)(

 





















1
L
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 For servo problem; steady-state offset e(t) is given

by:

c

c

sss

K

K
tH

sHssH
s

sssEte

3.015.0

5.1
5)(5

))((lim5))(
5

(lim)(lim)(
000







5)(:0  teKc
 Without controller: 

03.05.15)(:  teKc
 With controller: 

 For servo problem:

 As regulatory problem, as Kc increases the offset

decreases. Offset becomes zero when Kc.
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k) Suppose that the control valve transfer function is first-

order with time constant of 0.1 min and there is step

change in the set point of 5 ft. With P-controller only,

minimize the offset such that the decay ratio does not

exceed 0.25:
)11.0(2)1()(  ssKsG vvv 

c

c

c

c

mpIPvc

mpIPvc

SP

Kss

K

ss
K

ss
K

GGKGG

GGKGG

sH

sH

3.0)15.0)(11.0(

3.0

)2(
15.0

1.0
)75.0(

11.0

2
1

)2(
15.0

1.0
)75.0(

11.0

2

1)(

)(












0)(;/5)( 2  sQssHSP
 This is servo problem:

“2nd-order open-loop TF”

 Now:
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0:

3.015.0

5.1
5)(

3.015.0

5.15

3.0)15.0)(11.0(

3.0
lim))((lim

))((lim5))(
5

(lim)(lim)(

00

000


























offsetK

K

K
te

K

K

sKss

K
ssHs

sHssH
s

sssEte

c

c

c

c

c

c

c

ss

sss

sKss

K
sH

c

c 5

3.0)15.0)(11.0(

3.0
)(




 Again, as controller gain increases the offset

decreases. However higher value of Kc will give

oscillatory response.
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 We have already studied the dynamic behavior of 2nd-

order TF with step change of the general form:

)12(
)(

22 


sss

K
sH



 Let us rewrite the response equation to have this form:

)3.015.0(

1.6049
;

)3.015.0(

1.0
;

3.015.0

5.1

)12(
)1

3.015.0

015.1

3.015.0

1.0
(

)3.015.0(5.1

5

3.0)15.0)(11.0(

3.0
)(

22
2

ccc

c

cc

cc

c

c

KKK

K
K

sss

K

s
K

s
K

s

KK

sKss

K
sH




























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 At critical damping coefficient; =1:

8.086
)3.015.0(

1.6049
1 


 c

c

K
K



 Critically damped (=1 :Kc=8.086):

 Overdapmed (<1 :0  Kc> 8.086):

 Underdapmed (>1: Kc< 8.086):

 The response is:











 21
;

)sin(
)cos(1)(























t

teKtH

t

















21

21
21

1)(


  tt
ee

KtH
21

21
21

2
=;;









  tetKtH  )/1(1)(
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time; min

0.0 0.5 1.0 1.5 2.0

H
, 

ft

0

2

4

6

8 Kc=10 

Kc=100 

Kc=200 

time; min

0 10 20 30 40 50

H
, 
ft

0

1

2

3

4

5

Kc=1

Kc=5 

Kc=8 

Overdapmed response: Underdamped response

 For underdamped response: as Kc increases oscillations

and overshooting increase.
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 Therefore, the controller gain must not exceed 185.2 to

have decay ratio less than or equals to 0.25. At this gain

value, the offset is:

 At decay ratio, DR=0.25:

2.185
)3.015.0(

1.6049
215.0

215.025.0DR
)1/2( 2









c

c

K
K

e





ft013.0
)2.185)(3.0(15.0

)2.185(5.1
5

3.015.0

5.1
5)( 







c

c

K

K
te

min0.0424
)3.015.0(

1.0





cK


min59.0/05.0ln  st Settling time:
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L) If PI controller is used instead of P controller. Do you

think that this controller is able to eliminate the liquid

height offset for step changes in either set point or flow

rate of stream 2? Assume zero-order TF for control valve.

)(
)1(3.0)15.0(

1.0
)(

)1(3.0)15.0(

)1(3.0

)(
1

3.015.0

1.0
)(

1
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s
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s
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s
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G
sH

IcI

I
SP

IcI

Ic

I

I
c

SP

I

I
c

I

I
c

c

SP

c

c















































PI controller:  
s

s
K

s
KsG

I

I
c

I

cc






1
)

1
1()(



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 Using final value theorem:

)(
3.0)3.015.0(

1.0
)(

3.0)3.015.0(

3.03.0
)( 222

sQ
KsKs

s
sH

KsKs

KsK
sH

cIcI

I
SP

cIcI

cIc

















Step change in set point: 0)(;/)( 2  sQsasHSP

a
KsKs

KsKa
ssHtH

cIcI

cIc

ss















 3.0)3.015.0(

)3.03.0(
lim)(lim)(

200 



0)()()(  aatHtHte sp

 For servo problem, PI controller eliminates the offset for 

any value of gain and integral time.
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 Using final value theorem:

)(
3.0)3.015.0(

1.0
)(

3.0)3.015.0(

3.03.0
)( 222

sQ
KsKs

s
sH

KsKs

KsK
sH

cIcI

I
SP

cIcI

cIc

















Step change in q2: sbsQsHSP /)(;0)( 2 

0
3.0)3.015.0(

1.0
lim)(lim)(

200














cIcI

I

ss KsKs

sb
ssHtH





000)()()(  tHtHte sp

 For regulatory problem, PI controller eliminates also the 

offset for any value of gain and integral time.
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m) For regulatory problem in the previous part, how the

integral time affects the response for step change in q2 of 3

ft3/min:

0)( sHSP This is regulatory problem:

ssQ 3)(2  Step change in q2 of 3 :

I

c
c

cIcI

I

K
sKs

sKsKs

s
sH







3.0)3.015.0(

3.0

3

3.0)3.015.0(

1.0
)(

2

2







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c
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c

I
c

c

c

I

I

c

c

c

I

cI

cIcI

I

cIcI

I

K
K

K
K

K
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ss
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s
K

K
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KsKs

sKsKs

s
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









































;

3.0
6.0

)3.015.0(
;

3.0

)12(
1

3.0

)3.015.0(

3.0

3.0)3.015.0(

3.0

3

3.0)3.015.0(

1.0
)(

2
2

2

2

 From Laplace transform tables:

10);/1sin(
1

)( 2/

2



  



 te
K

tH t
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 Example. Liquid storage tank

time; min

0 10 20 30 40

H
; 
ft

-0.1

0.0

0.1

0.2

0.3

0.4

K
c
=0.5; 

I
=0.2 min

K
c
=0.5; 

I
=0.5 min

K
c
=0.5; 

I
=1 min

K
c
=0.5 

I
=2 min 

 Response for regulatory problem  with PI controller:

 With PI controller, decreasing I lead to more overshooting,

less oscillation and less settling time(faster response).

Chapter 2Mathematical Modeling of Chemical ProcessesChapter 2Dynamic Behavior and Stability of Closed-Loop 

Control System
 Example. Liquid storage tank

 With PI controller, increasing Kc lead to more overshooting,

less oscillation and less settling time (faster response).

time; min

0 10 20 30 40

H
; 
ft

-0.2

0.0

0.2

0.4

0.6

0.8

 
I
=5 min; K

c
=1


I
=5 min; K

c
=3

 
I
=5 min; K

c
=6

 
I
=5 min; K

c
=20 

 Response for regulatory problem  with PI controller:
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 Example. Liquid storage tank

n) If PID controller is used. How the derivative time

constant will affect the response of regulatory problem

with step change disturbance. The control valve TF is zero

order.

)(
)3.0)3.015.0()3.0(

1.0

)(
)1(3.0)15.0(

1.0

)(
1

3.015.0

1.0

)(
3.015.0

1.0
)(

22

22

22

2

sQ
KsKsK

s

sQ
ssKss

s

sQ

s

ss
Ks

sQ
Gs

sH

cIcIDIcI

I

IDIcI

I

I

IDI
c

c



























PID controller:  
s

ss
KsK

s

K
KsG

I

IDI
cDc

I

c
cc








1
)(

2 

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 Example. Liquid storage tank

0)( sHSP This is regulatory problem:

ssQ 3)(2  Step change in q2 of , for example,  3 :

c

I

c

c

c

DIcI

c

IcI

c

DIcI

cI

cIcIDIcI

I

K
K

K

K

K

K

ss

K

s
K

K
s

K

K

K

sKsKsK

s
sH







































;
6.0

)3.015.0(
;

3.0

3.0

)12(
1

3.0

)3.015.0(

3.0

3.0

3.03.0

3

3.0)3.015.0()3.0(

1.0
)(

2
2

2

From Laplace transform tables:

10);/1sin(
1

1
)( 2/

2



  



 tetH t
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 Example. Liquid storage tank

time; min

0 10 20 30 40 50 60

H
; 
ft

-0.4

-0.2

0.0

0.2

0.4

 =2 min; Kc=0.5;D=0 min 

 =2 min; Kc=0.5;D=2 min

 =2 min; Kc=0.5;D=5 min

 =2 min; Kc=0.5;D=10 min

 With PID controller, increasing D lead to less

overshooting, less oscillation and large settling time (slower

response).

 Response for regulatory problem  with PID controller:

Chapter 2Mathematical Modeling of Chemical ProcessesChapter 2Dynamic Behavior and Stability of Closed-Loop 

Control System
 Example. Liquid storage tank

o) A feed-back control system with P controller is built now

in which the flow rate of the outlet stream is chosen as

manipulated variable. The controller signal in electric. The

control valve on the outlet stream is A/O pneumatic one

with a linear trim. When the control valve is fully opened

the flow rate is 24 ft3/min. The level transmitter has a span

of 8 ft.

 Draw the liquid height closed-loop feedback control system.

 Draw the corresponding transfer function block diagram.

 Derive the closed-loop transfer functions between H, Q, Q1

and Q2.

 Will the P controller eliminate the offset for servo and

regulatory problems of step changes? Why?
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 Example. Liquid storage tank

“Liquid level closed-loop feedback control system”

h

Cylindrical tank

A=10  ft2

q2

q

q1

LT

LC

I/P

Control valve

hSP

Chapter 2Mathematical Modeling of Chemical ProcessesChapter 2Dynamic Behavior and Stability of Closed-Loop 

Control System

 Example. Liquid storage tank

“Transfer function block diagram for liquid level closed-loop

feedback control system”

-
+

HSP E
Gc

Q +
+

Gm

Hm H

H

Q2

P
GvKI/P Gp

Gd2

Gm

+
+Q1 Gd1
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 Example. Liquid storage tank

)(
1

)(
1

)(
1

)(

2
2

1
1

sQ
GGKGG

G

sQ
GGKGG

G
sH

GGKGG

GGKGG
sH

mpIPvc

d

mpIPvc

d
SP

mpIPvc

mpIPvc











 Since the outlet flow rate is now manipulated variable, it is

classified as input variable. This means that the only output

variable is the controlled variable h. This means that the

dynamic model consists now of MB only:

AssQ

sH
sG

AssQ

sH
sG

AssQ

sH
sG

Q
As

Q
As

Q
As

sHQQQ
dt

dH
A

pdd

1

)(

)(
)(;

1

)(

)(
)(;

1

)(

)(
)(

111
)(

2

2

1

1

2121




L

 This is integrating system
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 Example. Liquid storage tank
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s
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K
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ssHtH
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0)()()(  aatHtHte sp
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 Example. Liquid storage tank

sbsQorsQsHSP /)()(;0)( 21  Regulatory problem:

s

b

Ks

s
sH

c3.0

1.0
)(




0
3.0

1.0
lim)(lim)(

00














c

ss Ks

bs
ssHtH

000)()()(  tHtHte sp

 For integrating systems, P controller eliminates the

offset.
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 Example. Liquid storage tank

 Response of regulatory problem for step change in q1

tK

cc

cbetH
Ks

b

s

b

Ks

s
sH

3.0
1.0)(

3.0

1.0

3.0

1.0
)( 







 To have stable response, the controller must work on

the direct mode (Kc >0).
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 General conclusions on feedback closed-loop control

systems:

• As Kc increases: less offset, the response will be faster,

more overshooting, less oscillation.

• Integral mode eliminates the offset.

• As I decreases: the response will be faster, more

overshooting, less oscillation.

• As D increases: the response will be slower, less oscillatory,

less overshooting ( when there is no noise).

• Increasing D gives the opportunity to increase Kc in order to

enhance the speed of the response.

• P controller eliminates the offset of integrating process

• For integrating process, the controller must work on the

direct mode (Kc <0).

• The derivative control does not change the order of the

open-loop transfer function of the closed-loop control system.

Chapter 2Mathematical Modeling of Chemical ProcessesChapter 2Dynamic Behavior and Stability of Closed-Loop 

Control System
Example. A continuous stirred-tank reactor( CSTR) is used

to produce a compound B according to the liquid-phase

elementary reaction 2A→ B. The reactor has a constant

volume of 1 m3. The reaction rate constant is 0.2 m3/mol. The

desired steady-state conditions are: feed flow rate is 0.05

m3/min and the feed concentration of component A is 1 mol/m3.

A feedback control system is built to control the concentration

of component A inside the reactor by manipulating the feed

volumetric flow. The control loop has: concentration transmitter

with zero-order transfer function and gain of 0.8 mA/(mol/m3);

A/O control valve with zero-order transfer function and gain of

0.04 m3/min/psig. If the loop has P-controller only with gain of

10 and a step change of 1 mol/m3 occurred in the feed

concentration of component A, Find:

a) The offset in concentration of component A .

b) The corresponding settling time.
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CT

cA, SP

CCI/P

Feed stream: Aii cq ;

BA ccq ;;

Effluent stream

BA cc

mV

,

1 3

Mixer

Example. CSTR

“Concentration closed-loop feedback control system”

Chapter 2Mathematical Modeling of Chemical ProcessesChapter 2Dynamic Behavior and Stability of Closed-Loop 

Control System
Example. CSTR

-
+

CA,SP E
Gc

Qi +
+

Gm

CAm CA

CA

CAi

P
GvKI/P Gp

Gd

Gm

“Transfer function block diagram for concentration closed-loop

feedback control system”

0)(

/1)(

)(
1

)(
1

)(

,

,











sC

ssC

sC
GGKGG

G
sC

GGKGG

GGKGG
sC

SPA

Ai

Ai

mpIPvc

d

SPA

mpIPvc

mpIPvc

A

“Regulatory problem”
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Example. CSTR

Vrqcqc
dt

dc
V

dt

Vdc

dt

dn
AAiAi

AAA )(

Elementary reaction:
2

)( AA kcr 

 Total MB:
ii qqqq

dt

dV
 0

 Component A mole balance:

Vkcqcqc
dt

dc
V AiAiAi

A 2


 Linearize the nonlinear terms:

)(;),(;),(
2

321 AiAiAiiAi cfqcfqcqcf 
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Example. CSTR
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Example. CSTR

 Steady-state component A mole balance:

005.005.02.0

)1)(2.0(05.0)05.0)(1(0

m1;/molm 0.2;m/mol1min;/m50.0

)2..(..................................................0

2

2

3333

2









AA

AA

Aii

AiAiAi

cc

cc

Vkcq

ckVqcqc

 Solve to obtain the steady state concentration:
3mol/m64.0Ac

AAiAiiiAAi
A

AAAiiAAiiiAi
A

CckVqCqQcc
dt

dC
V

CckVCqQcCqQc
dt

dC
V

)2()(

2





 Subtract Eq. 2 from (1) to obtain dynamic equation in 

deviation form:

Chapter 2Mathematical Modeling of Chemical ProcessesChapter 2Dynamic Behavior and Stability of Closed-Loop 
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Example. CSTR

 

AiiA
A

AAii
A

CQC
dt

dC

CCQ
dt

dC

05.036.031.0

)64.0)(1)(2.0)(2(05.005.0)64.01()1(





 Take Laplace Transform and rearrange:

31.0
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36.0
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



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A
d
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A
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AiiA

10)(;/min)/psig(m40.0)(;)mA/(mol/m8.0)( 33  sGsGsG cvm
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3

3

0

mol/m126.0)(0

mol/m126.0)(lim)(
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05.01
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36.0
)75.0)(04.0)(10(1

31.0

05.0

)(
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











tCOffset

ssCtC

sss

s

ssC

A

A
s

A

A

t

A

t

AA

etc

etctC

396.0

396.0

126.0766.0)(

126.0126.064.0)()(









 Take Laplace Inverse of CA(s):

 Settling time: 

min1.7

126.0766.0)766.0)(99.0()(
396.0






s

t

A

t

etc s
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 Effect of dead time, td, on the closed-loop performance:

time

YY

Timetd

 In most real chemical processes, the

closed-loop response has a delay of a

dead time td.

 In such circumstances, it is evident

that the nominator of the open-loop

transfer function of the real closed-loop

system has the exponential term :
stde



 This mean that the real transfer function of some

closed-loop elements has this exponential term.

Ex.:
1

)(





s

eK
sG

m

st

m
m

d


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 Effect of dead time, td, on the closed-loop response:

 The presence of dead-time exponential term in the

nominator of the open-loop transfer function of the closed-

loop system will be principal source of instability for the

chemical process systems.

Exercise. Try in the previous example.

 In the absence of dead time:

 a closed-loop system is stable (overdamped or

underdamped) if its open-loop transfer function is of first-

or second-order. In this case it is NOT difficult to decide

the optimum controller parameters.

 a closed-loop system may become unstable if its open-

loop transfer function is of third-order or higher. In this

case, it is difficult to decide the optimum controller

parameters  There is a need for controller tuning.

s

m esG 1.02)( 
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Control System

 Controller tuning: deciding what values of the controller

parameters (Kc, I, D) to be used in order to achieve stable

response with convincing performance.

 Remark. Controller tuning is very important if the open-

loop transfer function of the closed-loop system has dead

time exponential term or if it is of third-order or higher.

Otherwise, unstable response may arise.

 There are some simple criteria used in controller tuning

such as one-quarter decay ratio, minimum settling time,

minimum largest error, minimum offset, and so on.

 The most common criteria are based on minimizing the

offset with one-quarter decay ratio such as:

 Open-loop Cohen-Coon method.

 Closed-loop Ziegler-Nichols method.
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 Controller tuning

 Other tuning criteria are based on minimizing the following

integral errors:

 Minimize Integral of the Absolute Error (IAE):

 Minimize Integral of the Square Error(ISE):

 Minimize Integral of the Time-weighted Absolute Error

(ITAE):





0

)(IAE dtteMin

 



0

2
)(ISE dtteMin





0

)(IAE dttetMin
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 Cohen-Coon tuning method:

 It is developed experimentally by Cohen and Coon.

 It is known as process reaction curve method.

 Procedure:

1. Open the feedback control loop by disconnecting the

controller output line.

-
+

HSP E
Gc

Q1 +
+

Gm

Hm H

H

Q2

P
GvKI/P Gp

Gd

Gm

P(s)=A/s
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 Cohen-Coon Tuning Method:

2. Introduce a step change of magnitude A in the variable P(s):

P(s)=A/s

3. Write the transfer function between Hm(s) and P(s):

4. Obtain Hm(t) by taking the Laplace inverse of Hm(s).

5. Draw Hm(t) versus t. If the resulted curve has sigmoidal

shape (S shape) which is called process reaction curve, go

to step 6. Otherwise, stop and conclude that Cohen-Coon is

not applicable for controller tuning.
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 Cohen-Coon Tuning Method:

6. Determine the following parameters from the process

reaction curve:
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Where S is the slope of the

sigmoidal curve at the point of

inflection.

td is the dead time approximated

at the intersection of the tangent

line(of slope S) with t-axis.

“Cohen coon relation”

“Sigmoidal curve”

Inflection point
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 Cohen-Coon Tuning Method:

7. Calculate the controller parameters as follows:
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 For PID controller:
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 Example. In the previous example, suppose that the

control valve transfer function is first-order with time

constant of 2 min, and the level transmitter has also first-

order transfer function with time constant of 1 min. Use

Cohen-Coon method to tune the parameters for P, PI, or

PID controller.
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 Cohen-Coon Tuning Method:

 Slope= S =(1.7-0.3)/(12/3.5)=0.165 ft/min

 B =2-0=2 ft; = B/S=2/0.165 =12.12 min; K=B/A=2/1=2 ft/mA

time; min

0 5 10 15 20 25 30

H
m

(t
);

 f
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t
d 
=1.75 min

S

B

Inflection point

 Draw Hm(t) versus t.

 Draw the tangent line at

the inflection point (red

dashed line).

 Pick up two points that

coincide on the tangent line

to calculate the slope S:

(t1,Hm1)=(3.5,0.3)

(t2,Hm2)= (12,1.7)
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 Cohen-Coon Tuning Method:
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 Calculate now the controller parameters using: K=2 ;=

12.12 min ; td=1.75 min
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 Ziegler-Nichols tuning method:

 It is developed by Ziegler-Nichols.

 Unlike Cohen Coon method, it is a closed-loop tuning

technique.

 Procedure:

1. Bring the system to the desired steady-state.

2. Use proportional controller only with feedback loop

closed.

3. Introduce a set point change.

4. Vary the proportional gain Kc until the system oscillates

continuously. The frequency of continuous oscillation is

called crossover frequency co

For open-loop transfer function of the form:
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 Ziegler-Nichols Tuning Method:
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The crossover frequency co can be found from:

5. Find the amplitude ratio AR at that crossover frequency

using:
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6. Compute the following two quantities:

 Ultimate gain; Ku=1/AR

 Ultimate period of sustained cycling, Pu=2/ co
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 Ziegler-Nichols Tuning Method:

7. Calculate the controller parameters as follows:

Controller Kc I D

P

PI

PID

KU/2

KU/2.2

KU/1.7

-

PU/1.2

PU/2

-

-

PU/8

Remark. According to Bode criterion the value of amplitude

ratio at cross over frequency decides the stability of the

closed-loop system:

If AR<1: Closed-loop response is stable

If AR>1 : Closed loop response is unstable

Note that for PID controller, I = 4 D
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 Ziegler-Nichols Tuning Method:

 Example. Use Ziegler-Nichols method to tune P, PI, or

PID controller parameters of the previous example.
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Solving this Eq., gives crossover frequency:

co =0.852 rad/min
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 Ziegler-Nichols Tuning Method:
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 Ultimate gain; Ku=1/AR=4.69

 Ultimate period of sustained cycling:

Pu=2/co =2/0.852=7.38 min/cycle
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 Ziegler-Nichols Tuning Method:

Kcu = 4.69; Pu =7.38 min/cycle

 If P controller: Kc = Kcu/2 = 2.34

 If PI controller: : Kc = KCU/2.2=2.14

I= PU/1.2=6.15 min

 If PID controller: Kc = KCU/1.7=2.76

I= PU/2=3.69 min

D= PU/8=0.92 min


