Chapter 3
The Structure of
Crystalline Solids
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How do atoms arrange themselves to form solids?

 Types of solids

1. Single crystal

2. Polycrystalline

3. Amorphous
 Fundamental concepts
« Unit cells
 Crystal structures

1. Simple cubic

2. Face-centered cubic

3. Body-centered cubic

4. Hexagonal close-packed
 Close packed crystal structures

* Density computationse
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Types of solids
Crystalline material: atoms self-organize in a peia

Array:
e Single crystal: atoms are in a repeating or peciadgiay

over the entire extent of the material
* Polycrystalline material: comprised of many small

crystals or grains
Amorphous: lacks a systematic atomic arrangement

e Silicon atom @ Oxygen atom

(a) Crystalline SiO5 (b) Non-crystalline SiO»
Silicon dioxide
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Crystal Structure

e To discuss crystalline structures it is
useful to consider atoms as being hard
spheres with well-defined radii.

e In this har-sphere model, th

shortest distance between two like
atoms Is one diameter.

* We can also consider crystalline
structure as a lattice of points at
atom/sphere centers.
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Unit Cell

 The unit cell is the smallest structural unit
or building block that can describe the crystal
structure.

* Repetition of the unit cell generates the
entire crystal.

 Example:2D honeycomb net can |
represented by translation of two adjace
atoms that form a unit cell for this 2D
crystalline structure

Example of 3D

crystalline structure: @ ® | o

. .......
SFE S
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Different choices of unit cells are possible, frample:
e A square unit cell may contain any of the following
object patterns.

O

* One hexagonal unit cell might look like any of the

following.
( >
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CRYSTAL LATTICES

e Acrystal is a repeating array. In describing this
structure we must distinguish between the pattérn o
repetition (the lattice type) and what is repedthd unit
cell).

 The most fundamental property of a crystal lattsce
its symmetry. If we initially limit ourselves 12
dimensions for simplicity, three types are present:

1. Squares

2. Rectangles
3. Hexagons
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Metallic Crystal Structures

 Metals tend to be densely packed
 Reasons for dense packing:

- Typically, only one element is present, so alhato
radil are the same.

- Metallic bonding is not directional.

- Nearest neighbor distances tend to be small in
order to lower bond energy.

 Have the simplest crystal structures.
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* Metals are usually (poly)crystalline.

o Although formation of amorphous metals is possible
by rapid cooling.

e The atomic bonding in metals is r-directional=

no restriction on numbers or positions of nearest-
neighbor atoms> large number of nearest neighbors
and dense atomic packing.

« Atom (hard sphere) radius, R, defined by ion core
radius - typically 0.1 - 0.2 nm
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The most common types of unit cells are:

2- The faced centered cubic
1- The simple cubic (SC) (FCC).

3- The body-centered cubic4- The hexagonal close-packed
(BCC) (HCP).
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SIMPLE CUBIC METAL

 Rare due to low packing density.
 Only Po has this structure.

» Close-packed directions are cube
edges.

e In a metal the atoms are all
iIdentical, and most are spherical (
bonding does not depend on
direction).

« Metals thus tend to adopt relatively
simple structures. The simplest is
simple cubic.
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Animation
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Coordination number = 6 atoms

Number of atoms per unitcell: | 0 5.4
= 8 corners x 1/8
= 1 atoms close-packed directions

contains 8 x 1/8 =1 atom/unit cell
n 3-D the packing efficiency is given by :
P.E. = (Volume of spheres) / (volume of cell)
~or a simple cubic lattice, this Is:

Volumeof sphere= é X 8xg ><272 x(0.5a)°

Volumeofcell = (a)?

U P.E.= B 0.523
168
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Face Centered Cubic (FCC)
or
Cubic Close Packed (CCP)

Think of this cell as being made by inserting aeotitom
iInto each face of the simple cubic lattice - hemee"face
centered cubic" name .

The reason for the various colors is to help poutthow

the cells stack in the solid .
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Atoms touch each other along face diagonals.
Note: All atoms are identical.
Example:
Al, Cu, Au, Pb, Ni, Pt, Ag
Coordination number = 12 atoms
Number of atoms per unit cell:
=6 face x 1/2 + 8 corners x 1/8 = 4

Dr. Mubarak



In 3-D the packing efficiency Is given by :
P.E. = (Volume of spheres) / (volume of cell)

For a face centered cubic lattice, this Is:

Volume of spheri = 4x—x—x

4 22 {ﬁaf

3 7 4
Volume of cell = (a)3
[ P.E.= 9956 _ 0.7405
1344
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Animation
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Body Centered Cubic Structure (BCC)

Think of this unit cell as made by stuffing anoth&sm into
the center of the simple cubic lattice, slightlyesaling the
corners.

The corner spheres no longer quite touch one anditedo
touch the center.

Examples: Cr, W, Fea), Tantalum, Molybdenu
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Animation
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Body Centered Cubic Structure (BCC)

The hard spheres touch one another

along cube diagonal

The coordination number, CN = 8

Number of atoms per unit cell, n2
1 center atom shared by no otf
cells:1x1=1 )
8 corner atoms shared by eight N
cells:8x1/8=1

Corner and center atoms are equivalent

27 Dr. Mubarak



= the cube edge length, a= 4R/

V3 a

Volumeof sphere:Zx <E25 «/_a
3 7 4

Volumeofcell = (a)’

[ P.E.= A 0.6805
1344

The higher coordination number and packing efficyen
mean that this lattice uses space more efficightdn
simple cubic
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Hexagonal Close-Packed Crystal Structure

« HCP Is one more common structure of
metallic crystals.

e Six atoms form regular hexagon,
surrounding one atom In center.

e Another plane Is situated halfway L
unit cell (¢-axis), with3 additional
atoms situated at interstices of
hexagonal (close-packed) planes.
 Example: Cd, Mg, Zn, Ti have this
crystal structure.
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The hexagonal close packed structure can be made by
piling layers inthe A-B-A-B-A-B..... sequce.

Unit cell has two lattice parameters a and c. refo= 1.633
The coordination number, CN =12

Number of atoms per unit cell, n= { ) Top layer

. 3 mid-plane atoms shared b Y e
no other cells3x1=3 | (-

e 12 hexagonal corner atoms Bottom layer
shared by 6 cells: 12 x 1/6 = - A sites

. 2 top/bottom plane center
atoms shared by 2 cells: 2 x ¢ B sites
1/2=1

A sites
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Density Computations

Since the entire crystal can be generated by tetit®n
of the unit cell, the density of a crystalline nratk

Mass of Atoms in Unit Cell
Total Volume of Unit Cell

Density = p =

nA
Ve Na

p =

Where: n = number of atoms/unit cell
A = atomic weight
V- = Volume of unit cell = &for cubic
N, = Avogadro’s number
= 6.023 x 1023 atoms/mol
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Theoretical Density, p

« Ex: Cr (BCC)
A=52.00 g/mol
R=0.125nm
n=2

a=4R/3=0.2887 nm

atoms g
: ~
unit cell 2 52.00 <*— mol Ptheoretical =7 .18 g/cm3
p = Pactual = 3
a3 6.023x 1023 | 119 glem

volume g ¥~ atoms

unit cell mol




Densities of Material Classes

In general _ Metals/ g;?apnllgli Polvmers Composites/
Pmetals > Pceramics > Ppolymer;o Alloys o Zn = TOY fibers
? _ Based ondata in Table B1, Callister
Why ' 20 —| sBlatinum *GFRE, CFRE, & AFRE are Glass,
Meta|5 have... ® Tantalum Earbon.&ﬂrarr;id Iiibler-Reti]nforged
. poxy composiies (values based on
. C|Ose-paCk|ng 10— esitver 60% %.fjr;:ulume fraction of aligned fibers
(metallic bonding) Hecuni inan epaxy mair).
- often large atomic masses 3%5%”5 * Zirconia
Ceramics have... cfig > et o
- less dense packing S 3 RS |
+ often lighter elements 2 S [
2 — | SGFRE* _
Polymers have... < *Magnesium eGraphite . 'gﬁrﬁﬁg o
) ) ® | d fibers
 low packing density 1 : !% AFRES
_(often amorphous) — *BRRhdE
e lighter elements (C,H,O) —_
. 0.5 — -
Composites have... 0.4 — $Wood
* Intermediate values 0.3 —




Some engineering applications
require single crystals:

turbine blades

=

* Properties of crystalline materials
often related to crystal structure.

Ex: Quartz fractures more easily
along some crystal planes than others
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Polycrystalline Materials

 Most engineering materials are polycrystals

In polycrystalline materials, grain orientations ar
random, so bulk material properties are isotropic
Some polycrystalline materials have grains with
preferred orientations (texture), so properties
dominated by those relevant to the texture
orientation

If grains are randomly oriented, overall
component properties are not directional.
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Single Crystals and Polycrystalline Materials

Grain Boundaries

 Single crystal: atoms are In a repeatingj i

T
o

rrrrrrrr

JJJJJ

rrrrrrr

rrrrr

or periodic array over the entire extent off e

the material.
* Polycrystalline material: comprised of };
many small crystals or grains. The gre

have different crystallographic ity O oy
orientation. 0 © 600000
. h . . . h . h h .....008888
There exist atomic mismatch within the | Zs2e385553
. . @_®
regions where grains meet. These :‘:‘:§§§§§
regions are called grain boundaries. "::Egggg*—

o

38 Grain Boundary
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Polycrystalline Materials

Anisotropic

|sotropic
not directional.
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« Single Crystals E (diagonal) = 2;3 GPa

-Properties vary with ./.
direction: anisotropic.

-Example: the modulus

of elasticity (E) in BCC iron: ./.
* Polycrystals = (edge) = 125 GPa
Boiets /V 200 pm
-Properties may/may not H
vary with direction. /&J\/ V\J
-If grains are randomly ( Yf-} ><

oriented: isotropic.

(Epolyiron = 210 GPa)
-If grains are textured, sl e

anisotropic. T

g _.
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Anisotr Opl C exhibiting properties with

different values when measured along axes Iin
different directions.

| SOtI'Opi C exhibiting properties with the same
values when measured along axes in all directions.
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Anisotropy

. Different directions in a crystal have different
packing.

. ~or instance, atoms along the edge of FCC unit cell
are more separated than along the face diag

. This causes anisotropy in the properties of crgstal

for instance, the deformation depends on the
direction in which a stress is applied.
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Anisotropy

44

In some polycrystalline materials, grain orientatio
are random, so bulk material properties are isatrop
Some polycrystalline materials have grains with
preferred orientations (texture), so properties
dominated by those relevant to the texture
orientation and the material exhibits anisotropic

properties.
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Anisotropy

Properties of crystals may be different along o
directions, because atomic periodicities are daier
E.g. In single crystal cubic system:

<110>
— <100> Cube edges .<

— <110> Face diagonals
— <111> Body diagonals

<111>
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Polymorphism and Allotropy

Some materials may exist in more than one crystal

structure, this is calle@Olymor phism.

If the material iIs an elemental solid, it i1s called
allotropy.

Allotropy means the existence of a substance in two

or more different forms in the same phase.
An example of allotropy Is carbon, which can exist
as diamond, graphite, and amorphous carbon.
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Polymorphism and Allotropy

Some materials may exist in more than one crystal

structure, this is calle@Olymor phism.

If the material iIs an elemental solid, it Is called
allotropy.

Allotropy means the existence of a substance in two

or more different forms In the same phase.
An example of allotropy Is carbon, which can exist
as diamond, graphite, and amorphous carbon.
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Pure, solid carbon occurs Iin three crystalline ®#m

diamond, graphite; and large, holidwdl | er enes,

Two kinds of fullerenes are shown here:
buckminsterfullerene (buckyball) and carbon nanetub

-
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Non-Crystalline (Amorphous) Solids

. In amorphous solids, there is no long-range
order.

. But amorphous does not mean random, In
many cases there Is some form of short-range
order.

Schematic picture of
49 amorphous SiO, structure Amorphous stgiGilfiSarak



Crystallographic Points, Directions, and Planes.

How to define points, directions, planes, as well a
linear, planar, and volume densities.

e Points (atomic positions)

Vectors (defines a particular direction - plamemal)
Miller Indices (defines a particuleplane)

relation to diffraction

3-index for cubic and 4-index notation for HCP
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Symmetry Equivalent Directions

F<




All periodic unit cells may be described via thgsetors
and angles, if and only If

e a, b, and c define axes of a 3D
coordinate system.

e coordinate system Is Right-
Handed.

* \We can define points, directio
and planes with a “triplet” of
numbers in units of a, b, and c ui
cell vectors.

 For HCP we need a “guad” of
numbers.
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POINT Coordinates

To define a point within a unit cell....
Express the coordinates uas fractions of unit cell

vectors a, b, and ¢ (so that the axes X, y, alwlrmot have
to be orthogonal).

A
a

pt. coord. y
Pt x(a) y(d) z(c) ;
@) 0 0 0 T
E

@) 1 0 0 " >
"T c:-rlgln /T

O 1 1 1 -
| 7

@ 1/2 0 1/2

-&—hﬁ‘-—
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Point Coordinates

Procedure:
1. Any line (or vector direction) Is specified byaints.

e The first point Is, typically, at the origin (0O
2. Determine length of vector projection in eacl3 @xes
In units (or fractions) of a, b, and c.

3. Multiply or divide by a common factor to
reduce the lengths to the smallest integer valugsy.
4. Enclose In square brackets: [u v w]: [110] duT
5. Designate negative numbers by a 110
 Pronounced “bar 17, “bar 17, “zero” direction.

6. “Family” of [110] directions is designated aslf.
o4 Dr. Mubarak



Point Coordinates

Example 1: What is crystallographic direction?

K Along x: 1 «
) Alongy: 15
Alongz: 1¢
DIRECTION = [111]

55

Magnitude along
X
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111

—
"
—
"
—
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Point Coordinates

Example 2:

(a) What is the lattice point given by point P?

[112]

(b) What is crystallographic direction
for the ongin to P?

[112]

Example 3: What lattice direction does the lattice point 264 comespond?

The lattice direction [132] from the origin.
o7 Dr. Mubarak



Symmetry Equivalent Directions

Nute: for some crystal structures, different
directions can be equivalent.

e.g. For cubic crystals, the directions are all
equivalent by symmetry:

[100],[100],[010],[010],[001],[00 1]

Families of crystallographic directions
e.qg. <100~

3

Angled brackets denote a family of crystallographic directions.

58
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Symmetry Equivalent Directions

Z
&

(100) f,x’ >y

Fotate 90 about y-axis

Symmetry operation can
generate all the directions
within in a family.

59

Z
A
(010)
Fotate 90 about z-axis
. ¥
X
Z
T (001)
» Y

Similary for other
equivalent directions
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How Do We Designate Lattice Planes?

Crystallographic Planes

Miller Indices: Reciprocals of the (three) axial
Intercepts for a plane, cleared of fractions &
common multiples. All parallel planes have

same Miller indices.

* Algorithm

60

1. Read off intercepts of plane with axes in

terms of g, b, ¢
2. Take reciprocals of intercepts

3. Reduce to smallest integer values
4. Enclose in parentheses, no
commas i.e., (/1k))
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Planes intersects axes at:
saaxisatr=2
« b axis at s=4/3
« ¢ axis at t= 1/2

How do we symbolically designate planes in a lattice?

Possibility #2: THE ACCEPTED ONE

1. Take the reciprocal of r, s, and t.
» Here: 1/r=12, 1/s=3M4, and 1/r=2

2. Find the feast common multipfe that converts all reciprocals to integers.
e WithlLCM=4 h=4fr=2, k=4/s=3, and I=4/r=8

3. Enclose the new triple (h k|) in parentheses: (238)

4. This notation is called the Miller Index.

* Mote: If a plane does nof infercept an axes (f.e., ff is af =), then you get 0.
* Mote: Alf paralfel planes af simifar staggered distances have the same Miller index.
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Crystallographic

example

1. Intercepts
2. Reciprocals

3. Reduction

4. Miller Indices

example

1. Intercepts
2. Reciprocals

3. Reduction

4. Miller Indices

a b c
1 o0
1M 1711 1/=
1 1 0
1 1 0
(110)
a b C
1/2 a0 a0
1% 1/ 1=
2 0 0
2 0 0
(100)

Planes
i

C

"y
b

4
b
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2.
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Crystallographic Planes

£

example a b C c

Intercepts 1/2 1 3/4

Reciprocals 1/%2 11  1/%
2 1 43 > -y
Reduction 6 3 4 4 b
X

Miller Indices  (634)

Family of Planes {Ak}

Ex: {100} = (100), (010), (001), (100), (010), (007)
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Crystallographic Planes

(110} Plane referenced to the
J /‘ origin at point O

z {001) Plane referenced to
4 / the origin at point O

Other E\r‘:'l;uivabent
.......... =Yy X (110) planes

z
i (111] Plane referenced to
| the arigin at point O

Other equivalent ' Jr
““““ (001) planes i

/ Other equivalent ]
;’ (111) planes
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HCP Crystallographic Directions

Z
* Algorithm
: 1. Vector repqsitioned (if necessary) to pass
@ through origin.
| *'"5"" 2. Read .off prqjections in terms of unit
: | 5 cell dimensions a,, &, &, or ¢
| _i"" 3. Adjust to smallest integer values
' i I F e | _ 4. Enclose in square brackets, no commas
g~ f\_ - D~ [1120) il
_— &
ex: Y, %, -1,0 = [1120] B

dashed red lines indicate
projections onto &, and &, axes a,
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HCP Crystallographic Directions

« Hexagonal Crystals

— 4 parameter Miller-Bravais lattice coordinates are
related to the direction indices (i.e., ¢V W) as

follows.

ooon) | [V W] —[uviw]
] 1

| E U=~ {20~V

ol 3 24-V)

i 4 = 1 (2vV-u)

J_._'__,.-—'F".'i‘h‘_\ﬂ-“‘-‘ _ 3

) A . 1120
* \££| | t=-(u+vy)

nioo) W= w'
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Crystallographic Planes (HCP)

* In hexagonal unit cells the same idea Is used

z
A
|
|
|
|

example a & a; C |
Intercepts 1 a0 = 1 '
Reciprocals 1 1/ -1 1 i
1 0 -1 1 |
Reduction T 0 -1 1 I
Gy e ———|
Miller-Bravais Indices  (1011) \ -
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Linear Density

Number of atoms centered on

* Linear Density of Atoms = LD = - ——
Unit length of direction vector

[110]
ex: linear density of Al in [110]

direction
a=0.405nm

# atoms \

N L= =135nm "
length H‘Fa
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Planar Density of (100) lron
At T <912°C iron has the BCC structure.

2D repeat unit

A
(100) 000 S4B,
ee® —~ @
0000

Radius of iron £A=0.1241 nm

atoms
2D repeat unit ™ 1 1 t
Planar Density=—%~ = 5 =12.12°M8 _l4 5 x 101 atoms
area _—~ & l 4./3 nm2 m?2
N g
2D repeat unit 3
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Planar Density of (111) Iron

(111) plane 1 atomin plane/ unit surface cell

\/5 g © atomsinplane
O atoms above plane

> atoms below plane

O
area =2 ah =3 & = \/_( ‘/5 ]__163?5#
atoms
2D repeat unit 1
Planar Density = =70 atornzs = |0.70x 10° atorgs
area > 16\/5,?2 nm m
2D repeat unit 3
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Designating Lattice Planes

Why are planes in a lattice important?

(A) Determining crystal structure:
* Diffraction methods measure the distance between
parallel lattice planes of atoms. This informatisn
used to determine the lattice parameters in aalryst
* Diffraction methods also measure the angles
between lattice plane

(B) Plastic deformation
* Plastic deformation in metals occurs by the slip
atoms past each other in the crystal.
* This slip tends to occur preferentially along
specific crystal-dependent planes.
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(C) Transport Properties
* In certain materials, atomic structure in some
planes causes the transport of electrons and/or hea
to be particularly rapid in that plane, and relaly
slow not in the plane.
« Example: Graphite: heat conduction is more ifz sp
bonded plane.
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