Chapter 3 The Structure of Crystalline Solids Part A

The University of Jordan

Chemical Engineering Department

First Semester 2022

Prof. Yousef Mubarak

Yousef Mubarak,

Materials Science

Outline

- > How do atoms arrange themselves to form solids?
- > Types of solids
 - 1. Single crystal
 - 2. Polycrystalline
 - 3. Amorphous
- > Fundamental concepts
- > Unit cells
- Crystal structures
 - 1. Simple cubic
 - 2. Face-centered cubic
 - 3. Body-centered cubic
 - 4. Hexagonal close-packed
- Close packed crystal structures
- Density computations

Types of solids

- > Crystalline material: atoms self-organize in a periodic array:
 - 1. Single crystal: atoms are in a repeating or periodic array over the entire extent of the material
 - 2. Polycrystalline material: comprised of many small crystals or grains
- > Amorphous: lacks a systematic atomic arrangement

Crystal Structure

- To discuss crystalline structures it is useful to consider atoms as being hard spheres with well-defined radii.
- In this hard-sphere model, the shortest distance between two like atoms is one diameter.
- We can also consider crystalline structure as a lattice of points at atom/sphere centers.

Unit Cell

- The unit cell is the smallest structural unit or building block that can describe the crystal structure.
- Repetition of the unit cell generates the entire crystal.
- Example: 2D honeycomb net can be represented by translation of two adjacent atoms that form a unit cell for this 2D crystalline structure.

Example of 3D crystalline **structure**:

Different choices of unit cells are possible, for example:
A square unit cell may contain any of the following object patterns.

> One hexagonal unit cell might look like any of the following.

Yousef Mubarak,

Materials Science

Crystalline Lattices

- A crystal is a repeating array. In describing this structure we must distinguish between the pattern of repetition (the lattice type) and what is repeated (the unit cell).
- The most fundamental property of a crystal lattice is its symmetry. If we initially limit ourselves to 2 dimensions for simplicity, three types are present:
 - 1. Squares
 - 2. Rectangles
 - 3. Hexagons

Metallic Crystal Structures

- Metals tend to be densely packed.
- > Reasons for dense packing:
 - Typically, only one element is present, so all atomic radii are the same.
- > Metals tend to be densely packed.
 - Metallic bonding is not directional.
 - Nearest neighbor distances tend to be small in order to lower bond energy.
- > Have the simplest crystal structures.

- > Metals are usually (poly)crystalline.
- > Although formation of amorphous metals is possible by rapid cooling.
- ➤ The atomic bonding in metals is non-directional ⇒ no restriction on numbers or positions of nearest-neighbor atoms ⇒ large number of nearest neighbors and dense atomic packing.
- Atom (hard sphere) radius, R, defined by ion core radius typically 0.1 0.2 nm

The most common types of unit cells are:

1- The simple cubic (SC)

2- The faced centered cubic (FCC).

3- The body-centered cubic (BCC)

4- The hexagonal close-packed (HCP)

Body-centered cubic

Yousef Mubarak, Materials Science 13

Simple Cubic Metal

- Rare due to low packing density.
 - · Only Po has this structure.
 - · Close-packed directions are cube edges.
- In a metal the atoms are all identical, and most are spherical (the bonding does not depend on direction).
- Metals thus tend to adopt relatively simple structures. The simplest is simple cubic.

- Coordination number = 6 atoms
- > Number of atoms per unit cell:
 - = 8 corners x 1/8
 - = 1 atoms
- > In 3-D the packing efficiency is given by:
 - ✓ P.E. = (Volume of spheres) / (volume of cell)
 - ✓ For a simple cubic lattice, this is:

Volume of spheres =
$$\frac{1}{8} \times 8 \times \frac{4}{3} \times \frac{22}{7} \times (0.5a)^3$$

Volume of $cell = (a)^3$

$$\therefore P.E. = \frac{88}{168} = 0.523$$

Face Centered Cubic (FCC) or Cubic Close Packed (CCP)

- > Think of this cell as being made by inserting another atom into each face of the simple cubic lattice hence the "face centered cubic" name.
- The reason for the various colors is to help point out how the cells stack in the solid.

- > Atoms touch each other along face diagonals.
 - ✓ *Note: All atoms are identical.*
- > Example:
 - ✓ Al, Cu, Au, Pb, Nĩ, Pt, Ag
- Coordination number = 12 atoms
- Number of atoms per unit cell:

$$= 6 face x 1/2 + 8 corners x 1/8 = 4$$

- ➤ In 3-D the packing efficiency is given by:
 - ✓ P.E. = (Volume of spheres) / (volume of cell)
- > For a face centered cubic lattice, this is:

Volume of spheres =
$$4 \times \frac{4}{3} \times \frac{22}{7} \times \left(\frac{a\sqrt{2}}{4}\right)^3$$

Volume of $cell = (a)^3$

$$\therefore P.E. = \frac{995.6}{1344} = 0.7405$$

Body Centered Cubic Structure (BCC)

- Think of this unit cell as made by stuffing another atom into the center of the simple cubic lattice, slightly spreading the corners.
- > The corner spheres no longer quite touch one another, but do touch the center.
- \triangleright Examples: Cr, W, Fe (α), Tantalum, Molybdenum

- > The hard spheres touch one another along cube diagonal
- \rightarrow The coordination number, CN = 8
- Number of atoms per unit cell, n = 2
 1 center atom shared by no other cells: 1 x 1 = 1
 8 corner atoms shared by eight cells: 8 x 1/8 = 1
- Corner and center atoms are equivalent

 \Rightarrow the cube edge length, $a=4R/\sqrt{3}$

Volume of spheres =
$$2 \times \frac{4}{3} \times \frac{22}{7} \times \left(\frac{a\sqrt{3}}{4}\right)^3$$

Volume of $cell = (a)^3$

$$\therefore P.E. = \frac{914.5}{1344} = 0.6805$$

The higher coordination number and packing efficiency mean that this lattice uses space more efficiently than simple cubic.

Hexagonal Close-Packed Crystal Structure

- > HCP is one more common structure of metallic crystals.
- Six atoms form regular hexagon, surrounding one atom in center.
- Another plane is situated halfway up unit cell (c-axis), with 3 additional atoms situated at interstices of hexagonal (close-packed) planes.
- > Example: Cd, Mg, Zn, Ti have this crystal structure.

> The hexagonal close packed structure can be made by piling layers

in the $A - B - A - B - A - B \dots$ sequence.

> Unit cell has two lattice parameters a and c.

- \triangleright Ratio c/a = 1.633
- \rightarrow The coordination number, CN = 12
- Number of atoms per unit cell, n= 6.
 - ✓ 3 mid-plane atoms shared by no other cells: $3 \times 1 = 3$
 - ✓ 12 hexagonal corner atoms shared by 6 cells: 12 x 1/6 = 2
 - ✓ 2 top/bottom plane center atoms shared by 2 cells: $2 \times 1/2 = 1$

- ➤ In 3-D the packing efficiency is given by:
 - ✓ P.E. = (Volume of spheres) / (volume of cell)

Volume of spheres =
$$6 \times \frac{4}{3} \times \frac{22}{7} \times (r)^3$$

Volume of spheres = $25.1428(r)^3$

Volume of
$$cell = 24\sqrt{2}(r)^3$$

$$P.E. = 0.7405$$

$$a^2 = h^2 + (a/2)^2$$

$$\Rightarrow$$
 h²=a²-a²/4

$$\Rightarrow h^2 = (3a^2)/4$$

Or,
$$h=\frac{1}{2}(\sqrt{3}a)$$

Area of Triangle = $\frac{1}{2}$ × base × height

$$\Rightarrow$$
 A = $\frac{1}{2}$ × a × $\frac{1}{2}$ ($\sqrt{3}$ a)

Density Computations

> Since the entire crystal can be generated by the repetition of the unit cell, the density of a crystalline material,

$$Density = \rho = \frac{\textit{Mass of Atoms in Unit Cell}}{\textit{Total Volume of Unit Cell}}$$

$$\rho = \frac{nA}{V_C N_A}$$

Where: n = number of atoms/unit cell

A = atomic weight

 $V_c = Volume of unit cell = a^3 for cubic$

N_A = Avogadro's number

 $= 6.023 \times 10^{23} \text{ atoms/mol}$

Characteristics of Selected Elements

Element	Symbol	Atomic Number	Atomic Weight (amu)	Density of Solid, 20°C (g/cm³)	Crystal Structure, 20°C	Atomic Radius (nm)	Ionic Radius (nm)	Most Common Valence	Melting Point (°C)
Aluminum	Al	13	26.98	2.71	FCC	0.143	0.053	3+	660.4
Argon	Ar	18	39.95	_		_		Inert	-189.2
Barium	Ba	56	137.33	3.5	BCC	0.217	0.136	2+	725
Beryllium	Be	4	9.012	1.85	HCP	0.114	0.035	2+	1278
Boron	В	5	10.81	2.34	Rhomb.	_	0.023	3+	2300
Bromine	Br	35	79.90	_		_	0.196	1-	-7.2
Cadmium	Cd	48	112.41	8.65	HCP	0.149	0.095	2+	321
Calcium	Ca	20	40.08	1.55	FCC	0.197	0.100	2+	839
Carbon	C	6	12.011	2.25	Hex.	0.071	$\sim \! 0.016$	4+	(sublimes at 3367)
Cesium	Cs	55	132.91	1.87	BCC	0.265	0.170	1+	28.4
Chlorine	Cl	17	35.45	_	_	_	0.181	1-	-101
Chromium	Cr	24	52.00	7.19	BCC	0.125	0.063	3+	1875
Cobalt	Co	27	58.93	8.9	HCP	0.125	0.072	2+	1495
Copper	Cu	29	63.55	8.94	FCC	0.128	0.096	1+	1085
Fluorine	F	9	19.00	_		_	0.133	1-	-220
Gallium	Ga	31	69.72	5.90	Ortho.	0.122	0.062	3+	29.8
Germanium	Ge	32	72.64	5.32	Dia. cubic	0.122	0.053	4+	937
Gold	Au	79	196.97	19.32	FCC	0.144	0.137	1+	1064
Helium	He	2	4.003	=		_	_	Inert	-272 (at 26 atm)
Hydrogen	H	1	1.008	_	_	_	0.154	1+	-259
Iodine	Ι	53	126.91	4.93	Ortho.	0.136	0.220	1-	114

Yousef Mubarak

Theoretical Density, p

• Ex: Cr (BCC) A = 52.00 g/mol R = 0.125nmn = 2

$$a = \frac{4}{\sqrt{3}}R$$

$$a = \frac{4}{\sqrt{3}}(0.125) = 0.2887 \, nm$$

$$\rho = \frac{2 \times 52.0}{(0.2887 \times 10^{-9})^3 \times 6.023 \times 10^{23}} = 7175961.9 \frac{g}{m^3}$$

$$\rho = 7175961.9 \frac{g}{m^3} \frac{m^3}{(100 \text{ cm})^3} = 7.176 \frac{g}{\text{cm}^3}$$
 Theoretical

The actual density is 7.19

Densities of Materials Classes

In general:

 $\rho_{metals} > \rho_{ceramics} > \rho_{polymers}$

Why?

Metals have:

- Close-packed (metallic bonding)
- Often large atomic masses

Ceramic have:

- Less dense packing
- Often lighter elements

Polymer have:

- Low packing density (often amorphous)
- Lighter elements (C,H,O)

Composites have:

Intermediate values

Chapter 3 The Structure of Crystalline Solids Part B

The University of Jordan
Chemical Engineering Department
First Semester 2021
Prof. Yousef Mubarak

Yousef Mubarak,

Materials Science

Outline

- > Crystals as Building Blocks
- ➤ Isotropic OR Anisotropic
- > Polymorphism and Allotropy
- > Crystallographic Points, Directions, and Planes
 - 1. Symmetry Equivalent Directions
 - 2. POINT Coordinates
 - 3. Direction Coordinates
 - 4. How Do We Designate Lattice Planes?
- Linear Density
- > Planar Density
- > Designating Lattice Planes

Crystals as Building Blocks

Some engineering applications require single crystals:

Diamond single crystals for abrasives

Properties of crystalline materials often related to crystal structure.

Ex: Quartz fractures more easily along some crystal planes than others.

Turbine blades

Polycrystalline Materials

- > Most engineering materials are polycrystalline.
- In polycrystalline materials, grain orientations are random, so bulk material properties are isotropic.
- Some polycrystalline materials have grains with preferred orientations (texture), so properties are dominated by those relevant to the texture orientation.
- > If grains are randomly oriented, overall component properties are not directional.

Single Crystals and Polycrystalline Materials

- Single crystal: atoms are in a repeating or periodic array over the entire extent of the material.
- Polycrystalline material: comprised of many small crystals or grains. The grains have different crystallographic orientation.
- There exist atomic mismatch within the regions where grains meet. These regions are called grain boundaries.

Materials Science 41

Yousef Mubarak

Single Crystals

- > Properties vary with direction: anisotropic.
- > Example: the modulus of elasticity E in BCC iron.

Polycrystals

- Properties may/may not vary with direction.
- If grains are randomly oriented: isotropic. $(E_{poly\ iron} = 210\ GPa)$
- > If grains are textured, anisotropic.

Isotropic OR Anisotropic

- Anisotropic exhibiting properties with different values when measured along axes in different directions.
- > Isotropic exhibiting properties with the same values when measured along axes in all directions.

Anisotropy

- > Different directions in a crystal have different packing.
- For instance, atoms along the edge of FCC unit cell are more separated than along the face diagonal.
- This causes anisotropy in the properties of crystals, for instance, the deformation depends on the direction in which a stress is applied.
- In some polycrystalline materials, grain orientations are random, so bulk material properties are isotropic

- Some polycrystalline materials have grains with preferred orientations (texture), so properties are dominated by those relevant to the texture orientation and the material exhibits anisotropic properties.
- Properties of crystals may be different along different directions, because atomic periodicities are different.
- > E.g. in single crystal cubic system:

- < 100 > Cube edges
- < 110 > Face diagonals
- < 111 > Body diagonals

Polymorphism and Allotropy

- Some materials may exist in more than one crystal structure, this is called polymorphism.
- > If the material is an elemental solid, it is called allotropy.
- > Allotropy means the existence of a substance in two or more different forms in the same phase.
- An example of allotropy is carbon, which can exist as diamond, graphite, and amorphous carbon.

- Pure, solid carbon occurs in three crystalline forms-diamond, graphite; and large, hollow fullerenes.
- > Two kinds of fullerenes are shown here:
 - 1. buckminsterfullerene (Buckyball)
 - 2. carbon nanotube.

Graphite

Diamond

Carbon nanotube

Non-Crystalline (Amorphous) Solids

- In amorphous solids, there is no long-range order.
- > But amorphous does not mean random, in many cases there is some form of short-range order.

Crystallographic Points, Directions, and Planes

- > How to define points, directions, planes, as well as linear, planar, and volume densities.
 - ✓ Points (atomic positions)
 - ✓ Vectors (defines a particular direction plane normal)
 - ✓ Miller Indices (defines a particular plane) relation to diffraction
 - ✓ 3-indices for cubic and 4-indices notation for HCP

Symmetry Equivalent Directions

- All periodic unit cells may be described via these vectors and angles, if and only if a, b, and c define axes of a 3D coordinate system.
- Coordinate system is Right-Handed.
- We can define points, directions and planes with a "triplet" of numbers in units of a, b, and c unit cell vectors.
- For HCP we need a "quad" of numbers.

POINT Coordinates

To define a point within a unit cell....

Express the coordinates uvw as fractions of unit cell vectors a, b, and c (so that the axes x, y, and z do not have to be

orthogonal).

	Pt. coordinate		
Point	x(a)	<i>y(b)</i>	z(c)
Blue	0	0	0
Red	1	0	0
Green	1	1	1
Black	1/2	0	1/2

Direction Coordinates

Procedure:

- 1. Any line (or vector direction) is specified by 2 points.
 - ✓ The first point is, typically, at the origin (000).
- 2. Determine length of vector projection in each of 3 axes in units (or fractions) of a, b, and c.

$\chi(a)$	y(b)	Z(c)
1	1	0

- 3. Multiply or divide by a common factor to reduce the length to the smallest integer values, u v w.
- 4. Enclose in square brackets: [u v w]: [110] direction.

- ✓ Pronounced "bar 1", "bar 1", "zero" direction.
- 6. "Family" of [110] directions is designated as <110>.

Direction Coordinates

What is the crystallographic direction of the red arrow?

Solution:

Along x: 1 a

Along y: 1 b

Along c: 1 C

 $Direction = [1 \ 1 \ 1]$

Point and Direction Coordinates

a) What is the lattice point given by point P? Solution:

$\overline{1}$ 1 2

b) What is the crystallographic direction for the origin to P?

Solution:

$[\bar{1} \ 1 \ 2]$

c) What lattice direction does the lattice point 264 correspond?

Solution:

The lattice direction [1 3 2] from the origin

Symmetry Equivalent Directions

<u>Note:</u> for some crystal structures, different directions can be equivalent.

e.g. For cubic crystals, the directions are all equivalent by symmetry:

$$[1 \ 0 \ 0], [\overline{1} \ 0 \ 0], [0 \ 1 \ 0], [0 \ \overline{1} \ 0], [0 \ 0 \ 1], [0 \ 0 \ \overline{1}]$$

Families of crystallographic directions

e.g. < 1 0 0 >

Angled brackets denote a family of crystallographic directions

Symmetry Equivalent Directions

How Do We Designate Lattice Planes?

Crystallographic Planes

- > Miller Indices: Reciprocals of the (three axial intercepts for a plane, cleared of fractions and common multiples.
- > All parallel planes have same Miller indices.

Algorithm

- 1. Read off intercepts of plane with axes in terms of a, b, and c.
- 2. Take reciprocals of intercepts.
- 3. Reduce to smallest integer values
- 4. Enclose in parentheses, no commas i.e., (h k l)

Planes intersects axes at:

- a axis at r = 2
- $b \ axis \ at \ s = 4/3$
- c axis at $r = \frac{1}{2}$

How do we symbolically designate planes in a lattice?

1. Take the reciprocal of r, s, and t. Here: $1/r = \frac{1}{2}$, $1/s = \frac{3}{4}$, and 1/t = 2

2. Find the least common multiple that converts all reciprocals to integers.

With
$$LCM = 4$$
, $h = 4/r = 2$, $k = 4/s = 3$, and $l = 4/t = 8$

- 3. Enclose the new triple (h, k, l) in parentheses: (2 3 8)
- 4. This notation is called the Miller Index.

Note 1: if a plane does not intercept an axes (i.e., it is at ∞), then you get o.

Note 2: All parallel planes at similar staggered distances have the same Miller Index.

Crystallographic Planes

<u>Example 1</u>

	a	Б	С
Intercepts	1	1	∞
Reciprocals	1/1	1/1	1/∞
	1	1	0
Reduction	1	1	0

Miller Indices: (1 1 0)

Example 2

	a	б	С
Intercepts	1/2	∞	∞
Reciprocals	1/(1/2)	1/∞	1/∞
	2	0	0
Reduction	2	0	0

Miller Indices: (2 0 0)

Crystallographic Planes

Example 3

	а	b	С
Intercepts	1/2	1	3/4
Reciprocals	1/(1/2)	1/1	1/(3/4)
	2	1	4/3
Reduction	6	3	4

Miller Indices: (6 3 4)

Family of Planes {h k l}

 $\mathcal{E}x: \{1 \ o \ o\} = (1 \ o \ o), (o \ 1 \ o), (o \ o \ 1), (\bar{1} \ 0 \ 0), (0 \ \bar{1} \ 0), (0 \ 0 \ \bar{1})$

Yousef Mubarak

HCP Crystallographic Directions

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions a_1 , a_2 , a_3 , or c
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas [u v t w].

Ex:

 $\frac{1}{2}, \frac{1}{2}, -1, 0 \implies \begin{bmatrix} 1 & 1 & \overline{2} & 0 \end{bmatrix}$

Dashed red lines indicate projections onto a_1 and a_2 axes

HCP Crystallographic Directions

Hexagonal Crystals

4 parameter Miller-Bravais lattice coordinates are related to the direction indices (i.e., ú v w) as follows.

$$[\acute{u} \acute{v} \acute{w}] \rightarrow [u v t w]$$

$$u = \frac{1}{3}(2\dot{u} - \dot{v})$$
$$v = \frac{1}{3}(2\dot{v} - \dot{u})$$

$$v = \frac{1}{3}(2\dot{v} - \dot{u})$$

$$t = -(u + v)$$

$$w = \acute{w}$$

$$[\acute{u} \ \acute{v} \ \acute{w}] = [1 \ 1 \ 0]$$

$$u = \frac{1}{3} (2 \times 1 - 1) = \frac{1}{3}$$

$$v = \frac{1}{3} (2 \times 1 - 1) = \frac{1}{3}$$

$$t = -\left(\frac{1}{3} + \frac{1}{3}\right) = -\frac{2}{3}$$

$$w = 0$$

$$\left[\frac{1}{3} \ \frac{1}{3} \ \frac{-2}{3} \ 0\right] = [1 \ 1 \ \bar{2} \ 0]$$

HCP Crystallographic Planes

➤ In hexagonal unit cells the same idea is used:

Example 3

	a_{1}	a_2	a_3	С
Intercepts	1	∞	-1	1
Reciprocals	1	1/∞	-1	1
	1	0	-1	1
Reduction	1	0	-1	1

Miller-Bravais Indices: (1 0 1 1)

Linear Density

 $\label{eq:linear_density} \textit{Linear Density of Atoms} = \textit{LD} = \frac{\textit{Number of atoms centered on}}{\textit{Unit length of direction vector}}$

Example:

Calculate the linear density of Al in [1 1 0] direction. Al atomic radius = 0.143 nm

We know:

- > Number of atoms centered = 2
- \rightarrow Unit length of direction vector = 4r

$$LD = \frac{2}{4 \times 0.143} = 3.4965 \, nm^{-1}$$

Planar Density

Example:

Calculate the Planar density of (1 0 0) Iron. At T 912 oC iron has the BCC structure.

- Radius of iron R = 0.1241 nm
- *Number of atoms in the plane = 1*
- Area of plane = a^2

Plamar Density =
$$\frac{Number\ of\ atoms\ in\ the\ plane}{Area\ of\ the\ plane}$$

$$Plamar\ Density = \frac{1}{a^2} = \frac{1}{\left(\frac{4\sqrt{3}}{3}R\right)^2}$$

$$12.1\ \frac{atoms}{nm^2} = 1.2 \times 10^{19}\ \frac{atoms}{m^2}$$

Planar Density

Excersise:

Calculate the planar density of (1 1 1) iron.

- Radius of iron R = 0.1241 nm
- Number of atoms in the plane = 0.5
- Area of plane = $\frac{\sqrt{3}}{2}a^2$

$$= \frac{\sqrt{3}}{2} \left(\frac{4}{\sqrt{3}} R \right)^2 = \frac{8}{\sqrt{3}} R^2$$

Plamar Density =
$$\frac{0.5}{area} = \frac{0.5}{\frac{8}{\sqrt{3}}R^2}$$

= $0.703 \times 10^{19} \frac{atoms}{m^2}$

Designating Lattice Planes

Why are planes in a lattice important?

A. Determining crystal structure:

- > Diffraction methods measure the distance between parallel lattice planes of atoms. This information is used to determine the lattice parameters in a crystal.
- > Diffraction methods also measure the angles between lattice planes.

B. Plastic deformation

- Plastic deformation in metals occurs by the slip of atoms past each other in the crystal.
- This slip tends to occur preferentially along specific crystal-dependent planes.

B. Transport Properties

In certain materials, atomic structure in some planes causes the transport of electrons and/or heat to be particularly rapid in that plane, and relatively slow in other planes.

Example:

Graphite: heat conduction is more in sp²-bonded plane.

Materials Science 72