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Outline  How do atoms arrange themselves to form solids?
 Types of solids

1. Single crystal
2. Polycrystalline
3. Amorphous

 Fundamental concepts
 Unit cells
 Crystal structures

1. Simple cubic
2. Face-centered cubic
3. Body-centered cubic
4. Hexagonal close-packed

 Close packed crystal structures
 Density computations
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Types of solids

 Crystalline material: atoms self-organize in a periodic array:

1. Single crystal: atoms are in a repeating or periodic array over
the entire extent of the material

2. Polycrystalline material: comprised of many small crystals or
grains

 Amorphous: lacks a systematic atomic arrangement
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Crystal Structure

 To discuss crystalline structures it is

useful to consider atoms as being hard

spheres with well-defined radii.

 In this hard-sphere model, the shortest

distance between two like atoms is one

diameter.

 We can also consider crystalline

structure as a lattice of points at

atom/sphere centers.
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Unit Cell

 Example: 2D honeycomb net can be represented by translation of

two adjacent atoms that form a unit cell for this 2D crystalline

structure.

 The unit cell is the smallest structural unit or building block that

can describe the crystal structure.

 Repetition of the unit cell generates the entire crystal.

Example of 3D crystalline structure:
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 Different choices of unit cells are possible, for example:

A square unit cell may contain any of the following object patterns.

 One hexagonal unit cell might look like any of the following.
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Crystalline Lattices

 A crystal is a repeating array. In describing this structure we

must distinguish between the pattern of repetition (the lattice

type) and what is repeated (the unit cell).

 The most fundamental property of a crystal lattice is its

symmetry. If we initially limit ourselves to 2 dimensions for

simplicity, three types are present:

1. Squares

2. Rectangles

3. Hexagons
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unit cell lattice unit cell lattice

unit cell unit celllattice lattice
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Metallic Crystal Structures

 Metals tend to be densely packed.

 Reasons for dense packing:

• Typically, only one element is present, so all atomic radii are

the same.

 Metals tend to be densely packed.

• Metallic bonding is not directional.

• Nearest neighbor distances tend to be small in order to lower

bond energy.

 Have the simplest crystal structures.
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 Metals are usually (poly)crystalline.

 Although formation of amorphous metals is possible by rapid

cooling.

 The atomic bonding in metals is non-directional ⇒ no

restriction on numbers or positions of nearest-neighbor

atoms ⇒ large number of nearest neighbors and dense atomic

packing.

 Atom (hard sphere) radius, R, defined by ion core

radius - typically 0.1 - 0.2 nm
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The most common types of unit cells are:

1- The simple cubic (SC) 2- The faced centered cubic (FCC).

3- The body-centered cubic (BCC) 4- The hexagonal close-packed (HCP)
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Simple cubic

Faced centered cubic

Body-centered cubic



Simple Cubic Metal  

 Rare due to low packing density.

• Only Po has this structure.

• Close-packed directions are cube edges.

 In a metal the atoms are all identical, and

most are spherical (the bonding does not

depend on direction).

 Metals thus tend to adopt relatively simple

structures. The simplest is simple cubic.

14



15



 Coordination number = 6 atoms

 Number of atoms per unit cell:

= 8 corners x 1/8

= 1 atoms

 In 3-D the packing efficiency is given by :

 P.E. = (Volume of spheres) / (volume of cell)

 For a simple cubic lattice, this is:
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𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒𝑠 =
1

8
× 8 ×

4

3
×

22

7
× 0.5𝑎 ଷ

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙 = 𝑎 ଷ

∴ 𝑃. 𝐸. =
88

168
= 0.523



Face Centered Cubic (FCC)
or

Cubic Close Packed (CCP)

 Think of this cell as being made by inserting another atom into

each face of the simple cubic lattice - hence the "face centered

cubic" name .

 The reason for the various colors is to help point out how the cells

stack in the solid .
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 Atoms touch each other along face diagonals.

 Note: All atoms are identical.

 Example: 

 Al, Cu, Au, Pb, Ni, Pt, Ag

 Coordination number = 12 atoms

 Number of atoms per unit cell:

= 6 face x 1/2 + 8 corners x 1/8 = 4
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 In 3-D the packing efficiency is given by :

 P.E. = (Volume of spheres) / (volume of cell)

 For a face centered cubic lattice, this is:
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𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒𝑠 = 4 ×
4

3
×

22

7
×

𝑎 2
 

4

ଷ

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙 = 𝑎 ଷ

∴ 𝑃. 𝐸. =
995.6

1344
= 0.7405



Body Centered Cubic Structure (BCC)

 Think of this unit cell as made by stuffing another atom into the

center of the simple cubic lattice, slightly spreading the corners.

 The corner spheres no longer quite touch one another, but do

touch the center.

 Examples: Cr, W, Fe (), Tantalum, Molybdenum
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 The hard spheres touch one another along cube diagonal

 The coordination number, CN = 8

 Number of atoms per unit cell, n = 2

1 center atom shared by no other cells: 1 x 1 = 1

8 corner atoms shared by eight cells: 8 x 1/8 = 1

 Corner and center atoms are equivalent
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⇒ the cube edge length, a= 4R/√3
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 The higher coordination number and packing efficiency mean that this

lattice uses space more efficiently than simple cubic.

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒𝑠 = 2 ×
4

3
×

22

7
×

𝑎 3
 

4

ଷ

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙 = 𝑎 ଷ

∴ 𝑃. 𝐸. =
914.5

1344
= 0.6805
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Hexagonal Close- Packed Crystal Structure

 HCP is one more common structure of

metallic crystals.

 Six atoms form regular hexagon,

surrounding one atom in center.

 Another plane is situated halfway up unit

cell (c-axis), with 3 additional atoms situated

at interstices of hexagonal (close-packed)

planes.

 Example: Cd, Mg, Zn, Ti have this crystal

structure.
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 The hexagonal close packed structure can be made by piling layers

in the A - B - A - B - A - B . . . . . sequence.

 Unit cell has two lattice parameters a and c.

 Ratio c/a = 1.633

 The coordination number, CN = 12

 Number of atoms per unit cell, n= 6.
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 3 mid-plane atoms shared by no
other cells: 3 x 1 = 3

 12 hexagonal corner atoms shared
by 6 cells: 12 x 1/6 = 2

 2 top/bottom plane center atoms
shared by 2 cells: 2 x 1/2 = 1
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 In 3-D the packing efficiency is given by :

 P.E. = (Volume of spheres) / (volume of cell)

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒𝑠 = 6 ×
4

3
×

22

7
× 𝑟 ଷ

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙 = 24 2
 

𝑟 ଷ

∴ 𝑃. 𝐸. = 0.7405

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒𝑠 = 25.1428 𝑟 ଷ



Density Computations

 Since the entire crystal can be generated by the repetition of the

unit cell, the density of a crystalline material,

஼ ஺

Where: n = number of atoms/unit cell

A = atomic weight

 Vୡ = Volume of unit cell = a3 for cubic

N୅ = Avogadro’s number

= 6.023 x 1023 atoms/mol
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Theoretical Density, ρ

• Ex: Cr (BCC)

A = 52.00 g/mol

R = 0.125nm

n = 2         
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ିଽ ଷ ଶଷ ଷ

ଷ

ଷ

ଷ ଷ Theoretical 

The actual density is 7.19  



Densities of Materials Classes

34

In general:

metals  ceramics  polymers

Why?

Metals have:

 Close-packed (metallic bonding)

 Often large atomic masses

Ceramic have:

 Less dense packing

 Often lighter elements

Polymer have:

 Low packing density (often amorphous)

 Lighter elements (C,H,O)

Composites have:

 Intermediate values
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Outline

 Crystals as Building Blocks

 Isotropic OR Anisotropic 

 Polymorphism and Allotropy

 Crystallographic Points, Directions, and Planes
1. Symmetry Equivalent Directions
2. POINT Coordinates
3. Direction Coordinates
4. How Do We Designate Lattice Planes?

 Linear Density

 Planar Density

 Designating Lattice Planes
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Crystals as Building Blocks

 Some engineering applications

require single crystals:

Diamond single 
crystals for abrasives

Turbine blades

 Properties of crystalline materials often
related to crystal structure.

Ex: Quartz fractures more easily along
some crystal planes than others.
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Polycrystalline Materials

 Most engineering materials are polycrystalline.

 In polycrystalline materials, grain orientations

are random, so bulk material properties are

isotropic.

 Some polycrystalline materials have grains with

preferred orientations (texture), so properties are

dominated by those relevant to the texture

orientation.

 If grains are randomly oriented, overall

component properties are not directional.
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Single Crystals and Polycrystalline Materials

 Single crystal: atoms are in a repeating or

periodic array over the entire extent of the

material.

 Polycrystalline material: comprised of many

small crystals or grains. The grains have

different crystallographic orientation.

 There exist atomic mismatch within the

regions where grains meet. These regions are

called grain boundaries.
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Single Crystals

 Properties vary with direction:

anisotropic.

 Example: the modulus of elasticity E

in BCC iron.

Polycrystals

 Properties may/may not vary with

direction.

 If grains are randomly oriented:

isotropic. (Epoly iron = 210 GPa)

 If grains are textured, anisotropic.



 Anisotropic exhibiting properties with different values when

measured along axes in different directions.

 Isotropic exhibiting properties with the same values when

measured along axes in all directions.
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Isotropic OR Anisotropic 



Anisotropy

 Different directions in a crystal have different packing.

 For instance, atoms along the edge of FCC unit cell are more

separated than along the face diagonal.

 This causes anisotropy in the properties of crystals, for instance, the

deformation depends on the direction in which a stress is applied.

 In some polycrystalline materials, grain orientations are random, so

bulk material properties are isotropic
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 Some polycrystalline materials have

grains with preferred orientations

(texture), so properties are dominated

by those relevant to the texture

orientation and the material exhibits

anisotropic properties.

 Properties of crystals may be different

along different directions, because

atomic periodicities are different.

 E.g. in single crystal cubic system:
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  100  Cube edges

  110  Face diagonals

  111  Body diagonals



Polymorphism and Allotropy

 Some materials may exist in more than one crystal structure,

this is called polymorphism.

 If the material is an elemental solid, it is called allotropy.

 Allotropy means the existence of a substance in two or more

different forms in the same phase.

 An example of allotropy is carbon, which can exist as

diamond, graphite, and amorphous carbon.
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 Pure, solid carbon occurs in three crystalline forms-diamond,

graphite; and large, hollow fullerenes.

 Two kinds of fullerenes are shown here:

1. buckminsterfullerene (Buckyball)

2. carbon nanotube.

47

Buckyball

Carbon nanotubeGraphite Diamond 



Non-Crystalline (Amorphous) Solids

 In amorphous solids, there is no long-range order.

 But amorphous does not mean random, in many cases there is

some form of short-range order.
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Crystallographic Points, Directions, and Planes

 How to define points, directions, planes, as well as linear,

planar, and volume densities.

 Points (atomic positions)

 Vectors (defines a particular direction – plane normal)

 Miller Indices (defines a particular plane) relation to

diffraction

 3-indices for cubic and 4-indices notation for HCP
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Symmetry Equivalent Directions

50



 All periodic unit cells may be described

via these vectors and angles, if and

only if a, b, and c define axes of a 3D

coordinate system.

 Coordinate system is Right-Handed.

 We can define points, directions and

planes with a “triplet” of numbers in

units of a, b, and c unit cell vectors.

 For HCP we need a “quad” of numbers.
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POINT Coordinates

 To define a point within a unit cell….

 Express the coordinates uvw as fractions of unit cell vectors a,

b, and c (so that the axes x, y, and z do not have to be

orthogonal).
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Pt. coordinate
Point x(a) y(b) z(c)
Blue 0 0 0
Red 1 0 0

Green 1 1 1
Black 1/2 0 1/2



Direction Coordinates
Procedure:

1. Any line (or vector direction) is specified by 2 points. 

 The first point is, typically, at the origin (000).

2. Determine length of vector projection in each of 3 axes in units (or
fractions) of a, b, and c.
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X(a) Y(b) Z(c)

1 1 0

3. Multiply or divide by a common factor to reduce

the length to the smallest integer values, u v w.

4. Enclose in square brackets: [u v w]: [110]

direction.

5. Designate negative numbers by a bar 1ത 1ത 0

 Pronounced “bar 1”, “bar 1”, “zero” direction.

6. “Family” of [110] directions is designated as <110>.



Direction Coordinates
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What is the crystallographic direction of the red arrow?

Solution:

Along x: 1 a

Along y: 1 b

Along c: 1 C

Direction = [1   1   1] 
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Point and Direction Coordinates
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a) What is the lattice point given by point P?

Solution:

1 ഥ   1    2

b) What is the crystallographic direction for

the origin to P?

Solution:

1ത   1   2

c) What lattice direction does the lattice point

264 correspond?

Solution:

The lattice direction [1 3 2] from the origin



Symmetry Equivalent Directions
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Note: for some crystal structures, different directions can be

equivalent.

e.g. For cubic crystals, the directions are all equivalent by

symmetry:

1   0   0 , 1ത   0   0 , 0   1   0 , 
0    1ത    0 , 0   0   1 , 0   0   1ത 

Families of crystallographic directions

e.g. < 1   0   0 >

Angled brackets denote a family of crystallographic directions



Symmetry Equivalent Directions
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How Do We Designate Lattice Planes?

59

Crystallographic Planes

 Miller Indices: Reciprocals of the (three axial intercepts for a

plane, cleared of fractions and common multiples.

 All parallel planes have same Miller indices.

Algorithm

1. Read off intercepts of plane with axes in terms of a, b, and c.

2. Take reciprocals of intercepts.

3. Reduce to smallest integer values

4. Enclose in parentheses, no commas i.e., (h k l)
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Planes intersects axes at:

 a axis at r = 2

 b axis at s = 4/3

 c axis at r = ½

How do we symbolically designate planes in a lattice?

1. Take the reciprocal of r, s, and t.

Here: 1/r = ½, 1/s = ¾, and 1/t = 2

2. Find the least common multiple that converts all reciprocals to integers.

With LCM = 4, h = 4/r = 2, k = 4/s = 3, and l = 4/t = 8

3. Enclose the new triple (h, k, l) in parentheses: (2 3 8)

4. This notation is called the Miller Index.

Note 1: if a plane does not intercept an axes (i.e., it is at ), then you get 0.

Note 2: All parallel planes at similar staggered distances have the same

Miller Index.
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Crystallographic Planes

a b c

Intercepts 1 1 
Reciprocals 1/1

1
1/1
1

1/
0

Reduction 1 1 0

Miller Indices:  (1  1  0) 

Example 1

Example 2

a b c
Intercepts 1/2  

Reciprocals 1/(1/2)
2

1/
0

1/
0

Reduction 2 0 0

Miller Indices:  (2 0  0) 
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a b c
Intercepts 1/2 1 3/4
Reciprocals 1/(1/2)

2
1/1
1

1/(3/4)
4/3

Reduction 6 3 4

Miller Indices:  (6  3 4) 

Example 3

Crystallographic Planes

Family of Planes {h k l}

Ex: {1 0 0} = (1  0  0), (0  1  0), (0  0  1), 1ത  0  0 , 0  1ത  0 , 0  0  1ത
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HCP Crystallographic Directions

Algorithm

1. Vector repositioned (if necessary) to pass through

origin.

2. Read off projections in terms of unit cell

dimensions a1, a2, a3, or c

3. Adjust to smallest integer values

4. Enclose in square brackets, no commas [u v t w].

Ex:

½, ½, -1, 0 1  1  2ത  0

Dashed red lines indicate

projections onto a1 and a2

axes
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HCP Crystallographic Directions

Hexagonal Crystals

4 parameter Miller-Bravais lattice coordinates are related to the

direction indices (i.e., �́� �́� �́�) as follows.

�́� �́� �́� =[1  1  0]

𝑢 =
1

3
2 × 1 − 1 =

1

3

𝑣 =
1

3
2 × 1 − 1 =

1

3

𝑡 = −
1

3
+

1

3
= −

2

3

𝑤 = 0
ଵ

ଷ
  

ଵ

ଷ
  

ିଶ

ଷ
  0 = 1  1  2ത  0
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HCP Crystallographic Planes

a1 a2 a3 c

Intercepts 1  -1 1
Reciprocals 1

1
1/
0

-1
-1

1
1

Reduction 1 0 -1 1

Miller-Bravais Indices:   𝟏  𝟎  𝟏ഥ  𝟏

 In hexagonal unit cells the same idea is used:

Example 3
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Linear Density

𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐴𝑡𝑜𝑚𝑠 = 𝐿𝐷 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑜𝑛

𝑈𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟

Example:

Calculate the linear density of Al in [1 1

0] direction. Al atomic radius = 0.143

nm

We know:

 Number of atoms centered = 2

 Unit length of direction vector = 4𝑟

ିଵ
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Planar Density

Example:

Calculate the Planar density of (1 0 0) Iron.

At T 912 oC iron has the BCC structure.

 Radius of iron R = 0.1241 nm

 Number of atoms in the plane = 1

 Area of plane = 𝑎ଶ

𝑃𝑙𝑎𝑚𝑎𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒

ଶ   ଶ

ଶ
ଵଽ

ଶ
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Planar Density

Excersise:

Calculate the planar density of (1 1 1) iron. 

 Radius of iron R = 0.1241 nm

 Number of atoms in the plane = 0.5

 Area of plane = ଷ
 

ଶ
𝑎ଶ

=
3

 

2

4

3
  𝑅

ଶ

=
8

3
  𝑅ଶ

𝑃𝑙𝑎𝑚𝑎𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
0.5

𝑎𝑟𝑒𝑎
=

0.5

8

3
  𝑅ଶ

= 0.703 × 10ଵଽ  
𝑎𝑡𝑜𝑚𝑠

𝑚ଶ



Designating Lattice Planes

Why are planes in a lattice important?

A. Determining crystal structure:

 Diffraction methods measure the distance between parallel lattice

planes of atoms. This information is used to determine the lattice

parameters in a crystal.

 Diffraction methods also measure the angles between lattice planes.

B. Plastic deformation

 Plastic deformation in metals occurs by the slip of atoms past each

other in the crystal.

 This slip tends to occur preferentially along specific crystal-dependent

planes.
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B. Transport Properties

In certain materials, atomic structure in some planes causes the

transport of electrons and/or heat to be particularly rapid in that plane,

and relatively slow in other planes.

Example:

Graphite: heat conduction is more in spଶ-bonded plane.
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