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Types of solids

> Crystalline material: atoms self-organize in a periodic array:
1. Single cry

stal: atoms are in a r?peatmg or periodic array over
the entire extent of the materia
2. Polycrystalline material: comprised of many small crystals or
grains

> Amorphous: lacks a systematic atomic arrangement

e Silicon atom @& Oxyvgen atom

(a) Crystalline SiO-

(b) Non-crystalline SiO >
Silicon dioxide




Crystal Structure

Sodium Chloride

Green spheres are Chloride ions.

» To discuss crystalline structures it is lbespheresaripdieilons
useful to consider atoms as being hard

spheres with well-defined radii.

> In this hard-sphere model, the shortest
distance between two [ike atoms is one

diameter.

» We can also consider crystalline
structure as a lattice of points at

atom/sphere centers.

Yousef Mubarak, Materials Science



Unit Cell

>

The unit cell is the smallest structural unit or building block that
can describe the crystal structure.

Repetition of the unit cell generates the entire crystal.

Example: 2D honeycomb net can be represented by translation of

two adjacent atoms that form a unit cell for this 2D crystalline

structure.

Example of 3D crystalline structure:



> Different choices of unit cells are possible, for example:
A square unit cell may contain any of the following object patterns.

Yousef Mubarak, Materials Science



Crystalline Lattices

> A crystal is a repeating array. In describing this structure we
must distinguish between the pattern of repetition (the lattice
type) and what is repeated (the unit cell).

> The most fundamental property of a crystal lattice is its

symmetry. If we initially limit ourselves to 2 dimensions for

simplicity, three types are present:
1. Squares
2. Rectangles

3. Hexagons
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Metallic Crystal Structures

>

>

>

Metals tend to be densely packed.
Reasons for dense packing:

« Typically, only one element is present, so all atomic radii are

the same.
Metals tend to be densely packed.
« Metallic bonding is not directional.

« Nearest neighbor distances tend to be small in ovder to lower

bond energy.

Have the simplest crystal structures.
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>

Metals are usually (poly)crystalline.

Although formation of amorphous metals is possible by rapid

cooling.

The atomic bonding in wmetals is non-directional = no
restriction on numbers or positions of mnearest-neighbor
atoms = large numbeyr of nearest neighbors and dense atomic

packing.
Atom (hard sphere) radius, R, defined by ion core

radius - typically o.1 - 0.2 nm

11



The most common types of unit cells are:

1- The simple cubic (SC)

-

3- The body-centered cubic (BCC)

Yousef Mubarak,

2- The faced centered cubic (‘(FCC).

Materials Scienice

4- The hexagonal close-packed (HCP)

12
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Simple Cubic Metal

>

>

Rare due to low packing density.
- Only Po has this structure.
- Close-packed directions are cube edges.

In a metal the atoms ave all identical, and
most are sphevical (the bonding does not

depend on direction).

Metals thus tend to adopt velatively simple

structures. The simplest is simple cubic.

14
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Coordination number = 6 atoms
Numbeyr of atoms per unit cell:
= 8 corners x 1/8
=1 atoms

In 3-D the packing efficiency is given by :
v P.E. = (Volume of spheves) / (volume of cell)
v' For a simple cubic lattice, this is:

4 22

Volume of spheres = g X 8 X 3 X=X (0.5a)3

Volume of cell = (a)3

“ P.E.= b = 0.523
oo - .—168— .

f

d

JL R=0.5a

close-packed directions
contains 8 x 1/8 =1 atom/unit cell

Lattice

16



Face Centered Cubic (‘FCC)

or
Cubic Close Packed (CCP)

> Think of this cell as being made by inserting another atom into
each face of the simple cubic lattice - hence the "face centered

cubic" name .

> The reason for the various colors is to help point out how the cells
stack in the solid .

Yousef Mubarak, Materials Science
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>

>

Atoms touch each other along face diagonals.

v Note: All atoms are identical.

Example:

v AL Cu, Au, Pb, Ni, Pt, Ag

Coordination number = 12 atoms

~J

1/8 atom
at
8 corners

1/2 atom

Number of atoms per unit cell: on
6 faces

=6 face x 1/2 + 8 corners x 1/8 = 4

Yousef Mubarak, Materials Science
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> In 3-D the packing efficiency is given by :
v’ P.E. = (Volume of spheves) / (volume of cell)

> For a face centered cubic lattice, this is:

Volume of spheres = 4 X =X — X 2

4 22 <ax/§>3
377

Volume of cell = (a)?3

995.6

Yousef Mubarak, Materials Scrence



Body Centered Cubic Structure (BCC)

> Think of this unit cell as made by stuffing another atom into the
center of the simple cubic lattice, slightly spreading the corners.

> The corner spheres no longer quite touch one another, but do

touch the center.

> Examples: Cr, W, Fe (o), Tantalum, Molybdenum

=0

Yousef Mubarak, Materials Science



Yousef Mubarak,

Materials Science
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The hard spheres touch one another along cube diagonal
The coordination number, CN = 8
Number of atoms per unit cell, n = 2

1 center atom shared by no other cells: 1 x1=1

8 corner atoms shared by eight cells: 8 x 1/8 = 1

Corner and center atoms are equivalent

1/8 atom
at
8 corners

1 atom
in
center




= the cube edge length, a= 4R/ /3

4 22 (aV3
Volume ofspheres=2><§>< - X A

Volume of cell = (a)3

— 914.5
" 1344

= 0.6805

> The higher coordination number and packing efficiency mean that this

lattice uses space more efficiently than simple cubic.

Yousef Mubarak, Materials Science
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Hexagonal Close- Packed Crystal Structure

> JHCP is one more common structure of

metallic crystals.

> Six atoms  form  regular  hexagon,

surrounding one atom in center.

> Another plane is situated halfway up unit
cell (c-axis), with 3 additional atoms situated

at interstices of hexagonal (close-packed)

planes.

> Example: Cd, Mg, Zn, Ti have this crystal

Structure.
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> The hexagonal close packed structure can be made by piling layers
inthe A-B-A-B-A-B..... sequence.

Unit cell has two lattice parameters a and c.
Ratio ¢/a = 1.633

The coordination number, CN = 12

y. .V 'V VY

Numbeyr of atoms per unit cell, n= 6.

Top layer

v' 3 mid-plane atoms sharved by no
other cells: 3 x1=3

Middle layer

Bottom layer

v 12 hexagonal corner atoms sharved
by 6 cells: 12 x 1/6 = 2

v' 2 top/bottom plane center atoms
shaved by 2 cells: 2 x 1/2 = 1

Yousef Mubarak, Materials Science 29



> In 3-D the packing efficiency is given by :
v’ P.E. = (Volume of spheves) / (volume of cell) y e

3

4
Volume of spheres = 6 X = X — X ()3

22

7

Volume of spheres = 25.1428(r)3

Volume of cell = 24vV2(r)3

~ P.E.= 0.7405

Yousef Mubarak,

M

arte

rials Science

a?=h2+ (a/2)?
= h?=a2-a?%/4
= h?=(3a2)/4

Or, h="%(\3a)

Area of Triangle = %2 x base x height

= A =1 xax%(3a)
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Density Computations

> Since the entive crystal can be genevated by the repetition of the

unit cell, the density of a crystalline material,

Mass of Atoms in Unit Cell

Density = p =
Y = P = Total Volume of Unit Cell
_ n4
A

Where: n = number of atoms/unit cell
A = atomic weight
Ve = Yolume of unit cell = a3 for cubic
Np = Avogadro’s number
= 6.023 x 1023 atoms/mol
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Characteristics of Selected Elements

rials Science

Atomic  Density of  Crystal  Atomic Ionic Most Melting
Atomic  Weight Solid, 20°C  Structure, Radius Radius Common Point

Element Symbol Number (amu) (g/cm’) 20°C (nm) (nm) Valence 0O
Aluminum Al 13 26.98 2.71 FCC 0.143 0.053 3+ 660.4
Argon Ar 18 39.95 - — — — Inert —189.2
Barium Ba 56 137.33 35 BCC 0217 0.136 2+ 725
Beryllium Be 4 9.012 1.85 HCP 0.114 0.035 2+ 1278
Boron B S 10.81 2.34 Rhomb. — 0.023 3+ 2300
Bromine Br 35 79.90 — — — 0.196 1— =72
Cadmium Cd 438 112.41 8.65 HCP 0.149 0.095 ZF 321
Calcium Ca 20 40.08 1.53 FCC 0.197 0.100 24 839
Carbon C 6 12.011 225 Hex. 0.071  ~0.016 4+ (sublimes at 3367)
Cesium s 55 132.91 1.87 BCC 0.265 0.170 1+ 28.4
Chlorine Cl 17 35.45 — — — 0.181 1— —101
Cobalt Co 27 58.93 8.9 HCP 0.125 0.072 2F 1495
Copper Cu 29 63.55 8.94 FCC 0.128 0.096 [ o 1085
Fluorine F 9 19.00 — — — 0.133 1= —220
Gallium Ga 31 69.72 5.90 Ortho. 0122 0.062 3+ 29.8
Germanium Ge 32 72.64 5.32 Dia. cubic 0.122 0.053 4+ 937
Gold Au 79 196.97 19.32 FOC 0.144 0.137 1+ 1064
Helium He 2 4.003 — — — — Inert —272 (at 26 atm)
Hydrogen H 1 1.008 — — — 0.154 1+ =259
Iodine I 53 126.91 4.93 Ortho. 0.136 0.220 1~ 114
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Theoretical Density, p

« Ex: Cr (BCC) R
A = 52.00 g/mol V3
R = o0.125nm ; : 4
=2 . | a =—(0.125) = 0.2887 nm
V3
= RS = 717596192
P = 102887 x 10-9)3 x 6.023 x 1023 _ e
_ 7170061.0. T G
p = - T3.(100 cm)3 = /. T eoretica

The actual density is 7.19

‘)/E)IJS{,:/—MM-E(]J’(Z&’ Materials Science &S



Densities of Materials Classes

In general:

Pmetals = Pceramics > Ppolymers
Why?
Metals have:

» Close-packed (metallic bonding)

= Often large atomic masses
Ceramic have:

= Less dense packing

= Often lighter elements

Polymer have:

= Low packing density (often amorphous)

= Lighter elements (C,H,0)
Composites have:

»  ntermediate values
Yousef Mubarak,

Materials Scienice
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Crystals as Building Blocks
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Polymorphism and Allotropy
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Crystallographic Points, Directions, and Planes
1. Symmetry Equivalent Directions

2. POINT Coordinates

3. Direction Coordinates

4. How Do We Designate Lattice Planes?

> Linear Density
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Planar Density
> Designating Lattice Planes

36



Crystals as Building Blocks

> Some engineering applications
require single crystals

Diamond single
crystals for abrasives

> Properties of crystalline materials often
related to crystal structure.

Ex: Quartz fractures move easily along
some crystal planes than others.

Yousef Mubarak, Materials Science

Turbine blades
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Polycrystalline Materials

> Most engineering matevials are polycrystalline.

> In polycrystalline materials, grain orientations
are rvandom, so bulk wmaterial properties are

1sotropic.

» Some polycrystalline materials have grains with
preferrved orientations (texture), so properties are
dominated by those velevant to the texture

orientation.

> If grains ave vandomly oriented, overall

component properties are not dirvectional.

38



Single Crystals and Polycrystalline Materials

> Single crystal: atoms are in a rvepeating or
periodic array over the entire extent of the

material.

> Polycrystalline material: comprised of many
small crystals or grains. The grains have

different crystallographic orientation.

> There exist atomic wmismatch within the
regions where grains meet. These regions are

called grain boundaries.

Grain Boundaries

Frxxy

"Grains"

(Differently Oriented Cryvstals)

0000 00
0070000
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Single Crystals

E (diagonal) = 273 GPa

=

> Properties vary with direction:

antsotropic.

> Ixample: the modulus of elasticity E
: : o
in BCC tron. E (edge) = 125 GPa

Polycrystals

Anisotropic

> Properties may/may not vary with
direction.
> If grains are randomly oriented:

isotropic. (Eyop; iron =.21056Pa)

. : ) ...“\.- al —' e L. ‘. .‘ : 1 s i ! ”*‘- .
> If grains are textured, anisotropic. RAiepIE

not directional.




Isotropic OR Anisotropic

> Anisotropic exhibiting properties with different values when

measured along axes in different directions.

> Isotropic exhibiting properties with the same values when

measured along axes in all directions.

43



Anisotropy

> Different directions in a crystal have different packing.

> For instance, atoms along the edge of FCC unit cell are more

separated than along the face diagonal.

> This causes anisotropy in the properties of crystals, for instance, the

deformation depends on the divection in which a stress is applied.

> In some polycrystalline materials, grain orientations are rvandom, so

bulk material properties are isotropic

44



» Some polycrystalline wmaterials have

grains with preferred orientations

(texture), so properties are dominated

by those velevant to the texture

orientation and the wmaterial exhibits

anisotropic properties.

> Properties of crystals may be different <100>

along different directions, because

; Dma—- ) = <100 > Cube edges
atomic periodicities are different. /
= < 110 > Face diagonals

> E.g. insingle crystal cubic system: = < 111> Body diagonals



Polymorphism and Allotropy

>

Some materials may exist in more than one crystal structure,

this is called polymorphism.
If the material is an elemental solid, it is called allotropy.

Allotropy means the existence of a substance in two or movre

different forms in the same phase.

An example of allotropy is carbon, which can exist as

diamond, graphite, and amorphous carbon.

46



> Pure, solid carbon occurs in three crystalline forms-diamond,

graphite; and large, hollow fullevenes.

> Two kinds of fullevenes are shown hevre:

1. buckminsterfullevene (Buckyball)
Buckyball

2. carbon nanotube.

Graphite Diamond Carbon nanotube

47



Non-Crystalline (Amorphous) Solids

> In amorphous solids, there is no long-range ovder.

> But amorphous does not mean random, in many cases there is

some form of short-range order.

Amorphous

Diamond -
diamond

Yousef Mubarak, Materials Science



Crystallographic Points, Directions, and Planes

» How to define points, dirvections, planes, as well as [inear,

planar, and volume densities.

v

v

Points (atomic positions)
Vectors (defines a particular divection - plane normal)

Miller Indices (defines a particular plane) relation to
diffraction

3-indices for cubic and 4-indices notation for HCP

49



Symmetry Equivalent Directions
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>

All periodic unit cells may be described
via these vectors and angles, if and
only if a, b, and c define axes of a 3D

coordinate system.
Coordinate system is Right-Handed.

We can define points, directions and
planes with a “triplet” of numbers in

units of a, b, and c unit cell vectors.

For HCP we need a “quad” of numbers.

fe /
| B
¥
| |
/
v b |

51



POINT Coordinates

> To define a point within a unit cell....

> Express the coordinates uvw as fractions of unit cell vectors a,

b, and c (so that the axes x, y, and z do not have to be

orthogonal).

b coordinate
Point x(a) yb)  z(c)
Blue 0 0 0
Red 1 0 0
Green 1 1 1
Black 1/2 0 1/2

Yousef Mubarak, Materials Science



Direction Coordinates

Procedure:

1. Any line (or vector direction) is specified by 2 points.
v' The first point is, typically, at the origin (0oo).

2. Determine length of vector projection in each of 3 axes in units (or
fractions) of a, b, and c.

oy 1

1 1 0

3. Multiply or divide by a common factor to reduce
the length to the smallest integer values, u v w.

4. Enclose in square brackets: [u v w]: [110]

direction. e

5. Designate negative numbers by a bar [110]

PN (S

v Pronounced “bar 1”, “bar 1”°, “zero” dirvection.

6. “Family” of [110] directions is designated as <110>.



Direction Coordinates

What is the crystallographic divection of the ved arrow?

Solution:

Along x:1a
Along y:1b
Along c:1C

Direction=[1 1 1]

Yousef Mubarak,

Materials Scienice
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Point and Direction Coordinates

a) What is the lattice point given by point P?
Solution:
=2
b) What is the crystallographic direction for
the origin to P?

Solution:

lilsaie]
c) What lattice direction does the lattice point
264 correspond?
Solution:

The lattice direction [1 3 2] from the origin

56



Symmetry Equivalent Directions

Note: for some crystal structures, different directions can be
equivalent.

e.g. For cubic crystals, the directions are all equivalent by

symmetry:

0 0],[T 0 0],[0 1 0],
1

[1
0 0],[0 0 1],[0 0 1]

Families of crystallographic dirvections

e.g. <10 0>
Angled brackets denote a family of crystallographic directions

‘)/E)IJS{,:/—MM-E(]J’(Z&’ Materials Science 57



Symmetry Equivalent

Directions

= N

Rotate 90¢ ahout 7-axis

*» N

(010)

.

(100)

Rotate 90° about y-axis

Symmetry operation can
generate all the directions
within in a family.

-

Similary for other
equivalent directions

58



How Do We Designate Lattice Planes?

Crystallographic Planes
> Miller Indices: Reciprocals of the (three axial intercepts for a
plane, cleared of fractions and common multiples.

> All parallel planes have same Miller indices.

Algorithm

1. Read off intercepts of plane with axes in terms of a, b, and c.
2. Take reciprocals of intercepts.

3. Reduce to smallest integer values

4. Enclose in parentheses, no commas i.e., (L k ()

59
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Planes intersects axes at:
» gaxisatr =2
» paxisats=4/3
= caxisatr =%

How do we symbolically designate planes in a lattice?

1. Take the veciprocal of v, s, and t.
Herve: 1/v =%, 1/s = %, and 1/t = 2

2. Find the least common multiple that converts all veciprocals to integers.
With LCM =4, h =4/ =2, kR = 4/s = 3, and (= 4/t==8

3. Enclose the new triple (h, k, [) in parentheses: (2 3 8)

4. This notation is called the Miller Index.

Note 1: if a plane does not intercept an axes (i.e., it is at ), then you get o.

Note 2: All parallel planes at similar staggered distances have the same

Miller Index.

61



Crystallographic Planes

Example 1
Intercepts
Reciprocals 1/1 1/1 1/oo
1 1 o)
Reduction 1 1 o)
Miller Indices: (1 1 0)
Example 2
Intercepts 1/2 o0
Reciprocals 1/(1/2) 1/ 1/oo
2 0 0
Reduction 2 o) o)

Miller Indices: (2 o o)

Yousef Mubarak, Materials Science

62



Crystallographic Planes

fxam]o[e 3 b4
Intercepts 1/2 I 3/4 g
Reciprocals 1/(1/2)  1/1 1/(3/4)

2 I 4/3
Reduction 6 3 4 3
Miller Indices: (6 3 4) o

Family of Planes {h k [}
Ex:{1o00f=(1 0 0),(0 1 0),(0 o 1),(100),(010),(001)

Yousef Mubarak, Materials Science



(110) Plane referenced to the
origin at point O

(001) Plane referenced to
/ the origin at point O

/

Other equivalent
(001) planes

(a)

Other equivalent
(110) planes

(b)

(111) Plane referenced to
the origin at point O

Other equivalent)

/ (111) planes

64



HCP Crystallographic Directions

Algorithm

1. Vector repositioned (if necessary) to pass through
origin.

2. Read off projections in terms of wunit cell
dimensions a,, a,, ,, Or C

3. Adjust to smallest integer values

4. Enclose in square brackets, no commas [uv t w].

a3 —=

[\N]

120°

a 1

Ex:
Y, %,-1,0 mmmp [112 0]
Dashed red (nes indicate

projections onto a, and a,

axes

[1100]

65



HCP Crystallographic Directions

Hexagonal Crystals

4 parameter Miller-Bravais lattice coordinates are rvelated to the

direction indices (i.e., v W) as follows.

[tvw] - [uvtw]

1
u=§(21’£—19)

1
V=§(213—1:L)
t=—(u+v)
w=Ww

[ v w]=[1 1 0]
u=%(2><1—1)=

i

3

1 1
v=2@x1-1) =2
2

3

3
] B
=—(3+3)=-

w=20

Eg‘?zo]:[uio]

— >N

[0001]

I(
——

|
|
|
|
)_
/

(13-.9:-— =
-
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HCP Crystallographic Planes

> In hexagonal unit cells the same idea is used:

Example 3
_- _
Intercepts -1 1 (1011)
Reciprocals 1 1/oo -1 1

I 0 J 1
Reduction 1 0 -1 1

|

Miller-Bravais Indices: (101 1)

Yousef Mubarak, Materials Science 67



Linear Density

Number of atoms centered on

Li Density of Atoms = LD =
inear Density of Atoms Unit length of direction vector

Example:
Calculate the [inear density of Alin [1 1

o] direction. Al atomic radius = 0.143

nm
We know:
> Number of atoms centered = 2

> ‘Unit length of direction vector = 4r

LD = 3.4965 nm ™1

~ 1 x0.143

Yousef Mubarak, Materials Science
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Planar Density

Example:

Calculate the Planar density of (1 o o) Iron.
At T 912 oC iron has the BCC structure.

= Radius of iron R = 0.1241 nm

= Number of atoms in the plane =1

= Area of plane = a*

Number of atoms in the plane

Plamar Density =

Area of the plane
1 1
Plamar Density = — 5
CED
T R
atoms 19 atoms
—=12x10 >
nm m

Yousef Mubarak, Materials Science

(100) 2D repeat unit
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Planar Density

Excersise:

Calculate the planar density of (11 1) iron.

= Radius of iron R = 0.1241 nm

= Number of atoms in the plane = 0.5

V3 5

= Area of plane = fa

=ﬁ<iR> =£R2

2 \V3 V3
_ 0.5 0.5
Plamar Density = =
area iRZ
V3
atoms
= 0.703 x 101 ———

m?2

70



Designating Lattice Planes

Why are planes in a lattice important?
A. Determining crystal structure:

> Diffraction methods measure the distance between parallel lattice
planes of atoms. This information is used to determine the lattice

parameters in a crystal.
> Diffraction methods also measure the angles between lattice planes.
B. Plastic deformation

> Plastic deformation in metals occurs by the slip of atoms past each

other in the crystal.

> This slip tends to occur preferentially along specific crystal-dependent

planes.

71



B. Transport Properties

In certain materials, atomic structure in some planes causes the
transport of electrons and/or heat to be particularly rapid in that plane,

and relatively slow in other planes.
Example:

Graphite: heat conduction is more in sp*-bonded plane.

72



