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Outline

 How do Materials Break? 

Ductile vs. brittle fracture  

 Principles of fracture mechanics 

 Stress concentration 

 Impact fracture testing 

 Fatigue (cyclic stresses) 

 Cyclic stresses, the S—N curve 

 Crack initiation and propagation 

 Factors that affect fatigue behavior 

 Creep (time dependent deformation) 

 Stress and temperature effects 

 Alloys for high-temperature use
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ISSUES TO ADDRESS...

 How do cracks that lead to failure form?

 How is fracture resistance quantified? How do the fracture

resistances of the different material classes compare?

 How do we estimate the stress to fracture?

 How do loading rate, loading history, and temperature affect the

failure behavior of materials?

Ship-cyclic loading
from waves

Computer chip-cyclic
thermal loading

Hip implant-cyclic
loading from walking
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 Design of a component or structure: Minimize failure possibility

 It can be accomplished by understanding the mechanics of failure

modes and applying appropriate design principles.

 Failure cost

1. Human life

2. Economic loss

3. Unavailability of service

 Failure causes

1. Improper material selection

2. Inadequate design

3. Processing

 Regular inspection, repair and replacement critical to safe design.

Why study failure? 
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Fracture

 Fracture is the separation of a body into two or more pieces in

response to an imposed stress.

 Steps in fracture:

1. Crack formation

2. Crack propagation

 Depending on the ability of material to undergo plastic

deformation before the fracture two modes can be defined:

1. Ductile fracture

2. Brittle fracture



Fracture Modes

Ductile fracture

 Most metals (not too cold) exhibit ductile fracture.

 Extensive plastic deformation ahead of crack.

 Crack is “stable”: resists further extension unless applied stress
in increased.

Brittle fracture

 Ceramics, ice, cold metals exhibit brittle fracture.

 Relatively little plastic deformation

 Crack is “unstable”: propagates rapidly without increase in
applied stress.

 Catastrophic

 Ductile fracture is preferred in most applications.
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Ductile vs Brittle Failure

Very 
Ductile

Moderately
Ductile

BrittleFracture 
behavior:

Large Moderate%AR or %EL Small

Ductile fracture is
usually more desirable
than brittle fracture!

 Classification:

Ductile
Warning before 

fracture

Brittle 
No 

warning

 Very ductile, soft metals (Pb,

Au) at room temperature, other

metals, polymers, glasses at high

temperature.

 Moderately ductile fracture,

typical for ductile metals.

 Brittle fracture, cold metals,

ceramics
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 Ductile failure:

 One piece

 Large deformation

Example:  Pipe Failures

 Brittle failure:

 Many pieces

 Small deformations



Ductile fracture
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Failure stages:

(a) Necking
(b) Formation of microvoids
(c) Coalescence of microvoids to form a crack
(d) Crack propagation by shear deformation
(e) Fracture
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Moderately Ductile vs. Brittle Failure

Cup-and-cone fracture in 
ductile Al

Brittle fracture in 
mild steel



Ductile fracture

11

(a) SEM image showing spherical dimples resulting from a uniaxial tensile 

load representing microvoids. (b) SEM image of parabolic dimples from 

shear loading.
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Brittle Failure

Red circles with arrows 
indicate point at which failure 

originated
Lines or ridges that radiate 

from the origin of the crack in 
a fanlike pattern
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Brittle Fracture Surfaces

Intergranular fracture:
Fracture crack propagation is
along grain boundaries (grain
boundaries are weakened or
embrittled by impurities
segregation etc.)

Transgranular fracture:
Fracture cracks pass through
grains. Fracture surface faceted
texture because of different
orientation of cleavage planes in
grains.
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Intergranular
(between grains)

304 S. Steel 
(metal)

Polypropylene
(polymer)

Brittle Fracture Surfaces

Al Oxide
(ceramic)

Transgranular
(through grains) 

S. Steel (metal) 
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 No appreciable plastic deformation.

 Crack propagation is very fast

 Crack propagates nearly perpendicular

to the direction of the applied stress.

 Crack often propagates by cleavage-

breaking of atomic bonds along specific

crystallographic planes (cleavage planes).

Brittle Fracture (Limited Dislocation Mobility)
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Studies the relationships between: 

1. Material properties 2.  Stress level 

3.  Crack producing flaws  4. Crack propagation mechanisms

Fracture Mechanics

 Measured fracture strength is much lower than predicted by

calculations based on atomic bond energies. This discrepancy is

explained by the presence of flaws or cracks in the materials.

 The flaws act as stress concentrators or stress raisers, amplifying

the stress at a given point.

 The magnitude of amplification depends on crack geometry and

orientation

Stress Concentration 
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Concentration of Stress at Crack Tip
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Flaws are Stress Concentrators

• If the crack is similar to an elliptical hole

through plate, and is oriented

perpendicular to applied stress, the

maximum stress, at crack tip

t where 
t = radius of curvature
o = applied stress
m = stress at crack tip
a = length of surface crack or 

½ length of internal crack
Kt = stress concentration factor

𝝈𝒎 = 𝟐𝝈𝒐
𝒂

𝝆𝒕

𝟏 𝟐⁄

= 𝑲𝒕𝝈𝒐
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Engineering Fracture Design
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Crack Propagation

 Cracks having sharp tips propagate easier than cracks having blunt tips

 A plastic material deforms at a crack tip, which “blunts” the crack.

Energy balance on the crack

 Elastic strain energy:

 Energy stored in material as it is elastically deformed

 This energy is released when the crack propagates

 Creation of new surfaces requires energy
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Criterion for Crack Propagation

 Crack propagates if crack-tip stress (m) exceeds a critical stress (c)

 When the tensile stress at the tip of crack exceeds the critical stress

value the crack propagates and results in fracture.

where

 E = modulus of elasticity

 s = specific surface energy

 a = one half length of internal crack

 For ductile materials replace s with s + p

where p is plastic deformation energy

𝒄
𝒔

𝟏 𝟐⁄



Impact Fracture Testing 

 Impact tests are used in studying the toughness of material. A material's

toughness is a factor of its ability to absorb energy during plastic

deformation.

Testing fracture characteristics under high strain rates.

Two standard tests, the Charpy and Izod, measure the impact energy (the

energy required to fracture a test piece under an impact load), also called

the notch toughness
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 As temperature decreases a ductile material can become brittle

– ductile-to-brittle transition

 Alloying usually increases the ductile-to-brittle transition

temperature.

 FCC metals remain ductile down to very low temperatures.

 For ceramics, this type of transition occurs at much higher

temperatures than for metals.

 The ductile-to-brittle transition can be measured by impact

testing: the impact energy needed for fracture drops suddenly

over a relatively narrow temperature range – temperature of

the ductile-to-brittle transition.

Ductile-to-brittle transition
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Influence of Temperature on Impact Energy

Ductile-to-Brittle Transition Temperature (DBTT)...

BCC metals (e.g., iron at T < 914ºC)

Im
p

a
ct

 E
n

er
gy

Temperature

High strength materials ( y > E/150)

polymers     

More DuctileBrittle

Ductile-to-brittle 
transition temperature

FCC metals (e.g., Cu, Ni)

 Impact energy increases with increasing temperature to a point at which

further increases in temperature do not cause a significant increase

in impact energy
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The Titanic Liberty ships

 Problem: Steels were used having DBTT’s just below

room temperature.

Design Strategy:

Stay Above The DBTT!
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Fatigue
Failure under fluctuating / cyclic stresses

 Under fluctuating / cyclic stresses, failure can occur at loads

considerably lower than tensile or yield strengths of material under a

static load: Fatigue.

 Estimated to causes 90% of all failures of metallic structures (bridges,

aircraft, machine components, etc.)

 Fatigue failure is brittle like (relatively little plastic deformation) – even

in normally ductile materials. Thus sudden and catastrophic.

 Applied stresses causing fatigue may be axial (tension or compression),

flextural (bending) or torsional (twisting).

 Fatigue failure proceeds in three distinct stages: crack initiation in the

areas of stress concentration (near stress raisers), incremental crack

propagation, final catastrophic failure.
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Fatigue: Cyclic Stresses I

 Cyclic stresses are characterized by maximum, minimum and mean

stress, the range of stress, the stress amplitude, and the stress ratio.

𝒓 𝒎𝒂𝒙 𝒎𝒊𝒏

𝒎
𝒎𝒂𝒙 𝒎𝒊𝒏

𝒂
𝒓 𝒎𝒂𝒙 𝒎𝒊𝒏

𝒎𝒊𝒏

𝒎𝒂𝒙

1- Mean stress:

2- Range of stress:

3- Stress amplitude:

4- Stress ratio:

 Remember the convention that tensile stresses are positive,

compressive stresses are negative.
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Fatigue: Cyclic Stresses II

1- Reversed stress cycle: the

stress alternates from a

maximum tensile stress to

a maximum compressive

stress of equal magnitude

2- Repeated stress cycle:

maximum and minimum

stresses are asymmetrical

relative to the zero stress

level

3- Random stress

fluctuation

𝒂
𝒎𝒂𝒙 𝒎𝒊𝒏

𝒎
𝒎𝒂𝒙 𝒎𝒊𝒏

 Alternating stress  Mean stress
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Fatigue

 Fatigue = failure under applied cyclic stress.

 Stress varies with time.

 Key parameters are S, m, and

cycling frequency

max

min



time

m
S

 Key points:  Fatigue...

 Can cause part failure, even though max < c.

 Responsible for ~ 90% of mechanical engineering failures. 

tension on bottom

compression on top

countermotor

flex coupling

specimen

bearing bearing
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Types of Fatigue Behavior

 Fatigue limit, Sfat: 

 no fatigue if S < Sfat

Sfat

steel

N = Cycles to failure

10 3 10 5 10 7 10 9

unsafe

safe

S 
=
 s

tr
es

s 
a

m
p

li
tu
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e

Al

N = Cycles to failure
10 3 10 5 10 7 10 9

unsafe

safe

S 
=
 s

tr
es

s 
a

m
p

li
tu

d
e

 For some materials,

there is no fatigue

limit!
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 Crack grows incrementally

typ. 1 to 6

  a~

increase in crack length per loading cycle

 Failed rotating shaft

 Crack grew even though Kmax <  Kc

 Crack grows faster as

  increases

 Crack gets longer

 Loading freq. increases.

Rate of Fatigue Crack Growth

𝒎
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Improving Fatigue Life

1. Impose compressive surface

stresses (to suppress surface

cracks from growing)

N = Cycles to failure

Moderate tensile m
Larger tensile mS 

=
 s

tr
es

s 
a
m

p
li

tu
d
e

Near zero or compressive m

Increasing 
m

Method 1: Shot peening

put surface 

into 
compression

shot
Method 2:  Carburizing

C-rich gas

2.  Remove stress concentrators.
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Creep
 Creep testing is conducted using a tensile

specimen to which a constant stress is

applied at a constant temperature, often

by the simple method of suspending

weights from it.

 The test is recorded on a graph of strain

versus time. Sample deformation at a

constant stress (s) vs. time

1. Primary Creep: slope (creep rate)
decreases with time.

2. Secondary Creep: steady-state, i.e.,
constant slope (/t).

3. Tertiary Creep: slope (creep rate) increases 
with time, i.e. acceleration of rate.



0 t
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 Occurs at elevated temperature, T > 0.4 Tm (in K)

Creep: Temperature Dependence
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Secondary Creep

 Strain rate is constant at a given T, . 
stress exponent 
(material parameter)

strain rate
activation energy for creep
(material parameter)

applied stressmaterial const.

10

2 0

4 0

10 0

2 00

10 -2 10 -1 1
Steady state creep rate     (%/1000 hr) s

St
re

ss
 (

M
P

a
)

427ºC

538ºC

649ºC

 Strain rate increases

with increasing T, 

𝒔 𝟐
𝒏 𝒄



Creep Failure

 Failure: voids that form

on the grain boundaries in

the early stages of creep.

Applied 
stress g.b. cavities

37



Prediction of Creep Rupture Lifetime

 Estimate rupture time of S-590 Iron at T = 800ºC and a stress value

of 20,000 psi

Time to failure (rupture)

Function of
applied stressTemperature

 Time to rupture, tr

Ans: tr = 233 hr
103 L (K-h)
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ss
 (

10
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p
si

)
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1
12 20 24 2816

data for 
S-590 Iron

20

𝒓

𝒓
𝟑
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L: Larson–Miller parameter



Prediction of Creep Rupture Lifetime

 Estimate rupture time of S-590 Iron at T = 750ºC and a stress value

of 20,000 psi

Time to failure (rupture)

Function of
applied stressTemperature

 Time to rupture, tr

Ans: tr = 2890 hr

103 L (K-h)
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data for 
S-590 Iron
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SUMMARY

 Engineering materials not as strong as predicted by theory.
 Flaws act as stress concentrators that cause failure at stresses lower than

theoretical values.
 Sharp corners produce large stress concentrations and premature failure.
 Failure type depends on T and :

 For simple fracture (noncyclic  and T < 0.4Tm), failure stress decreases

with:

 Increased maximum flaw size,

 Decreased T,

 For fatigue (cyclic ):

 Cycles to fail decreases as  increases.

 For creep (T > 0.4Tm):

 Time to rupture decreases as  or T increases.


