Chapter 7 Phase Diagrams

The University of Jordan
Chemical Engineering Department
Fall Semester 2022
Prof. Yousef Mubarak

Yousef Mubarak

Materials Science

Chapter 7 Phase Diagrams

ISSUES TO ADDRESS...

- When we combine two elements... what is the resulting equilibrium state?
- In particular, if we specify...
 - the composition (e.g., wt% Au wt% Pb), and
 - the temperature (T)

then...

- How many phases form?
- What is the composition of each phase?
- What is the amount of each phase?

Phase A

443
1417
3285
0.25
0.5
Au Pd
0.75

Outline

- Definitions and basic concepts.
- > Phases and microstructure
- Binary isomorphous systems (complete solid solubility)
- Binary eutectic systems (limited solid solubility)
- > Binary systems with intermediate phases/compounds
- The iron-carbon system (steel and cast iron)

Definitions: Components and Phases

- **Component:** chemically recognizable species (Fe and C in carbon steel, \mathcal{H}_2O and NaCl in salted water).
- > A binary alloy contains two components, a ternary alloy three, etc.
- Phase: a portion of a system that has uniform physical and chemical characteristics.
- Two distinct phases in a system have distinct physical or chemical characteristics (e.g. water and ice) and are separated from each other by definite phase boundaries.

Definitions: Components and Phases

- A phase may contain one or more components.
- A single-phase system is called homogeneous, systems with two or more phases are mixtures or heterogeneous systems.

Perlite: ferrite and cementite

Definitions: Solubility Limit

- Solvent: host or major component in solution.
- > Solute: minor component.
- Solubility Limit of a component in a phase is the maximum amount of the component that can be dissolved in it (e.g. alcohol has unlimited solubility in water, sugar has a limited solubility, oil is insoluble).
- The same concepts apply to solid phases: Cu and Ni are mutually soluble in any amount (unlimited solid solubility), while C has a limited solubility in Fe.

Question:

What is the solubility limit for sugar in water at 20°C?

Answer:

65 wt% sugar.

At 20°C, if C < 65 wt% sugar:

syrup

At 20°C, if C > 65 wt% sugar:

syrup + sugar

Microstructure

- The properties of an alloy depend not only on proportions of the phases but also on how they are arranged structurally at the microscopic level.
- Thus, the microstructure is specified by:
 - 1. The number of phases,
 - 2. Their proportions,
 - 3. And their arrangement in space.

- > This is an alloy of Fe with 4 wt.% C.
- There are several phases. The long gray regions are flakes of graphite. The matrix is a fine mixture of BCC Fe and Fe₃C compound.

> Phase diagrams will help us to understand and predict the microstructures like the one shown in this photo.

Equilibrium and Metastable States

- A system is at equilibrium if at constant temperature, pressure and composition the system is stable, not changing with time.
- > Equilibrium is the state that is achieved given sufficient time.
- > But the time to achieve equilibrium may be very long (the kinetics can be slow) that a state along the path to the equilibrium may appear to be stable.
- > This is called a metastable state.

Equilibrium and Metastable States

- In thermodynamics, equilibrium is described as the state of system that corresponds to the minimum of the thermodynamic function called the free energy of the system.
- Free energy is a function of the internal energy of a system, and also the randomness or disorder of the atoms or molecules (or entropy)

Equilibrium and Metastable States

Thermodynamics tells us that:

- > Under conditions of a constant temperature and pressure and composition, the direction of any spontaneous change is toward a lower free energy.
- The state of stable thermodynamic equilibrium is the one with minimum free energy.
- > A system at a metastable state is trapped in a local minimum of free energy that is not the global one.

Materials Science 13

Phase diagram

- PA phase diagram: graphical representation of the combinations of temperature, pressure, composition, or other variables for which specific phases exist at equilibrium.
- For H_2O , a typical diagram shows the temperature and pressure at which ice (solid), water (liquid) and steam (gas) exist.

Phase diagram

- A phase diagrams show what phases exist at equilibrium and what phase transformations we can expect when we change one of the parameters of the system (T, P, composition).
- We will discuss phase diagrams for binary alloys only and will assume pressure to be constant at one atmosphere.
- Phase diagrams for materials with more than two components are complex and difficult to represent.

Yousef Mubarak

Materials Science

1- Unary System

- > Consider 2 elemental metals separately:
 - Cu has melting T = 1085 °C
 - Ni has melting T = 1453 °C

liquid

1085 °C

Solid

Cu

(at standard P = 1 atm)

> What happens when Cu and N are mixed?

Why Alloys?

- > Effect of solid solution strengthening on:
 - -- Tensile strength (TS)

-- Ductility (%EL)

- Isomorphous system: complete solid solubility of the two components (both in the liquid and solid phases).
- > Three phase region can be identified on the phase diagram:
 - 1. Liquid (L), solid + liquid (α +L), solid (α)
 - 2. Liquidus line separates liquid from liquid + solid
 - 3. Solidus line separates solid from liquid + solid.

- > Binary: 2 components
- > Isomorphous: complete liquid and solid solubility
- ✓ Expect T_m of solution to lie between T_m of two pure components.
- ✓ For a pure component, complete melting occurs before T increases (sharp phase transition). But for multicomponent system, there is usually a coexistence of L and S.

- > Example of isomorphous system Cu-Ni
- > The complete solubility occurs because:
 - 1. Both Cu and Ni have the same crystal structure, FCC
 - 2. Similar radii
 - 3. Electronegativity
 - 4. Valence

Element	Symbol	Atomic Number	Atomic Weight (amu)	Density of Solid, 20°C (g/cm³)	Crystal Structure, 20°C	Atomic Radius (nm)	Ionic Radius (nm)	Most Common Valence
Cobalt	Co	27	58.93	8.9	HCP	0.125	0.072	2+
Copper	Cu	29	63.55	8.94	FCC	0.128	0.096	1+
Fluorine	F	9	19.00	-	-	_	0.133	1-
Gallium	Ga	31	69.72	5.90	Ortho.	0.122	0.062	3+
Neon	Ne	10	20.18		R <u>—</u> 3_	_	_	Inert
Nickel	Ni	28	58.69	8.90	FCC	0.125	0.069	2+
Niobium	Nb	41	92.91	8.57	BCC	0.143	0.069	5+

What can we learn from this phase diagram?

- 1. Phase(s) present.
 - \checkmark A: solid (a) only
 - ✓ B: solid and liquid
- 2. Composition of those phases
 - ✓ A: 60 wt% Ní
 - ✓ B: 35 wt% Ní overall (how about in L and S separately?)
- 3. Amount of the phases.
 - ✓ A: 100 % a phase
 - ✓ B: % solid and % liquid?

- In one-component system melting occurs at a well-defined melting temperature.
- In multi-component systems melting occurs over the range of temperatures, between the solidus and liquidus lines.
- Solid and liquid phases are in equilibrium in this temperature range.

Interpretation of Phase Diagrams

- > For a given temperature and composition we can use phase diagram to determine:
 - 1) The phases that are present
 - 2) Compositions of the phases
 - 3) The relative fractions of the phases
- > Finding the composition in a two phase region:
 - 1) Locate composition and temperature in diagram.
 - 2) In two phase region draw the tie line or isotherm.
 - 3) Note intersection with phase boundaries. Read compositions at the intersections.
- > The liquid and solid phases have these compositions.

Determining phase composition

 $\mathcal{A}t \, \mathcal{T}_{\mathcal{A}} = 1320^{\circ}C$:

Only Liquid (L) present

Consider $C_0 = 35 \text{ wt}\% \text{ Ni}$

 $C_{\mathcal{L}} = C_0 (= 35 \text{ wt% } \mathcal{N}i)$

 $\mathcal{A}t \mathcal{T}_{\mathcal{D}} = 1190^{\circ}C$:

Only Solid (a) present

 $C_{\alpha} = C_{o} \ (= 35 \ wt\% \ \mathcal{N}i)$

Determining phase composition in 2-phase region

- 1- At 1250 °C, draw the tie line.
- 2- Note where the tie line intersects the liquidus and solidus lines (i.e. where the tie line crosses the phase boundaries).
- 3- Read off the composition at the boundaries:
 - ✓ Liquid is composed of CL amount of Ni (32 et% Ni)
 - ✓ Solid is composed of Ca amount of Ni (43 wt% Ni)

Determination of phase weight fractions

- If there is only one phase, then the weight fraction of either solid or liquid will be 100 wt%
- > Examples:

Consider $C_0 = 35 \text{ wt}\% \text{ Ni}$

At $\mathcal{T}_{\mathcal{A}}$: Only Liquid (\mathcal{L}) present

$$\mathcal{W}_{\mathcal{L}} = 1.00, \ \mathcal{W}_{\alpha} = 0$$

At $\mathcal{T}_{\mathcal{D}}$: Only Solid (a) present

$$\mathcal{W}_{\mathcal{L}} = 0$$
, $\mathcal{W}_{\alpha} = 1.00$

Determination of phase weight fractions

If there is only one phase, then the weight fraction of either solid or liquid

will be 100 wt%,

- > Example:
- > Determine phase amount in the 2-phase Region:
 - 1- Draw the tie line.
 - 2- Determine the distance from the point of interest (B) to each of the phase boundaries.

$$R = C_o - C_L$$
 and $S = C_\alpha - C_o$

3- Mass fraction (wt%) of each phase:

$$W_L = \frac{S}{R+S} = \frac{C_{\infty} - C_o}{C_{\infty} - C_L} = \frac{43 - 35}{43 - 32} = 0.73$$

$$W_{\infty} = \frac{S}{R+S} = \frac{C_o - C_L}{C_{\infty} - C_L} = \frac{35 - 32}{43 - 32} = 0.27$$

i.e. 73% of the mass is liquid and 27% of the mass is solid.

The Lever Rule

Tie line - connects the phases in equilibrium with each other - also sometimes called an isotherm

$$W_L = \frac{M_L}{M_L + M_{\infty}} = \frac{S}{R + S} = \frac{C_{\infty} - C_O}{C_{\infty} - C_L}$$

What fraction of each phase?
Think of the tie line as a lever
(teeter-totter)

$$W_{\infty} = \frac{R}{R+S} = \frac{C_o - C_L}{C_{\infty} - C_L}$$

Development of microstructure in isomorphous alloys

Equilibrium (very slow) cooling

- Solidification in the solid + liquid phase occurs gradually upon cooling from the liquidus line.
- The composition of the solid and the liquid change gradually during cooling (as can be determined by the tie-line method).
- > Nuclei of the solid phase form and they grow to consume all the liquid at the solidus line.

Experiment 2 Hot Ice Sea Urchin

- > A (T>1300 °C): start as homogeneous liquid solution.
- ▶ \mathcal{B} ($T \sim 1260$ °C): liquidus line reached. α phase begins to nucleate. C_{α} = 46 wt% $\mathcal{N}i$; $C_{\mathcal{L}}$ = 35 wt% $\mathcal{N}i$
- C (T= 1250 °C): calculate composition and mass fraction of each phase.
- \mathcal{D} ($T\sim$ 1220 °C): solidus line reached. \mathcal{N} early complete solidification. $C_{\alpha}=35$ wt% \mathcal{N} i; $C_{\mathcal{L}}=24$ wt% \mathcal{N} i
- > E (T<1220 °C): homogeneous solid solution with 35 wt% Ni.

Example problem

65 wt% Ni - 35 wt% Cu alloy is heated to T within the $\alpha+L$ region. α -phase contains 70 wt% Ni, determine:

- A) Temperature of the alloy.
- B) Composition of the liquid phase.
- C) Mass fraction of both phases.

Development of microstructure in isomorphous alloys

- Non-equilibrium cooling
- > Fast cooling, but how fast?
 - Fast w.r.t. diffusion.
- Since diffusion rate is especially low in solids, consider case where:
 - ✓ Cooling rate >> diffusion rate in solid
- ✓ Cooling rate << diffusion rate in liquid (equilibrium maintained in liquids phase)

Cored vs. Equilibrium Phases

- \triangleright C_{α} changes Composition Upon Cooling
 - First α to solidify has $C_{\alpha} = 46$ wt% $\mathcal{N}i$
 - Last α to solidify has $C_{\alpha} = 35$ wt% $\mathcal{N}i$
- Fast Cool Rate

Slow Cool Rate

Cored structure

Equilibrium structure

3- Binary Eutectic Systems

- Binary: 2 components.
- Eutectic (easily) "easily melted, has a special composition with a min. melting T".
- T_m (Cu = 1085 and Ag = 961.8 °C)

Binary Eutectic Systems

- Single phase regions:
 - 1. α -phase (solid solution rich in Cu).
 - 2. β-phase (solid solution rich in Ag).
 - 3. L-phase (liquid solution).
- Phase coexistence regions:
 - α + β phases (limited solubility of Ag
 in Cu and vice versa lead to 2
 different solid solution phases).
 - 2. $\alpha + \mathcal{L}$ and $\beta + \mathcal{L}$ phase regions.

- > Tie lines and Lever Rule can be applied in the 2-phase regions.
- Solvus line separates one solid solution from a mixture of solid solutions.

- Futectic or invariant point Liquid and two solid phases co-exist in equilibrium at the eutectic composition $C_{\mathbb{F}}$ and the eutectic temperature $T_{\mathbb{F}}$.
- Futectic isotherm the horizontal solidus line at T_T .

Ex.: Cu-Ag system

- > 3 single phase regions (L, α, β)
- > Limited solubility:

a: mostly Cu

β: mostly Ag

- $ightharpoonup T_{\mathcal{I}}$: No liquid below $T_{\mathcal{I}}$
- $\succ C_{\mathcal{E}}$: Composition at temperature $T_{\mathcal{E}}$
- > Eutectic reaction

EX 1: Pb-Sn Eutectic System

For a 40 wt% Sn-60 wt% Pb alloy at 150°C, determine: 1- The phases present

Answer:
$$\alpha + \beta$$

- 2- The phase compositions

 Answer: $C_{\alpha} = 11$ wt% Sn $C_{\beta} = 99$ wt% Sn
- 3- The relative amount of each phase Answer:

$$W_{\alpha} = \frac{S}{R+S} = \frac{C_{\beta} - C_{o}}{C_{\beta} - C_{\alpha}} = \frac{99 - 40}{99 - 11} = \frac{59}{88} = 0.67$$

$$W_{\beta} = \frac{R}{R+S} = \frac{C_o - C_{\alpha}}{C_{\beta} - C_{\alpha}} = \frac{40 - 11}{99 - 11} = \frac{29}{88} = 0.33$$

EX 2: Pb-Sn Eutectic System

- > For a 40 wt% Sn-60 wt% Pb alloy at 220°C, determine:
- 1- The phases present:

Answer:
$$\alpha + \mathcal{L}$$

2- The phase compositions

Answer:
$$C_{\alpha} = 17 \text{ wt\% Sn}$$

$$C_{f} = 46 \text{ wt\% Sn}$$

3- The relative amount of each phase

Answer:

$$W_{\alpha} = \frac{C_L - C_o}{C_L - C_{\alpha}} = \frac{46 - 40}{46 - 17} = \frac{6}{29} = 0.21$$

$$W_L = \frac{C_o - C_\alpha}{C_L - C_\alpha} = \frac{23}{29} = 0.79$$

Microstructural Developments in Eutectic Systems I

- > For alloys for which $C_o < 2$ wt% Sn
- > Result: at room temperature
 - \checkmark Polycrystalline with grains of a phase having composition C_o

Microstructural Developments in Eutectic Systems II

- For alloys for which 2 wt% $Sn < C_o$ < 18.3 wt% Sn
- > Result:
 - ✓ Initially liquid + α
 - \checkmark Then α alone
 - Finally at temperatures in α + β range: Polycrystalline with α grains and small β-phase particles

Microstructural Developments in Eutectic Systems III

- For alloy of composition $C_0 = C_E$
- > Result: Eutectic microstructure (lamellar structure)
 - ✓ Alternating layers (lamellae) of α and β phases.

Micrograph of Pb-Sn Eutectic microstructure

Microstructural Developments in Eutectic Systems III

Microstructural Developments in Eutectic Systems IV

- For alloys for which 18.3 wt% Sn < C_0 < 61.9 wt% Sn
- > Result: a phase particles and a eutectic micro-constituent
 - ✓ Just above $\mathcal{T}_{\mathcal{E}}$:

$$C_{\alpha}$$
= 18.3 wt% Sn $C_{\mathcal{L}}$ = 61.9 wt% Sn $W_{\alpha} = \frac{S}{R+S} = 0.5$

$$W_L = (1 - W_\alpha) = 0.5$$

 \checkmark Just below $\mathcal{T}_{\mathcal{F}}$:

$$C_{\alpha}$$
= 18.3 wt% Sn C_{β} = 97.8 wt% Sn $W_{\alpha} = \frac{S}{R+S} = 0.73$

$$W_{\beta}=(1-W_{\alpha})=0.27$$

Hypoeutectic

Hypereutectic

Hypoeutectic & Hypereutectic

hypoeutectic: $C_0 = 50$ wt% Sn

eutectic: $C_0 = 61.9 \text{ wt}\% \text{ Sn}$

eutectic micro-constituent

hypereutectic: (illustration only)

Exercise:

- > At 150 °C for a 40 wt% Sn / 60 wt% Pb alloy:
 - 1. What phases are present?
 - 2. What are the compositions of the phases present?
 - 3. What are the mass fractions of the phases?
- > For a 10 wt% Sn / 90 wt% Pb alloy:
 - 1. At what T, can a state with 50% liquid be achieved?
 - 2. At 220 °C, how much Sn must be added to achieve the same state (50% liquid)?

4- Intermetallic Compounds

- > Besides solid solutions, intermetallic compounds, that have precise chemical compositions can exist in some systems.
- Intermetallic compound exists as a line on the diagram not an area because of stoichiometry (i.e. composition of a compound is a fixed value).
- When using the lever rules, intermetallic compounds are treated like any other phase, except they appear not as a wide region but as a vertical line.
- The phase diagram can be thought of as two joined eutectic diagrams, for Mg Mg₂Pb and Mg₂Pb Pb.

5- Iron-Carbon (Fe-C) Phase Diagram

- > Two important points
- ✓ Eutectíc (A): $\mathcal{L} \longrightarrow \gamma + \mathcal{F}e_3C$
- ✓ Eutectoid (B): $\gamma \longrightarrow \alpha + \mathcal{F}e_3C$

Result:

Pearlite = alternating layers of α and Fe_3C phases

Hypoeutectoid Steel

Hypoeutectoid Steel

Hypoeutectoid Steel

> Just above the eutectoid line

$$W_{\dot{\alpha}} = \frac{s}{r+s}$$

$$W_{\gamma} = (1 - W_{\dot{\alpha}})$$

> Just below the eutectoid line

$$W_{pearlite} = W_{\gamma}$$

$$W_{\alpha} = \frac{S}{R+S}$$

$$W_{Fe_3C}=(1-W_\alpha)$$

Hypereutectoid Steel

Hyperoeutectoid Steel

Hypereutectoid Steel

> Just above the eutectoid line

$$W_{\gamma} = \frac{x}{v + x}$$

$$W_{F\acute{e}_eC} = (1 - W_{\gamma})$$

> Just below the eutectoid line

$$W_{pearlite} = W_{\gamma}$$

$$W_{\alpha} = \frac{X}{V + X}$$

$$W_{Fe_3C} = (1 - W_\alpha)$$

Hypoeutectoid & Hypereutectoid

Phases in Fe-Fe₃C Phase Diagram

- 1. α -ferrite solid solution of C in BCC Fe
 - ✓ Stable form of iron at room temperature.
 - ✓ The maximum solubility of C is 0.022 wt%
 - ✓ Transforms to FCC γ-austenite at 912 °C
- 2. **y-austenite** solid solution of C in FCC Fe
 - ✓ The maximum solubility of C is 2.14 wt %.
 - ✓ Transforms to BCC δ-ferrite at 1395 °C
 - ✓ Is not stable below the eutectoid temperature (727 ° C) unless cooled rapidly

- 3. **8-ferrite** solid solution of C in BCC Fe
 - ✓ The same structure as α -ferrite
 - ✓ Stable only at high T, above 1394 °C
 - ✓ Melts at 1538 °C
- 4. **Fe₃C** (iron carbide or cementite)
 - ✓ This intermetallic compound is metastable, it remains as a compound indefinitely at room T, but decomposes (very slowly, within several years) into α-Fe and C (graphite) at 650 700 °C
- 5. Fe-C liquid solution

A few comments on Fe-Fe3 C system

- \triangleright C is an interstitial impurity in Fe. It forms a solid solution with α , γ , δ phases of iron.
- Maximum solubility in BCC α -ferrite is limited (max. 0.022 wt % at 727 °C) BCC has relatively small interstitial positions.
- Maximum solubility in FCC austenite is 2.14 wt % at 1147 °C FCC has larger interstitial positions.
- Mechanical properties: Cementite is very hard and brittle can strengthen steels.
- Mechanical properties also depend on the microstructure, that is, how ferrite and cementite are mixed.
- Magnetic properties: α-ferrite is magnetic below 768 °C, austenite is non-magnetic.

Classification of Iron

- > Three types of ferrous alloys:
 - 1. Iron: less than 0.008 wt % C in α -ferrite at room T.
 - 2. Steels: 0.008 2.14 wt % C (usually < 1 wt%) α -ferrite + Fe3 C at room T.
 - 3. Cast iron: 2.14 6.7 wt % (usually < 4.5 wt 50 %).

Example:

For a 99.6 wt% Fe and 0.40 wt% C steel at a temperature just below the eutectoid, determine the following:

- a) The compositions of Fe₃C and ferrite (α).
- b) The amount of cementite (in grams) that forms in 100 g of steel.
- c) The amounts of pearlite and proeutectoid ferrite (α) in the 100 g.

Solution

a) Using the RS tie line just below the eutectoid

$$C_{\alpha} = 0.022 \text{ wt% } C$$

$$C_{fe_3C} = 6.70 \text{ wt% } C$$

b) Using the lever rule with the tie line shown

$$W_{Fe_3C} = \frac{R}{R+S} = \frac{C_L - C_\alpha}{C_{Fe_3C} - C_\alpha}$$
$$= \frac{0.4 - 0.022}{6.7 - 0.022} = 0.057$$

Amount of $\mathcal{F}e_3C$ (eutectoid) in 100 g

=
$$(100 g)W_{fe_3C}$$
 = $(100 g)(0.057)$ = 5.7 g

Amount of total ferrite in 100 g = 100 - 5.7 = 94.3 g

c) Using the VX tie line just above the eutectoid and realizing that

$$C_o = 0.40 \text{ wt% } C$$

$$C_{\alpha} = 0.022 \text{ wt% } C$$

$$C_{austenite} = C_{\gamma} = 0.76 \text{ wt% } C$$

$$W_{Austenite} = \frac{V}{V + X} = \frac{C_o - C_\alpha}{C_\gamma - C_\alpha}$$
$$= \frac{0.4 - 0.022}{0.76 - 0.022} = 0.512$$

Amount of austenite in 100 g

$$= (100 g)(0.512) = 51.2 g$$

Amount of proeutectoid ferrite in 100 g = 100-51.2 = 48.8 gThen The amount of perlite ferrite (eutectoid) = 94.3 - 48.8 = 45.5 g

The Influence of Other Alloying Elements

- Adding alloying elements (Cr, Ni, Ti,) yields dramatic changes in the binary iron-iron carbide phase diagram.
- Alterations of the positions of the phase boundaries and the shapes of the phase regions depend on the alloying element and its concentration.

