Chapter 8

Applications and Processing of Metal Alloys

The University of Jordan
Chemical Engineering Department
Fall 2022
Prof. Yousef Mubarak

Yousef Mubarak

Materials Science

ISSUES TO ADDRESS...

- > How are metal alloys classified and what are their common applications?
- What are some of the common fabrication techniques for metals?
- What heat treatment procedures are used to improve the mechanical properties of both ferrous and nonferrous alloys? (will not be covered this semester)

increasing strength, cost, decreasing ductility

Refinement of Steel from Ore

BLAST FURNACE

Ferrous Alloys

- > Iron-based alloys:
 - Steel
 - Cast Irons
- Nomenclature for steels (AISI/SAE)

```
10xx Plain Carbon Steels
```

11xx Plain Carbon Steels (resulfurized for machinability)

40xx $Mo(0.20 \sim 0.30\%)$

43xx Ní (1.65 - 2.00%), Cr (0.40 - 0.90%), Mo (0.20 - 0.30%)

44xx Mo (0.5%)

where xx is wt% C x 100

Example: 1060 steel - plain carbon steel with 0.60 wt% C Stainless Steel >11% Cr

Cast Irons

- > Ferrous alloys with > 2.1 wt% C
 - More commonly 3 4.5 wt% C
- > Low melting relatively easy to cast
- Generally brittle
- Cementite decomposes to ferrite + graphite

$\mathcal{F}e3C \rightarrow 3 \mathcal{F}e(\alpha) + C(graphite)$

> This decomposition process is generally a slow process

Graphite formation promoted by:

- ✓ Sí > 1 wt%
- ✓ slow cooling

Gray Iron

- > Graphite flakes
- > Weak & brittle in tension
- > Stronger in compression
- > Excellent vibrational dampening
- > Wear resistant

Ductile Iron

- > Add Mg and/or Ce
- Graphite as nodules not flakes
- Matrix often pearlite stronger but less ductile

White iron

- > <1 wt% Si
- > Pearlite + cementite
- > Very hard and brittle

Malleable iron

- ➤ Heat treat white iron at 800-900°C
- Graphite in rosettes
- Reasonably strong and ductile

Compacted graphite iron

- > Can be prepared by addition of small amount of Ce or Mg to gray cast iron
- > Relatively high thermal conductivity
- Good resistance to thermal shock
- Lower oxidation at elevated temperatures

Production of Cast Irons

Limitations of Ferrous Alloys

- > One main drawback of ferrous alloys is their environmental degradation i.e. poor corrosion resistance.
- > Other disadvantages include:
 - 1) Relatively high densities.
 - 2) Relatively low electrical conductivities
 - 3) High cost to finish product
- > In ferrous materials the main alloying element is carbon

Nonferrous Alloys

 Cu Alloys Brass: Zn is subst. impurity (costume jewelry, coins, corrosion resistant) Bronze: Sn, Al, Si, Ni are subst. impurities (bushings, landing gear) NonFerrous

precip. hardened for strength

Ti Alloys

Cu-Be

-relatively low ρ: 4.5 g/cm³

vs 7.9 for steel

-space applic.

-low ρ : 2.7 g/cm³

Al Alloys

-Cu, Mg, Si, Mn, Zn additions

-solid sol. or precip.

strengthened (struct.

aircraft parts

& packaging)

Mg Alloys

-very low ρ : 1.7g/cm³

-ignites easily

-aircraft, missiles

Refractory metals

-high melting T's

-Nb, Mo, W, Ta

15

Noble metals

Alloys

-Ag, Au, Pt

-oxid./corr. resistant

Metal Fabrication

- > How do we fabricate metals?
 - Blacksmith hammer (forged)
 - Cast molten metal into mold
- > Forming Operations
 - Rough stock formed to final shape

Hot working

- ✓ Deformation temperature high enough for recrystallization
- ✓ Large deformations

Cold working VS.

- ✓ Deformation below recrystallization temperature
- ✓ Strain hardening occurs✓ Small deformations

Metal Fabrication Methods (i)

Yousef Mubarak

Materials Science

- > Casting-mold is filled with molten metal
 - Metal melted in furnace, perhaps alloying elements added, then cast in a mold
 - Common and inexpensive
 - Gives good production of shapes
 - Weaker products, internal defects
 - Good option for brittle materials

Metal Fabrication Methods (ii)

Sand Casting (large parts, e.g., auto engine blocks)

• What material will withstand T > 1600°C and is inexpensive and easy to mold?

Answer: sand!!!

To create mold, pack sand around form (pattern) of desired shape

Yousef Mubarak, Materials Science

Metal Fabrication Methods (ii)

FORMING

CASTING

➤ Investment Casting (low volume, complex shapes e.g., jewelry, turbine blades)

Stage I: Mold formed by pouring plaster of paris around wax pattern.

Plaster allowed to harden.

Stage II: Wax is melted and then poured from mold—hollow mold cavity remains.

Stage III: Molten metal is poured into mold and allowed to solidify.

JOINING

Yousef Mubarak

Materials Science

Metal Fabrication Methods (ii)

- > Die Casting
 - Hígh volume
 - For alloys having low melting temperatures

> Continuous Casting

 Símple shapes: rectangular slabs, cylinders

Yousef Mubarak, Materials Science 25

Continuous Casting

Powder Metallurgy (metals with low ductility)

Metal Fabrication Methods (ii)

> Welding

(when fabrication of one large part is impractical)

• Heat-affected zone: (region in which the microstructure has been changed).

