Types of Materials

- Metals:
 - Strong, ductile
 - high thermal & electrical conductivity
 - opaque, reflective.
- Polymers/plastics: Covalent bonding
 - Soft, ductile, low strength, low density
 - thermal & electrical insulators
 - Optically translucent or transparent.
- Ceramics: ionic bonding (refractory)
 - compounds of metallic & non-metallic elements (oxides, carbides, nitrides, sulfides)
 - Brittle, glassy, elastic
 - non-conducting (insulators)

Dr. Mubara

Element	Atomic #	Electron configuration		
Hydrogen	1	151		
Helium	2	152	(stable)	
Lithium	3	152251		
Beryllium	4	152252		
Boron	5	1522522p1	1	
Carbon	6	1522522p2		
200		***		
Neon	10	1s22s22p6	(stable	9)
Sodium	11	1s22s22p63	51	
Magnesium	12	1s22s22p63	52	
Aluminum	13	$1s^22s^22p^63s^23p^1$		
(*(*(*)				
Argon	18	$1s^22s^22p^63$	s23p6	(stable)
***	(5)(6)	***		
Krypton	36	1s22s22p63s23p63d104s24p6 (stable)		

• Most elements: Electron configuration not stable.

16 Dr. Mubarak

 Metals are electropositive – they can give up their few valence electrons to become positively charged ions.

$$\chi_A - \chi_B = (eV)^{-1/2} \sqrt{E_d(AB) - \frac{[E_d(AA) + E_d(BB)]}{2}}$$

Type	Bond Energy	Comments
Ionic	Large	Nondirectional (ceramics)
Covalent	Variable large-Diamond small-Bismuth	Directional (semiconductors, ceramics polymer chains)
Metallic	Variable larg -Tungsten smal-Mercury	Nondirectional (metals)
Secondary	mallest	Directional inter-chain (polymer) inter-molecular

48 Dr. Mu

ZnTe, CsCl, InSb, and MgCl₂.

What type(s) of honding would be expected for each of the following materials: brass (a metalic

Body Centered Cubic Structure (BCC)

The hard spheres touch one another along cube diagonal

The coordination number, CN = 8

Number of atoms per unit cell, n = 2

1 center atom shared by no other

cells: $1 \times 1 = 1$

8 corner atoms shared by eight

cells: $8 \times 1/8 = 1$

Corner and center atoms are equivalent

27 Dr. Mubarak

 \Rightarrow the cube edge length, a= 4R/ $\sqrt{3}$

Volume of sphere =
$$2 \times \frac{4}{3} \times \frac{22}{7} \times \left(\frac{\sqrt{3}a}{4}\right)^3$$

 $Volume of cell = (a)^3$

$$\therefore P.E. = \frac{914.5}{1344} = 0.6805$$

The higher coordination number and packing efficiency mean that this lattice uses space more efficiently than simple cubic.