Material Balances:

System: two insoluble phases E and R and single solute transferring from phase R to Phase E

رمع بجن Co Current Process: (a) transferring of Solute by driving force to the entrance then to the place

 R_i , E_i : moles total material/time; R_s , E_s : moles non diffusing material/time (constant) x_i , y_i : mole fractions of solute in stream i; X_i , Y_i : mole ratios of solute in stream i

i : stream number

Solute Material Balance

Envelope I (overall)

$$\begin{cases} R_i x_i = R_s \frac{x_i}{1 - x_i} = R_s X_i \\ E_i y_i = E_s \frac{y_i}{1 - y_i} = E_s Y_i \end{cases}$$

$$Rs(X_1 - X_2) = Es(Y_2 - Y_1)$$

Straight line with slope = $-\frac{R_s}{E_s}$ (line PQ)

 $R_{i} \times = \underbrace{\kappa_{i} \times (1-x_{i})}_{(1-x_{i})}$ $R_{i} \times = R_{i} \times (1-x_{i})$

On solute free basis

$$Rs(X_1 - X) = Es(Y - Y_1)$$

Rs
$$(X_1 - X)$$
 = Es $(Y - Y_1)$ Straight line: slope = $-\frac{R_s}{E_s}$ (Same as line PQ)

- ✓ General expression relating compositions of phases in equipment at any distance from entrance Points P and Q represent inlet and exit concentrations
- ✓ This straight line is called <u>operating</u> line
- ✓ KP driving force line at entrance K: interface composition at interface

KM, MP driving forces in E-phase (KM) and R-phase (MP) at entrance conditions

- ✓ LQ : driving force line at exit
 - L : interface composition
- ✓ Point T represents equilibrium compositions (Xe, Ye) if the equipment were longue enough. At this point the driving force is zero.

Representation using other units

$$R_1 x_1 - R x = E y - E_1 y_1$$
 Operating curve

$$E y = R_1 x_1 + E_1 y_1 - R x$$

$$E y = R_1 x_1 + E_1 y_1 - R x$$

$$y = \frac{R_1 x_1 + E_1 y_1}{E} - \frac{R}{E} x_2 \text{ Operating Curve}$$

المُن أَمَا اخْرَتُكُ نَفَطَةُ مُعِينَةً رِح يَطَاعِ عَلَيْنَ مِنْ مِنْ نَعَالَمُ لَنَعُهُمْ لَلْعُلَمْ

داخ د معامه واح دکید صحدت تهیا هیا جانع.

Note: If $E_1 = E_2 = E$ when the slute is very low ... When the system) => because the tensfor is very low.

Straight line operating line in terms of mole fractions

Solute transferring from $E \rightarrow R$

Material Balances:

Steady State Contacting Processes

System: two insoluble phases E and R and single solute transferring from phase R to Phase E

Counter Current Process:

(عدع) عد (عدع) عد (عدع)؛ equilibrium , nos si cos ais is apalin si cos curve

R_i, E_i: moles total material/time; R_s, E_s: moles non diffusing material/time (constant) x_i, y_i : mole fractions of solute in stream i; X_i, Y_i : mole ratios of solute in stream ii: stream number

Solute diffusing from $R \rightarrow E$

Solute Material balance

Envelop I (overall)

Input Output
$$R_1 \times_1 + E_2 \times_2 = R_2 \times_2 + E_1 \times_1 \text{ mole fractions}$$

$$R_i \times_i = R_S \times_i \qquad E_i \times_i = E_S \times_i$$

$$R_i x_i = R_S X_i$$

$$E_i y_i$$

$$R_S(X_1 - X_2) = E_S(Y_1 - Y_2)$$
 mole ratios

This is a straight line equation with slope $+\frac{R_S}{E_S}$

Envelop II (General) operating lines

In terms of mole fractions:

$$E y = R x + E_1 y_1 - R_1 x_1$$

$$y = \frac{R}{E} x + \frac{(E_1 y_1 - R_1 x_1)}{E}$$

operating curve

In terms of mole ratios (solute free basis)

$$R_S(X_1 - X) = E_S(Y_1 - Y)$$

$$E_S Y = R_S X - R_S X_1 + E_S Y_1$$

$$Y = \frac{R_S}{E_S} X - \frac{(R_S X_1 - E_S Y_1)}{E_S}$$

 $Y = \frac{R_S}{E_S} X - \frac{(R_S X_1 - E_S Y_1)}{E_S}$ straight line operating line slope = $+\frac{R_S}{E_S}$

In the case where the solute is passing from $E \rightarrow R$, the operating line will be above the equilibrium curve.

- The operating line represents the material balance passing from point at one end to the point at the other end.
- A point on the operating line represents bulk concentrations of passing streams
- > Lines such as PM indicate driving force

