Ponchon Savarit Method for Binary Distillation

Laterial tenergy + equilibrium

Graphical Multistage Calculations:

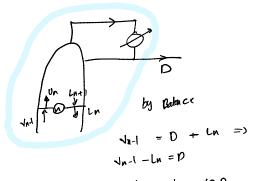
Features:

- Stage to stage calculations
- Stage to stage calculations

 We can use (mole, mole, -
 No need to make CMO assumption (:. any set of consistent units can be used)
- > Hxy diagrams must be available
- > VLE data must be available
- Limited to binary systems

VLE data + Hxy diagram -> graphical solution of material and energy balances

Working Equations:

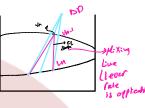

Top Section:

Material balance:

$$y_{n-1}.V_{n-1} = x_n.L_n + D.x_D$$

Eliminate D: $V_{n-1} = L_n + D$

$$\frac{L_n}{V_{n-1}} = \frac{x_D - y_{n-1}}{x_D - x_n}$$

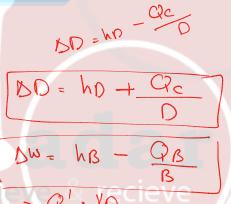


$$\int \frac{y_{n-1} \cdot v_{n-1} - y_n \ln x_0 \cdot p_n}{\sqrt{y_{n-1}} - \frac{y_0 - y_{n-1}}{\sqrt{y_n} - y_n}}$$

Enthalpy Balance:

by Balance:
$$V_{n-1}.h_{V,n-1}=L_n.h_{L,n}+D.Q'$$
 ; $Q'=h_D+rac{Q_C}{D}$ epresents the mixing line on an Hxy diagram OR $V_{n-1}-L$

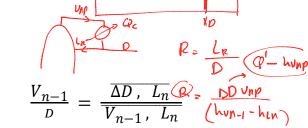
This represents the mixing line on an Hxy diagram OR $V_{n-1} - L_n = \Delta D$.


It also represents a family of straight lines passing through points V_{n-1} , L_n and a common point ΔD . The coordinates of these points are obtained as follows:

Eliminate D from enthalpy balance:

$$\frac{L_n}{V_{n-1}} = \frac{Q' - h_{V,n-1}}{Q' - h_{L,n}} = \frac{x_D - y_{n-1}}{x_D - x_n}$$

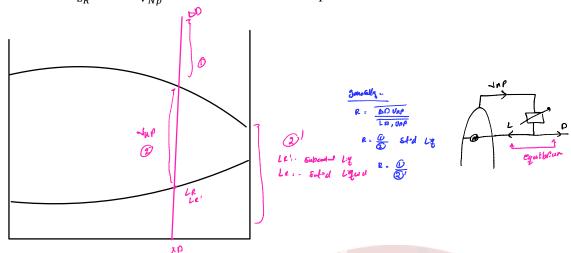
This is a straight line equation passing through points:


$$V_{n-1}$$
, $(y_{n-1}, h_{V,n-1})$
 L_n , $(x_n, h_{L,n})$
 ΔD , (x_D, Q')

Stream Ratios:

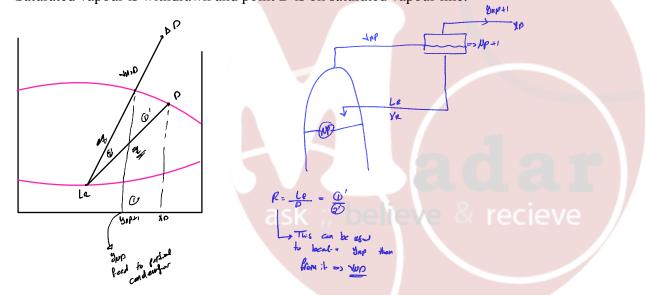
$$\frac{L_n}{V_{n-1}} = \frac{\overline{\Delta D}, V_{n-1}}{\overline{\Delta D}, L_n} \qquad \qquad \frac{L_n}{D} = \frac{\overline{\Delta D}, V_{n-1}}{\overline{L_n}, V_{n-1}}$$

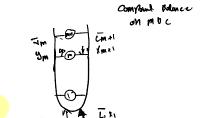
$$\frac{L_n}{D} = \frac{\overline{\Delta D}, V_{n-1}}{L_n, V_{n-1}}$$


Location of ΔD point:

Knowing the reflux ratio
$$\frac{L_R}{D} = R = \frac{\overline{\Delta D}, \ V_{Np}}{\overline{L_R}, V_{Np}}$$

Point ΔD can be located very easily (specially for reflux at bbpt)


Total Condenser:


We need R and h_{L_R} since $h_{V_{Np}}$ is fixed on saturated vapour line.

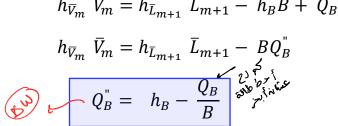
Partial condenser:

Saturated vapour is withdrawn and point D is on saturated vapour line.

Bottom Section:

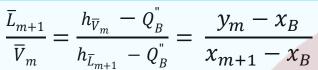
Material balance:

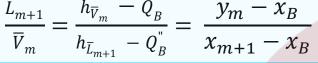
$$y_m \overline{V}_m = x_{m+1} \overline{L}_{m+1} - x_B B$$

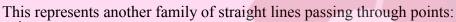

$$B = \bar{L}_{m+1} - \bar{V}_m$$

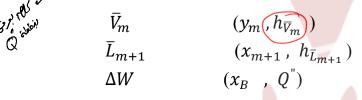
Enthalpy Balance:

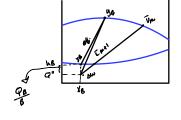
$$h_{\overline{V}_m}$$
 $\overline{V}_m = h_{\overline{L}_{m+1}}$ $\overline{L}_{m+1} - h_B B + Q_B$

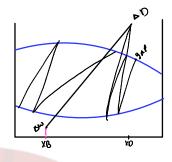

$$h_{\overline{V}_m}$$
 $\overline{V}_m = h_{\overline{L}_{m+1}}$ $\overline{L}_{m+1} - BQ_B^{"}$

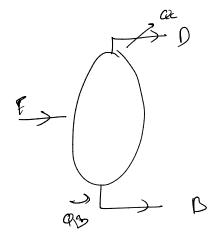

$$Q_B^{"} = h_B - \frac{Q_B}{B}$$




Eliminate B from enthalpy balance: $B = \bar{L}_{m+1} - \bar{V}_m$


$$h_{\bar{V}_m} \ \bar{V}_m = h_{\bar{L}_{m+1}} \ \bar{L}_{m+1} - (\bar{L}_{m+1} - \bar{V}_m) \ Q_B^"$$



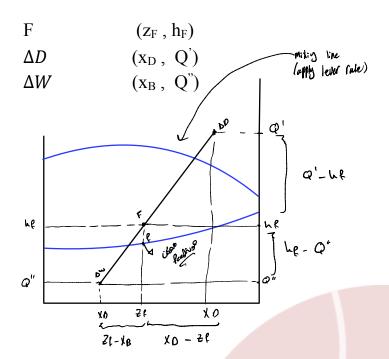


Overall Balances:

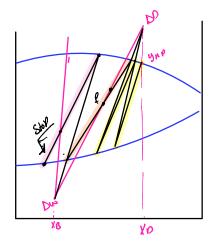
Total: F=D+B

Component balance: $Z_F F = D x_D + B x_B$

Enthalpy balance: $Fh_F + Q_B = D h_D + B h_B + Q_C$


Substitute for F and rearrange:

$$\frac{D}{B} = \frac{h_F - Q''}{Q' - h_F} = \frac{Z_F - x_B}{x_D - Z_F}$$


This is a straight line passing through points:

$$\frac{D}{B} = \frac{h\rho - Q''}{Q' - h\rho}$$

$$= \frac{2\rho - N\rho}{N\rho - 2\rho}$$

عند اکل اُ ول می کارخ داحسب W م م م

Number of Stregey Top >> 3 - 2 top Top >> 3 - 1 feed stage. Bottom => 1 titul =4

ask :: believe & recieve

Feed location and number of trays:

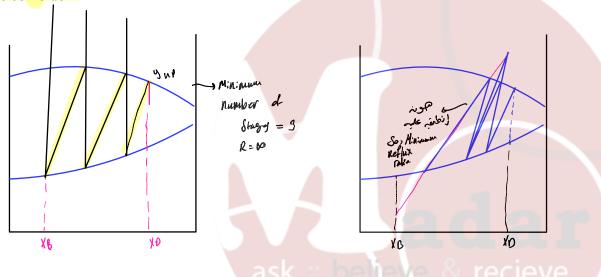
Feed location:

- In the process of solving material and energy balances, each tie line represents an equilibrium stage
- \triangleright The optimum feed stage location is where an equilibrium tie line crosses the line $\overline{\Delta DF\Delta W}$
- The change of difference point is made at this stage

feed line

Number of stages:

- > Starting at the top of the column and using the ΔD difference point, the construction of operating lines and equilibrium tie lines is continued until the feed stage
- A change of difference point is made at the feed stage.
- Construction of equilibrium stages is continued until a tie line crosses the vertical at x_B
- The number of stages including the reboiler (partial) is equal to the number of tie lines.


Limiting conditions

Minimum Number of plates (Total Reflux)

$$\begin{cases} D = 0 \rightarrow Point \quad \Delta D \quad at \quad \infty \\ R = \infty \rightarrow Point \quad \Delta W \quad at \quad -\infty \end{cases}$$
 Operating lines are parallel and vertical

Minimum Reflux ratio:

This condition is obtained when ΔD and ΔW are located in such a way so that $\overline{\Delta DF \Delta W}$ and a tie line coincide

