Batch Distillation: Used when: > The required operating capacity is very small ➤ Batch equipment offer more operating flexibility [feed fluctuations] <u>Differential distillation</u> [Simple distillation] <u>Definition</u>: It is the limit of a multistage flash process in which $n\to\infty$ and $\psi\to 0$ [differential distillation]. In practice this is impossible to achieve and can only be approximated:

Mode of operation:

- > Still pot is initially charged with feed [Charge]
- ➤ Heat is supplied at a constant rate, and the charge is boiled
- ➤ Vapors are withdrawn immediately and collected in cuts as required

Features:

- > The first cut will be richest in mvc
- ➤ Operation is unsteady → product composition changes with time
- At any instant, the vapor leaving the still pot is assumed to be in equilibrium with the liquid in the pot (residue) $\rightarrow y_D$ in equilibrium with x_W .

Material Balances:

Binary Mixtures:

General: Rate of material = Rate of Material - Rate of Material

Accumulation IN OUT

Total: $\frac{dW}{dt} = 0 - D$ D: distillate flow rate mole/hr

dW = -Ddt

Component (mvc): $\frac{dx_w.W}{dt} = 0 - x_D D \rightarrow dx_W.W = -x_D.Ddt$

 $x_D = y_D$

Substitute: dx_W . $W = y_D$. dW

Differentiate: $x_W dW + W dx_W = y_D . dW$

Rearrange: $Wdx_W = y_D.dW - x_WdW$

$$\int_{W_0=F}^{W} \frac{dW}{W} = \int_{x_{W_0}=Z_F}^{x_W} \frac{dx_W}{(y_D-x_W)}$$
 Differential Mass Balance Equation

Rayleigh Equation

 W_o : moles of charge of composition $x_{W_o} = Z_F$

W: moles of residue of composition x_W

Reverse limits and integrate:

$$\ln \frac{F}{W} = \int_{x_W}^{x_{W_o} = z_F} \frac{dx_W}{(y_D - x_W)}$$

In order to integrate the right hand side, the equilibrium relation between y_D and x_W must be known.

The following cases are considered:

1] Constant equilibrium constant (close boiling mixtures)

• y = k x; k > 1

$$\ln \frac{F}{W} = \frac{1}{k-1} \ln \frac{Z_F}{x_W}$$

If k varies slightly with composition, an average value can be used in the concentration range.

• Local equilibrium constant: y = k'x + c

$$\ln \frac{F}{W} = \frac{1}{k'-1} \ln \left(\frac{Z_F(k'-1) + c}{x_W(k'-1) + c} \right)$$

2] Use of average relative volatility:

$$y_D = \frac{\alpha x_W}{1 + x_W(\alpha - 1)} \qquad \alpha > 1$$

$$\ln \frac{F}{W} = \int_{x_W}^{Z_F} \frac{dx_W}{x_W \left(\frac{\alpha}{1 + x_W(\alpha - 1)} - 1\right)}$$

$$\ln \frac{F}{W} = \frac{1}{\alpha - 1} \ln \left[\frac{Z_F(1 - x_W)}{x_W(1 - Z_F)} \right] + \ln \left[\frac{(1 - x_W)}{(1 - Z_F)} \right]$$

This equation can be rearranged to give:

$$\ln \frac{F}{W} = \frac{1}{\alpha - 1} \left[\ln \left(\frac{Z_F}{x_W} \right) + \ln \left(\frac{(1 - x_W)}{(1 - Z_F)} \right) + (\alpha - 1) \ln \frac{(1 - x_W)}{(1 - Z_F)} \right]$$

$$\ln \frac{F}{W} = \frac{1}{\alpha - 1} \left[\ln \left(\frac{Z_F}{x_W} \right) + \alpha \ln \frac{(1 - x_W)}{(1 - Z_F)} \right]$$

$$(\alpha - 1) \ln \frac{F}{W} = \left[\ln \left(\frac{Z_F}{x_W} \right) + \alpha \ln \frac{(1 - x_W)}{(1 - Z_F)} \right]$$

$$\ln \left(\frac{F Z_F}{W x_W} \right) = \alpha \ln \frac{F (1 - Z_F)}{W (1 - x_W)}$$

$$\ln \left(\frac{F Z_F}{W x_W} \right)_{mvc} = \alpha \ln \left(\frac{F Z_F}{W x_W} \right)_{lvc}$$

3] Graphical Integration:

Plot
$$\frac{1}{(y_D - x_W)}$$
 $vs \ x_W$
$$\ln\left(\frac{F}{W}\right) = \text{area under the curve between } Z_F \ and \ x_W$$

Multicomponent Mixtures (ideal solutions):

The equations used for binary mixtures can be used for each component in the mixture:

For any component i with reference component j:

$$\ln\left(\frac{F Z_{i,F}}{W x_{i,W}}\right) = \alpha_{i,j} \ln\left(\frac{F Z_{j,F}}{W x_{j,W}}\right)$$
$$\sum_{i=1}^{c} x_{i,W} = 1$$

Average composition:

- > The total amount of vapor (distillate) is not in equilibrium with the residue
- ➤ Overall vapor composition (composited distillate composition, average composition) is obtained from material balance as follows:

$$F Z_{i,F} = D (y_{i,D})_{Average} + W x_{i,W}$$

$$D = F - W$$

$$F Z_{i,F} = (F - W)(y_{i,D})_{Average} + W x_{i,W}$$

$$(y_{i,D})_{Average} = \frac{F Z_{i,F} - W x_{i,W}}{(F - W)}$$

ABET: Ex. Comparison of Flash distillation and Differential distillation:

A liquid containing 50 mole% Benzene (A), 25 mole % Toluene (B) and 25 mole % O-Xylene.

- a) The liquid is flash vaporized at 1 atm and 100° C. What is the fraction vaporized (ψ)? And what is the vapor composition?
- b) Under the same pressure and with the same (ψ) , the liquid is to be differentially distilled. Calculate the distillate and residue compositions.

Component	$Z_{i,F}$	P _{mmHg} at 100°C	Flash ψ =0.325		Differential distillation		
			y iD	XiW	α	$(y_{i,D})_{Ave}$	$x_{i,W}$
					$(100^{\circ}C)$		
A	0.50	1370	0.715	0.397	2.49		
В	0.25	550	0.198	0.274	1.00		
С	0.25	220	0.087	0.329	0.364		
		Σ	1.000	1.000	Σ	1.000	1.000

Basis: F = 100 moles \rightarrow D = 32.5 moles and W = 67.5 moles

For A:
$$\ln\left(\frac{100*0.5}{67.5*x_{A.W}}\right) = 2.49 \ln\left(\frac{100*0.25}{67.5*x_{B.W}}\right)$$

For C:
$$\ln\left(\frac{100*0.25}{67.5*x_{C,W}}\right) = 0.364 \ln\left(\frac{100*0.25}{67.5*x_{B,W}}\right)$$

$$x_{A.W} + x_{B.W} + x_{C.W} = 1.000$$

Solve Simultaneously.