Ponchon Savarit Method for Binary Distillation

Graphical Multistage Calculations:

Features:

- > Stage to stage calculations
- ➤ No need to make CMO assumption (: any set of consistent units can be used)
- > Hxy diagrams must be available
- > VLE data must be available
- > Limited to binary systems

VLE data + Hxy diagram —> graphical solution of material and energy balances

Working Equations:

Top Section:

Material balance:

$$y_{n-1}.V_{n-1} = x_n.L_n + D.x_D$$

Eliminate D: $V_{n-1} = L_n + D$

$$\frac{L_n}{V_{n-1}} = \frac{x_D - y_{n-1}}{x_D - x_n}$$

Enthalpy Balance:

$$V_{n-1}.h_{V,n-1} = L_n.h_{L,n} + D.Q'$$
 ; $Q' = h_D + \frac{Q_C}{D}$

This represents the mixing line on an Hxy diagram OR $V_{n-1}-L_n=\Delta D$.

It also represents a family of straight lines passing through points V_{n-1} , L_n and a common point ΔD . The coordinates of these points are obtained as follows:

Eliminate D from enthalpy balance:

$$\frac{L_n}{V_{n-1}} = \frac{Q' - h_{V,n-1}}{Q' - h_{L,n}} = \frac{x_D - y_{n-1}}{x_D - x_n}$$

This is a straight line equation passing through points:

$$V_{n-1}$$
 $(y_{n-1}, h_{V,n-1})$ L_n $(x_n, h_{L,n})$ ΔD (x_D, Q')

Stream Ratios:

$$\frac{L_n}{V_{n-1}} = \frac{\overline{\Delta D} \cdot V_{n-1}}{\overline{\Delta D} \cdot L_n} \qquad \qquad \frac{L_n}{D} = \frac{\overline{\Delta D} \cdot V_{n-1}}{\overline{L_n} \cdot V_{n-1}} \qquad \qquad \frac{V_{n-1}}{D} = \frac{\overline{\Delta D} \cdot \overline{L_n}}{\overline{V_{n-1}} \cdot \overline{L_n}}$$

Location of ΔD point:

Knowing the reflux ratio
$$\frac{L_R}{D} = R = \frac{\overline{\Delta D}, V_{Np}}{\overline{L_R}, V_{Np}}$$

Point ΔD can be located very easily (specially for reflux at bbpt)

Total Condenser:

We need R and h_{L_R} since $h_{V_{Np}}$ is fixed on saturated vapour line.

Partial condenser:

Saturated vapour is withdrawn and point D is on saturated vapour line.

Bottom Section:

Material balance:

$$y_m \overline{V}_m = x_{m+1} \overline{L}_{m+1} - x_B B$$
$$B = \overline{L}_{m+1} - \overline{V}_m$$

Eliminate B

$$\frac{\bar{L}_{m+1}}{\bar{V}_m} = \frac{y_m - x_B}{x_{m+1} - x_B}$$

Enthalpy Balance:

$$h_{\overline{V}_m} \ \overline{V}_m = h_{\overline{L}_{m+1}} \ \overline{L}_{m+1} - h_B B + Q_B$$
 $h_{\overline{V}_m} \ \overline{V}_m = h_{\overline{L}_{m+1}} \ \overline{L}_{m+1} - B Q_B^"$
 $Q_B^" = h_B - \frac{Q_B}{B}$

Eliminate B from enthalpy balance: $B = \bar{L}_{m+1} - \bar{V}_m$

$$h_{\bar{V}_m} \ \bar{V}_m = h_{\bar{L}_{m+1}} \ \bar{L}_{m+1} - (\bar{L}_{m+1} - \bar{V}_m) \ Q_B^"$$

$$\frac{\bar{L}_{m+1}}{\bar{V}_m} = \frac{h_{\bar{V}_m} - Q_B^{"}}{h_{\bar{L}_{m+1}} - Q_B^{"}} = \frac{y_m - x_B}{x_{m+1} - x_B}$$

This represents another family of straight lines passing through points:

$$egin{array}{lll} ar{V}_m & (y_m \,, h_{\overline{V}_m} \,) \\ ar{L}_{m+1} & (x_{m+1} \,, \, h_{\overline{L}_{m+1}}) \\ \Delta W & (x_B \,, \, Q^{''}) \end{array}$$

Overall Balances:

Total: F=D+B

Component balance: $Z_F F = D x_D + B x_B$

Enthalpy balance: $Fh_F + Q_B = D h_D + B h_B + Q_C$

Substitute for F and rearrange:

$$\frac{D}{B} = \frac{h_F - Q}{Q' - h_F} = \frac{Z_F - x_B}{x_D - Z_F}$$

This is a straight line passing through points:

 $F (z_F, h_F)$

 ΔD (x_D, Q')

 ΔW (x_B, Q")

Feed location and number of trays:

Feed location:

- ➤ In the process of solving material and energy balances, each tie line represents an equilibrium stage
- \triangleright The optimum feed stage location is where an equilibrium tie line crosses the line $\overline{\Delta DF\Delta W}$
- ➤ The change of difference point is made at this stage

Number of stages:

- \triangleright Starting at the top of the column and using the ΔD difference point, the construction of operating lines and equilibrium tie lines is continued until the feed stage
- ➤ A change of difference point is made at the feed stage.
- \triangleright Construction of equilibrium stages is continued until a tie line crosses the vertical at x_B
- > The number of stages including the reboiler (partial) is equal to the number of tie lines.

Limiting conditions

Minimum Number of plates (Total Reflux)

$$\begin{cases} D = 0 \rightarrow Point & \Delta D & at \\ R = \infty \rightarrow Point & \Delta W & at - \infty \end{cases}$$
 Operating lines are parallel and vertical

Minimum Reflux ratio:

This condition is obtained when ΔD and ΔW are located in such a way so that $\overline{\Delta DF\Delta W}$ and a tie line coincide