Topic 3.2. Humidity Psychrometric Chart

Last lecture

✓ Basic concepts and terminology related to humidity

This lecture

- ✓ Psychrometric (humidity) terminology
- ✓ Plot processes on a psychrometric chart and analyze processes

Part of this lecture is obtained from notes of professor Zayed Hamamreh – ChE – University of Jordan

Terminologies

Adiabatic saturation temperature Ts

- If a mass of air is brought to contact with water under adiabatic conditions (no heat transfer with the exterior), the humidity of the air increases until saturation is reached (H_R=100%).
- Since there is no external source of heat, water is evaporated using heat from the air itself.
- Consequently, the air is cooled at the same time that it is humidified.
- The process described is called "adiabatic saturation" and the temperature reached at saturation is called the "adiabatic saturation temperature".

Adiabatic Chamber (wall is well-insulated)

An enthalpy balance can be written over this process. The enthalpy balance is based on temperature T_s , as a datum. Then the total enthalpy of the entering gas equals that of the leaving gas.

$$C_{p,q}(T - T_s) + H\lambda_s + HC_{pv}(T - T_s) = H_s \lambda_s$$

Given the humid heat, $C_s = C_{pg} + HC_{pv}$

$$C_S(T - T_S) + H\lambda_S = H_S \lambda_S$$

rearrange

$$\frac{H - H_S}{T - T_S} = -\frac{C_S}{\lambda_S} = -\frac{C_{pg} + HC_{pv}}{\lambda_S}$$

Adiabatic Chamber (wall is well-insulated)

Wet bulb (saturation) temperature T_{wb} or T_w or T_s (for air-water system)

A temperature that is used to study the non-equilibrium systems at adiabatic conditions.

Assumptions

- Gas flow at turbulent condition with no change in its properties
- Gas is not saturated with liquid
- o **Bulb** must be completely wet
- Supplied liquid should be at Twb

For water-air system

$$T_w = T_s$$

For other systems

The rate of sensible heat transferred between liquid and gas phase

$$q = h_y A \big(T_g - T_i \big)$$

$$q = m_v [\lambda_v + C_{pv} (T_g - T_v)]$$

But can be related to molar mass of water and the mass flux per unit area $m_v = M_v N_v A$

$$N_{v} = k_{y} \frac{(y_{i} - y)}{(\mathbf{1} - y)_{LM}}$$

 k_y is the mass transfer coefficient [mol/area.mol fraction] y_i is the mole fraction of the vapor in saturated gas at interface at T_w y is the mole fraction of the vapor in the air stream

$$y_i = \frac{\frac{H_w}{M_v}}{\left(\frac{H_w}{M_v} + \frac{1}{M_g}\right)}$$

Assuming the mole fraction of vapor in gas phase is negligible

$$(1 - y)_{LM} \approx 1$$

$$N_v = k_v A(y_i - y)$$

Substitute in the energy equation

$$q = m_v [\lambda_v + C_{pv} (T_g - T_v)]$$
$$m_v = M_v N_v A$$

$$q = M_v k_y A (y_i - y) [\lambda_v + C_{pv} (T_g - T_v)]$$

$$= h_y A (T_g - T_i)$$

$$M_{v} k_{y} A \left(\frac{\frac{H_{w}}{M_{v}}}{\left(\frac{H_{w}}{M_{v}} + \frac{1}{M_{g}} \right)} - \frac{\frac{H_{g}}{M_{v}}}{\left(\frac{H_{g}}{M_{v}} + \frac{1}{M_{g}} \right)} \right) \left[\lambda_{v} + C_{pv} (T_{g} - T_{v}) \right] = h_{y} A (T_{g} - T_{w})$$

Further Assumptions

$$\circ \lambda_v \gg C_{pv}(T_g - T_v)$$

$$\circ \frac{1}{M_g} \gg \frac{H_g}{M_v}$$
 and $\frac{1}{M_g} \gg \frac{H_w}{M_v}$

$$k_y (H_w M_g - H_g M_g)[\lambda_v] = h_y A(T_g - T_w)$$
$$k_y M_g (H_w - H_g) \lambda_v = h_y A(T_g - T_w)$$

$$\frac{H_g - H_w}{T_g - T_w} = -\frac{h_y}{k_y M_g \lambda_v}$$

For turbulent flow of gas heat transfer by conduction and convection between liquid and solid boundary

For mass transfer between phases

$$Re = \frac{\rho \ d \ v}{\mu}$$

$$Pr = \frac{\mu C_p}{k}$$

$$Pr = \frac{\mu C_p}{k} \qquad Sc = \frac{\mu}{\rho D_{AB}}$$

$$h_y = G C_p \propto Re^n Pr^{-m}$$

$$k_y = \frac{G}{M_g} \propto Re^n Sc^{-m}$$

Substitute for $h_{\mathcal{Y}}$ and $k_{\mathcal{Y}}$

$$\frac{H_g - H_w}{T_g - T_w} = -\frac{h_y}{k_y M_g \lambda_v} = -\frac{C_p}{\lambda_v} \left(\frac{Sc}{Pr}\right)^m$$

The relation between $\,h_y$ and $\,k_y$

$$\frac{h_y}{k_y M_g} = C_p \left(\frac{Sc}{Pr}\right)^m$$

$$\frac{h_y}{k_y M_g} = 0.24$$

and
$$T_w = T_s$$

Dew point temperature T_{dew}

The dew point is the temperature to which air must be cooled to become saturated with water vapor, assuming constant air pressure and water content

- The dew point is affected by humidity.
 When there is more moisture in the air, the dew point is higher
- When the temperature is below the freezing point of water, the dew point is called the frost point

$$T_{
m dp}pprox T-rac{100-{
m RH}}{5}$$

The dew point and the four seasons

Psychrometric Humidity charts (1)

There are five different lines and curves in this graph

- 1. Percentage humidity
- 2. Adiabatic cooling lines
- 3. Specific volume of dry air
- 4. Volume of saturated air
- 5. Humid heat

You will be given two values and required to obtain the other parameters

For example: given the temperature of unsaturated air, T_1 and the percentage humidity of air, $H_{A1}\%$.

Humidity of air: Point b is found by moving along line T_1 to the given percentage humidity of air, $H_{A1}\%$ then a horizonal line to Humidity axis.

$$Humidity = \frac{mass \ of \ vapor}{mass \ of \ dry \ gas}$$

$$\mathcal{H} = \frac{P_w}{P - P_w} \left(\frac{M_w}{M_A} \right)$$

Dew point: Point d is found by moving line T_1 to the given percentage humidity of air, $H_{A1}\%$ then a horizonal line to 100% humidity curve, then down to T-axis.

Dew point can be approximated in SI unit by

$$T_{
m dp}pprox T-rac{100-{
m RH}}{5}$$

Humid volume: Point m is found by moving along line lk a distance of $\frac{H_A}{100} \times \bar{lk}$ from point l.

$$v_H = v_l + \frac{H_A}{100}(v_k - v_l)$$

$$v_H$$
 m³/kg dry air = $\frac{22.41}{273}$ T K $\left(\frac{1}{28.97} + \frac{1}{18.02} H\right)$
= $(2.83 \times 10^{-3} + 4.56 \times 10^{-3} H)$ T K

Saturated Humidity temperature:

Point g is found by moving from point a along adiabatic cooling line to the percentage humidity curve, point e, then move down to T-axis to point g

Humid Heat: from point \boldsymbol{a} move horizontal to Humid heat line, point \boldsymbol{o} , then move vertically to hit humid heat axis, point \boldsymbol{p}

$$C_s = C_{pg} + HC_{pv}$$

where C_{pg} , and C_{pv} are the specific heats of gas and vapor, respectively.

Example 3.4. Humidity of air

The air in a room is at 65.6°C (150°F) and a pressure of 101.325 kPa and contains water vapor with a partial pressure $p_v = 3.35$ kPa. Calculate the following:

- (a) Humidity, H and mole fraction of water in air, y_v
- (b) Saturation humidity, HS and mole fraction of saturated water in air, y_v
- (c) the percentage relative humidity

Solution (from steam tables) Saturation pressure $p_{vo} = 25.67 \text{ kPa}$

$$H = \frac{p_v}{p - p_v} \left(\frac{M_v}{M_{air}}\right) = \frac{3.35}{101.325 - 3.35} \left(\frac{18}{29}\right) = 0.021 \frac{kgH_2O}{kg\ air}$$

$$H_{s} = \frac{p_{vo}}{p - p_{vo}} \left(\frac{M_{v}}{M_{air}} \right) = \frac{25.67}{101.325 - 25.67} \left(\frac{18}{29} \right) = 0.2106 \frac{kgH_{2}O}{kg \ air}$$

$$y_v = \frac{p_v}{p_T} = \frac{HM_g}{\left(HM_g + M_v\right)} = \frac{0.021(29)}{0.021(29) + 18} = 0.033$$

$$y_{v-sat} = \frac{p_{vs}}{p_T} = \frac{H_s M_g}{\left(H_s M_g + M_v\right)} = \frac{0.2106(29)}{0.2106(29) + 18} = 0.253$$

The percentage humidity, by definition = $100 \mathcal{H}/\mathcal{H}_0$

$$H_p = \frac{H}{H_s} \times 100 = \frac{0.021}{0.2106} \times 100 = 10 \%$$

$$H_P = \frac{y_v}{y_{v-sat}} \times 100 = \frac{0.033}{0.253} \times 100 = 10 \%$$

Percentage humidity =
$$\left(\frac{P - P_{w0}}{P - P_{w}}\right) \cdot \left(\frac{P_{w}}{P_{w0}}\right) \times 100$$

= $\frac{(P - P_{w0})}{(P - P_{w})} \times \text{(percentage relative humidity)}$

$$H_p = \frac{p - p_{vo}}{p - p_v} \left(\frac{p_v}{p_{vo}}\right) \times 100 = \frac{101.325 - 25.67}{101.325 - 3.35} \left(\frac{3.35}{25.67}\right) \times 100 = 10 \%$$

The air in a room is at 65.6°C (150°F)
The percentage relative humidity is 10 %

Example 3.5. Use of psychrometric charts

The air in a room is at 65.6°C (150°F) and a percentage humidity of 10%. Use psychrometric chart to obtain:

1. Humidity

Humidity

$$H = 0.021 \frac{kgH_2O}{kg \ air}$$

Dew point

T dew = 80 F

Humid Heat

 $C_s = C_{pg} + HC_{pv}$ = 0.25 Btu/F.lb

Humid volume

 $H = 0.021 \frac{kgH_2O}{kg \ air}$ $v_H = v_l + \frac{H_A}{100}(v_k - v_l)$ $v_l = 15.3 \ ft^3/lb$

