Topic 3.3. Humidity Psychrometric Chart

Last lecture

✓ Basic concepts and terminology related to humidity

This lecture

- ✓ Psychrometric (humidity) terminology
- ✓ Plot processes on a psychrometric chart and analyze processes

Part of this lecture is obtained from notes of professor Zayed Hamamreh – ChE – University of Jordan

Quantity	Value	Units
P.Ambient	101325	Pa
T.Dry.Bulb	20.378	°C
Humid.Ratio	9.055	g/kg(d.a)
Rel.Humid	60.489	%
T.Wet.Bulb	15.528	°C
T.Dew	12.488	°C
T.Saturation	15.483	°C
Enthalpy	43.477	kJ/kg(d.a)
P.Vapour	1453.921	Pa
P.Sat.Vapour	2394.179	Pa
Spec.Heat	1.019	kJ/(kg.K)
Spec.Volume	0.844	m^3/kg(d.a)
Density	1.196	kg/m^3

EXAMPLE 9.3-2. Use of Humidity Chart

Air entering a dryer has a temperature (dry bulb temperature) of 60° C (140°F) and a dew point of 26.7° C (80°F). Using the humidity chart, determine the actual humidity H, percentage humidity H_P , humid heat c_S , and the humid volume v_H in SI and English units.

$$c_s$$
 kJ/kg dry air · K = 1.005 + 1.88 H
 c_s = 1.005 + 1.88(0.0225)
= 1.047 kJ/kg dry air · K or 1.047 × 10³ J/kg · K
 c_s = 0.24 + 0.45(0.0225)
= 0.250 btu/lb_m dry air · °F (English)
 v_H = (2.83 × 10⁻³ + 4.56 × 10⁻³ × 0.0225)(60 + 273)
= 0.977 m³/kg dry air

In English units,

$$v_H = (0.0252 + 0.0405 \times 0.0225)(460 + 140) = 15.67 \text{ ft}^3/\text{lb}_m \text{ dry air}$$

EXAMPLE 9.3-3. Adiabatic Saturation of Air

An air stream at 87.8°C having a humidity $H = 0.030 \text{ kg H}_2\text{O/kg}$ dry air is contacted in an adiabatic saturator with water. It is cooled and humidified to 90% saturation.

- (a) What are the final values of H and T?
- (b) For 100% saturation, what would be the values of H and T?

For 100% saturation, what would be the values of H and T?

Solution:

(b) $T = 40.5^{\circ}\text{C} \cdot H = 0.0505 \text{ kg H}_{2}\text{O/kg dry air}$

EXAMPLE 9.3-4. Wet Bulb Temperature and Humidity

A water vapor-air mixture having a dry bulb temperature of $T = 60^{\circ}$ C is passed over a wet bulb as shown in Fig. 9.3-4, and the wet bulb temperature obtained is $T_{W} = 29.5^{\circ}$ C. What is the humidity of the mixture?

