Topic 3.5. Design of cooling tower

Last lecture

This lecture

- ✓ Psychrometric (humidity) terminology
- ✓ Plot processes on a psychrometric chart and analyze processes
- ✓ humidity of mixed streams
- ✓ Gas-liquid contact operation

The content of this topic was obtained from notes of Professor Zayed Hammouri, ChE-UoJ

Fundamental relations for adiabatic operations

$$N_{A}M_{A}a_{M} dZ = -G'_{S} dY' = M_{A}F_{G} \left(\ln \frac{1 - \bar{p}_{A,i}/p_{i}}{1 - p_{A,G}/p_{i}} \right) a_{M} dZ$$

$$-G'_SC_S dt_G = h'_Ga_H(t_G - t_i) dZ$$

$$L'C_{A,L} dt_L = (G'_S C_{A,L} dY' - h_L a_H dZ)(t_i - t_L)$$

$$L'C_{A, L} dt_{L} = G'_{S} \{ C_{S} dt_{G} + [C_{A}(t_{G} - t_{0}) - C_{A, L}(t_{L} - t_{0}) + \lambda_{0}] dY' \}$$

Performance parameters in cooling towers

$$Effectivness = \frac{Range}{Range + Approach} \times 100$$

Temperature, °C

- There is no driving force for mass transfer in the liquid phase, since water is a pure liquid.
- The humidity driving force in the gas phase is

$$\Delta H = (H_i - H_G)$$
 kg H_2O/kg dry air

The temperature driving force is

Temperature and humidity (concentration) profiles at the top of the cooling tower

- Latent heat leaves the interface in the water vapor, diffusing to the gas phase.
- The sensible heat flow from the liquid to the interface equals the sensible heat flow in the gas
 plus the latent heat flow in the gas

In the lower part of the tower,

- o The bulk water temperature (T_L) my be below the dry bulb temperature (T_G) .
- Then, the direction of sensible heat flow is reversed.

Temperature and humidity (concentration) profiles at the bottom of the cooling tower

Continuous countercurrent adiabatic water cooling

L= water flow, kg water/s·m²

T_L = water temperature, °C or K

G = dry air flow rate, $kg/s \cdot m^2$

T_G = air temperature, °C or K

H = Humidity of air, kg water/kg dry air*

H_v = enthalpy of air-water vapor mixture, J/kg dry air

 λ_o =latent heat of water, J/kg

 c_s = humid heat = $c_L + c_G^*H$

The enthalpy, H_v given by:

$$|\overline{H}_{y} = \overline{c_{s}(T - T_{o})} + \overline{H\lambda_{o}}|$$

$$= (1.005 + 1.88H)10^{3}(T - \theta) + 2.501 \times 10^{6} H$$

*Humidity, H can be retrieved from the humidity chart

> Assumptions

- i. Flow rate of gas and liquid water is assumed constant since only a small water evaporated (1-5%).
- ii. c_L is assumed constant at $C_L = 4.187 \times 10^3 \text{ J/kg} \cdot \text{K}$
- ➤ Perform the energy/heat balance:

Heat emitted = Heat absorbed

- 1) Heat balance for dashed line box making a heat balance for the *dz* column height :
- → Total sensible heat transferred from bulk fluid to interface;

$$Lc_L dT_L = G dH_y = h_L \cdot a \cdot dz (T_L - T_i)$$

Considering the two terms to left, Integration

$$G(H_y-H_{y1}) = Lc_L(T_L-T_{L1})$$

Rearrange the above Eq. to have the following operating line Eq.:

$$H_{y} = (H_{y1} - T_{LI} \frac{Lc_{L}}{G}) + \frac{Lc_{L}}{G}T_{L}$$

When plotted on a chart of H_v versus T_L, this Equation is a straight line

$$Intercept = H_{y1} - T_{L1} \frac{Lc_L}{G} \quad ; \quad Slope = \frac{Lc_L}{G}$$

Also, making an overall heat balance over both ends of the tower,

$$G(H_{y2}-H_{y1})=Lc_{L}(T_{L2}-T_{L1})$$

To draw the operating line we need either two points or one point and slope (Lc_L/G).

1. Draw the equilibrium curve: the enthalpy of saturated air versus the dew point temperature T_L using:

$$H_{yi} = c_S (T_L - T_0) + H_i \lambda_0$$

where the T_0 is the base temperature: $T_0 = 0$ °C : $\lambda_0 = 2502.3$ kJ/kg water

 $T_0 = 32 \text{ °F} : \lambda_0 = 1075.8 \text{ Btu/lbm water}$

$$c_S = 1.005 + 1.88H_i$$
; kJ/(kg dry air.K)
= $0.24 + 0.45H_i$; btu/(lbm dry air.°F)

Enthalpy;
$$H_{yi} = (1.005 + 1.88 H_i) \times 10^3 (T - 0) + 2.501 \times 10^6 H_i$$
 J/kg air

 H_i is the saturated humidity picked up from the psychrometric chart at T_L .

Table 10.5-1. Enthalpies of Saturated Air-Water Vapor Mixtures (0°C Base Temperature)

					Н,		
T_{L}		btu	J	T_L		btu	J
°F	°C	lb, dry air	kg dry air	°F	°C	lb _m dry air	kg dry air
60	15.6	18.78	43.68×10^3	100	37.8	63.7	148.2×10^3
80	26.7	36.1	84.0×10^{3}	105	40.6	74.0	172.1×10^{3}
85	29.4	41.8	97.2×10^{3}	110	43.3	84.8	197.2×10^{3}
90	32.2	48.2	112.1×10^3	115	46.1	96.5	224.5×10^{3}
95	35.0	55.4	128.9×10^3	140	60.0	198.4	461.5×10^{3}

Draw the operating line Equation

$$H_{y} = (H_{y1} - T_{LI} \frac{Lc_{L}}{G}) + \frac{Lc_{L}}{G}T_{L}$$

- \circ Knowing the entering air conditions T_{G1} and H_1 , the enthalpy of this air H_{y1} is calculated
- The point H_{y1} and T_{L1} (desired leaving water temperature) is plotted as one point on the operating line $(T_{L1}$ and $H_{v1})$

Intercept =
$$H_{y1} - T_{L1} \frac{Lc_L}{G}$$
; Slope = $\frac{Lc_L}{G}$

 \circ Knowing T_{G2} and H_2 , the enthalpy of this air H_{y2} can be also calculated and the point (T_{L2} and H_{y2}) is plotted as a second point on the operating line

• We know from mass transfer course, that the flux, N_A , kmol water evaporating/s.m²:

$$N_A = k_y (y_{A,i} - y_{A,G}) = k_G (P_{A,i} - P_{A,G})$$
 $k_y = k_G P$

where k_G is gas-phase film mass transfer coefficient in kgmol/(s.m².Pa), $P_{A,i}$ and $P_{A,G}$ is the water vapor partial pressure at the interface and in the bulk gas-phase, respectively. While y is water vapor mole fraction.

- The mass-transfer interfacial area between air and water droplets is not known.
- This film mass-transfer interfacial area is different from the surface area of packing. Here, a quantity (a_M) , defined as interfacial area per volume of packing section, is combined with the gas-phase mass transfer coefficient, k_G , to give a volumetric film mass transfer coefficients defined as $(k_G a_M)$ in kgmol/(s.m³.Pa).

• Now the volumetric diffusion rate of water vapor, $N_{A,vol}$ is:

$$N_{A,vol} = k_y a_M (y_{A,i} - y_{A,G}) = k_G a_M (P_{A,i} - P_{A,G})$$

The relationship between humidity and mole fraction is:

$$y = \frac{H/M_A}{1/M_B + H/M_A}$$

- where M_A and M_B is the molecular weight of water vapor and air, respectively.
- Since *H* is small, an approximation of the relationship is:

$$y \cong \frac{M_B H}{M_A} \xrightarrow{N_{A,vol} = k_y a_M (y_{A,i} - y_{A,G})} N_{A,vol} = \frac{M_B}{M_A} k_y a_M (H_i - H_G)$$

 H_i is the humidity of the gas at the interface in kg water/kg dry air, and H_G is the humidity of the gas in the bulk gas phase in kg water/kg dry air

Note that
$$M_B k_y a_M = k_H a_M$$

 $k_G a_M [=] kgmol/(s.m^3.Pa)$

 $k_{H} a_{M} [=] kg/(s.m^{3})$

 $k_y a_M [=] kgmol/(s.m^3)$

The sensible heat flow from the liquid to the interface = the sensible heat flow in the gas + the latent heat flow in the gas

$$(a) = (b) + (c)$$

Temperature and concentration profiles

➤ The latent heat in the <u>water vapor being transferred</u> over volume dv=Adz height column is:

$$dQ_{\lambda} = N_{A,vol} \lambda_{0} M_{A} dV$$

$$dV = dzA$$

$$N_{A,vol} = M_{B} k_{y} a_{M} (H_{i} - H_{G}) / M_{A}$$

$$dQ_{\lambda} = M_{B} k_{y} a_{M} (H_{i} - H_{G}) \lambda_{0} A dz$$

$$dQ_{\lambda} = k_{H} a_{M} (H_{i} - H_{G}) \lambda_{0} A dz$$

Further, the rate of sensible heat transfer (convective heat transfer rate in gas phase) over volume dv =Adz is:

or

$$dq_s = Gc_s dT_G$$

$$= h_{G'}a_{H,G'} (T_{i'} - T_{G}) - dz$$

$dQ = dQ_{\lambda} + dq_{s}$

$$dq = \frac{dQ}{A} = \left[M_B k_y a_M (H_i - H_G) \lambda_0 + h_G a_{H,G} (T_i - T_G) \right] dz$$

✓ Keep in mind that

$$dq = h_L a_{H,L} (T_L - T_i) dz$$

➤ It is found that for water vapor-air mixture the experimental value of which is called the psychrometric ratio is closed to humid heat c_s:

$$(h_G a_{H,G}/M_B k_y a_M)$$

$$c_S \cong \frac{h_G a_{H,G}}{M_B k_y a_M} \xrightarrow{k_y = k_G P} c_S \cong \frac{h_G a_{H,G}}{M_B P k_G a_M} \text{ (Lewis relation)}$$

Using the above Lewis relation:

$$dq = \left[M_B k_y a_M (H_i - H_G) \lambda_0 + h_G a_{H,G} (T_i - T_G) \right] dz$$

$$c_S \cong \frac{h_G a_{H,G}}{M_B P k_G a_M}$$

$$dq = M_B P k_G a_M \left[H_i \lambda_0 + c_S T_i - (c_S T_G + \lambda_0 H_G) \right] dz$$

• Adding and subtracting c_8T_0 inside the bracket of the above Eq.:

$$dq = M_B P k_G a_M [c_S (T_i - T_0) + H_i \lambda_0 - (c_S (T_G - T_0) + \lambda_0 H_G)] dz$$

$$\left| H_{y} = c_{S} (T_{G} - T_{0}) + \lambda_{0} H_{G} \right|$$

Enthalpy of water vapor-air mixture at T_G

$$\left| H_{yi} = c_S (T_i - T_0) + H_i \lambda_0 \right|$$

Enthalpy of water vapor-air mixture at T_i

 $dq = GdH_y$ But

$$Z = \frac{G}{M_B P k_G a_M} \int_{H_{y1}}^{H_{y2}} \frac{dH_y}{H_{yi} - H_y}$$
 Design Eq. of the cooling tower

$$Z = \underbrace{\frac{G}{M_B P k_G a_M}}_{\text{HTU}} \underbrace{\int_{H_{yl}}^{H_{y2}} \frac{dH_y}{H_{yi} - H_y}}_{\text{NTU}} \equiv (\text{HTU})(\text{NTU})$$

HTU ≡ Height of a transfer unit NTU ≡ Number of transfer units

• The enthalpy, H_{vi}, at the interface temperature T_i is determined from:

$$dq = M_B P k_G a_M \left[H_{yi} - H_y \right] dz$$

$$dq = h_L a_{H,L} (T_L - T_i) dz$$

$$\frac{H_{yi} - H_y}{T_i - T_L} = -\frac{h_L a_{H,L}}{M_B P k_G a_M}$$

Note that
$$Lc_LdT_L=GdH_y$$
 , $dq=GdH_y$ and $dq=M_BPk_Ga_M\Big[H_{yi}-H_y)\Big]dz$

Hence,
$$\operatorname{Lc_L} \operatorname{dT_L} = M_B Pk_G a_M [H_{yi} - H_y)] dz$$

$$z = \frac{Lc_L}{M_B P k_G a_m} \int_{T_{L1}}^{T_{L2}} \frac{dT_L}{H_{yi} - H_y}$$
HTU
NTU

Desired leaving water temperature

Design procedure of water cooling tower using film mass transfer coefficients

1. Draw the equilibrium curve:

The enthalpy of saturated air $H_{\forall i}$ is plotted versus T_i on an H versus T plot. This enthalpy is calculated using the equation

$$H_{yi} = (1.005 + 1.88 H_i) \times 10^3 (T - 0) + 2.501 \times 10^6 H_i$$
 J/kg air

 H_i is the saturated humidity picked up from the psychrometric chart for a given temperature.

2. Draw the operating line:

Use the operating line:
$$H_y = (H_{y1} - T_{L1} \frac{Lc_L}{G}) + \frac{Lc_L}{G}T_L$$

and/or the overall steady-state heat balance over the entire cooling tower:

$$G(H_{y2} - H_{y1}) = Lc_L(T_{L2} - T_{L1})$$

 H_{y1} and H_{y2} is the gas mixture enthalpy at T_{G1} and T_{G2} , respectively.

 \rightarrow To draw the operating line we need either two points or one point and slope (Lc_L/G).

3. Draw lines with slope: (Lewis relation)

$$\frac{H_{yi} - H_{y}}{T_{i} - T_{L}} = -\frac{h_{L} a_{H,L}}{M_{B} P k_{G} a_{M}} = \text{Slope} = \frac{H_{yi1} - H_{y1}}{T_{i1} - T_{L1}} = \frac{H_{yi2} - H_{y2}}{T_{i2} - T_{L2}}$$

- Select some value of T_i and read H_{vi} from the equilibrium curve.
- Select some value of T_L and calculate H_v from the above equation.
- Draw a line pass through the points (T_i, H_{yi}) and (T_L, H_y) this line must have slope of $h_L a_{H,L} / (M_B P k_G a_M)$.
- At 6 to 8 locations, draw parallel lines (slope= $h_L a_{H,L} / (M_B P k_G a_M)$ from T_{L1} to T_{L2} to read enthalpies H_{vi} from equilibrium curve.

- 4. Calculate the number of transfer units (NTU):
- Use Enthalpy vs. T_L graph to find the driving force H_{yi} - H_y for various T_L value from T_{L1} to T_{L2} .
- Calculate $1/(H_{yi}-H_y)$ for various T_L value from T_{L1} to T_{L2} .
- Perform graphical or numerical integration to calculate NTU:

$$NTU = \int_{H_{y1}}^{H_{y2}} \frac{dH_y}{H_{yi} - H_y}$$

5. Calculate the height of a transfer unit umber of transfer units (HTU):

$$HTU = \frac{G}{M_B P k_G a_M}$$

6. Calculate the height of the cooling tower: Z = (HTU)(NTU)

Example 3.5.1 Effectiveness of a cooling tower

A packed countercurrent water-cooling tower using gas flow rate of 1.356 kg dry air/(s.m²) and water flow rate of 1.356 kg/ (s.m²). The water is cooled from 43.3 to 29.4 °C. The entering air at 29.4 °C has a wet bulb temperature of 23.9 °C. The gas film mass-transfer coefficient is estimated as 1.207×10^{-7} kgmol/(s.m³.Pa). The term $h_L a_{HL}/M_B P k_G a_M$ has a value of 41.87 kJ/(kg.K). The tower operates at 1 atm. Calculate the Range, The approach, the tower effectiveness, and the height of the packed tower.

Solution

$$G = L = 1.356 \text{ kg/(s.m}^2)$$

$$T_{G1} = 29.4 \, ^{\circ}\text{C}; T_{WB1} = 23.9 \, ^{\circ}\text{C}$$

$$k_G a_M = 1.207 \times 10^{-7} \text{ kmol/(s.m}^3)$$

Range =
$$T_{L2} - T_{L1} = 43.3 - 29.4 = 13.9$$
 °C

Approach =
$$T_{L1} - T_{WB,1} = 29.4 - 23.9 = 5.5$$
 °C

Effectivness = $100 \times \text{Range}/0(\text{Range} + \text{Approach}) = 71.6\%$

Height of the packed tower.

1. Draw the equilibrium curve: use saturated humidity curve in the psychrometric chart and enthalpy Eq. to get:

$$H_{yi} = (1.005 + 1.88 \, H_i) \times 10^3 \, (T - 0) + 2.501 \times 10^6 \, H_i$$
 J/kg air

T_L	H_{vi} , kJ/kg
15.6	43.7
26.7	84.0
29.4	97.2
32.2	112.1
35.0	128.9
37.8	148.2
40.6	172.1
43.3	197.2
46.1	224.5

2. Draw the operating line:

Draw the operating line:

$$c_S = 1.005 + 1.88H_1 = 1.005 + 1.88(0.0165) = 1.036 \text{ kJ/(kg dry air.K)}$$

$$H_{y1} = c_S(T_{G1} - T_0) + H_i\lambda_0 = 1.036(29.4 - 0) + (0.0165)(2502.3) = 71.7 \text{ kJ/kg}$$

Apply overall steady-state heat balance over the entire cooling to get H_{y2} :

$$G(H_{y2} - H_{y1}) = Lc_L(T_{L2} - T_{L1})$$

$$G = L = 1.356 \text{ kg/(s.m}^2)$$

$$C_L = 4.187 \text{kJ/(kg.K)}$$

$$T_{L1} = 29.4 \text{ °C}$$

$$T_{L2} = 43.3 \text{ °C}$$

$$H_{y1} = 71.7 \text{ kJ/kg}$$

$$H_{y2} = 129.9 \text{ kJ/kg}$$

We have two points enough to draw the operating line:

$$(T_{L1}, H_{y1}) = (29.4 \text{ °C}, 71.7 \text{ kJ/kg}) \ (T_{L2}, H_{y2}) = (43.3 \text{ °C}, 129.9 \text{ kJ/kg})$$

Draw the operating line:

$$(T_{L1}, H_{y1}) = (29.4 \, ^{\circ}\text{C}, 71.7 \, \text{kJ/kg})$$

$$(T_{L2}, H_{y2}) = (43.3 \, ^{\circ}\text{C}, 129.9 \, \text{kJ/kg})$$

3. Draw lines with constant slope:

For example,

at $T_i = 35$ °C, from the equilibrium curve $H_{vi} = 128.9$ kJ/kg.

• at T_L= 36 °C, calculate H_y from:

$$\frac{H_{yi} - H_{y}}{T_{i} - T_{L}} = \frac{128.9 - H_{y}}{35-36} = -\frac{h_{L}a_{H,L}}{M_{B}Pk_{G}a_{M}} = -41.87 \text{kJ/(kg.K)}$$

$$H_{y} = 87.03 \text{kJ/kg}$$

 Draw a line passes through the points (35 °C, 128.9 kJ/kg) and (36 °C, 87.03 kJ).

T_L	H_{vi} , kJ/kg
15.6	43.7
26.7	84.0
29.4	97.2
32.2	112.1
35.0	128.9
37.8	148.2
40.6	172.1
43.3	197.2
46.1	224.5

4. Calculate the number of transfer units (NTU):

 \bullet At 6 to 8 locations, draw parallel lines as shown below from T_{L1} to T_{L2} to read enthalpies H_{vi} from equilibrium curve

4. Calculate the number of transfer units (NTU):

H _{vi} (kJ/kg)	H _v (kJ/kg)	H _{vi} -H _v (kJ/kg)	1/(H _{vi} - H _v); (kg/kJ)
94.4	ັ71.7	22.7	0.0441
108.4	83.5	24.9	0.0402
124.4	94.9	29.5	0.0339
141.8	106.5	35.3	0.0283
162.1	118.4	43.7	0.0229
184.7	129.9	54.8	0.0182

• Using Trapezoidal rule of numerical integration:

$$NTU = \int_{H_{y1}}^{H_{y2}} \frac{dH_y}{H_{yi} - H_y} \cong 1.82$$

$$Z = \underbrace{\frac{G}{M_B P k_G a_M}}_{\text{HTU}} \underbrace{\int_{H_{y1}}^{H_{y2}} \frac{dH_y}{H_{yi} - H_y}}_{\text{NTU}} \equiv \text{(HTU)(NTU)}$$

$$z = \frac{Lc_L}{M_B P k_G a_m} \int_{T_{L1}}^{T_{L2}} \frac{dT_L}{H_{yi} - H_y}$$

$$HTU = \frac{Lc_L}{M_B P k_G a_m}$$

5. Calculate the height of a transfer unit (HTU):

HTU =
$$\frac{G}{M_B P k_G a_M}$$
 = $\frac{1.356}{(29)(101325)(1.207 \times 10^{-7})}$ = 3.82 m

6. Calculate the height of the cooling tower:

$$Z = (HTU)(NTU) = (3.82)(1.82) = 6.96 \text{ m}$$

• Minimum air flow gives maximum slope of the operating line Eq.

$$H_{y} = (H_{y1} - T_{L1} \frac{Lc_{L}}{G}) + \frac{Lc_{L}}{G} T_{L}$$

$$\Rightarrow Slope_{max} = \frac{Lc_{L}}{G min}$$

■ Minimum value of air flow G_{min}:

• For actual cooling towers, a value of air flow rate greater than G_{min} must be used. A reasonable value of G is $(1.3-1.5)\times G_{min}$.

Example. Find the minimum air flow for previous example

Slope_{max} =
$$\frac{H_{y2} - H_{y1}}{T_{L2} - T_{L1}}$$

= $\frac{194 - 71.7}{43.3 - 29.4}$
= 8.8 kJ/(kg.K)
Slope_{max} = $\frac{Lc_L}{G_{\text{min}}}$
 $G_{\text{min}} = \frac{Lc_L}{\text{Slope}_{\text{max}}}$
= $0.64 \text{ kg/(s.m}^2)$

