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 Frequency response concepts and techniques play an important role in

1. Stability analysis

2. Control system design

3. Robustness assessment

Introduction
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Frequency Response

A
s2 2

U (s) 

Definition of frequency response

 For a linear system: the ultimate output response of a process for a sinusoidal

input of certain frequency will show amplitude change and phase shift at the

same frequency depending on the process characteristics.

 Amplitude ratio (AR): attenuation of amplitude, 𝐴𝑅 =
஺෠

஺

 Phase angle (): phase shift compared to input

 These two quantities are function of frequency.
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 Input: 𝑢 𝑡 = 𝐴𝑠𝑖𝑛 𝜔𝑡

𝐿 𝑢 𝑡 → 𝑈 𝑠 =
𝐴𝜔

𝑠ଶ + 𝜔ଶ

Ultimate Output (frequency response): 

𝑦 𝑡 → ∞ = 𝐴መ𝑠𝑖𝑛 𝜔𝑡 + 𝜙

 AR   Â / A  is the normalized amplitude ratio

  is the phase angle (PA) or response angle (RA)

 AR and  are functions of ω.

Definition of frequency response

 Ultimate Output:

஺ఠ

௦మାఠమ
ିଵ

Chapter 5
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Note that unstable transfer function (TF) does not have a frequency

response because a sinusoidal input produces an unstable output response.

 Without calculating transient response Y(t), the frequency response

can be obtained directly as follows:

 For a given transfer function G(s) let:

𝑠 = 𝑗𝜔                     𝐺 𝑗𝜔 = 𝐾ଵ + 𝐾ଶ𝑗                          𝑗 = −1
 

𝐺 = 𝐴𝑅 = 𝐾ଵ
ଶ + 𝐾ଶ

ଶ 

𝜙 = ∠G=arctan
𝐾ଶ

𝐾ଵ

Getting frequency response
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 For transfer function of the form:

𝐺 =
𝐺ଵ

𝐺ଶ

𝐺 =
𝐺ଵ

𝐺ଶ
𝑙𝑜𝑔 𝐺 = 𝑙𝑜𝑔 𝐺ଵ − 𝑙𝑜𝑔 𝐺ଶ

∠𝐺 = ∠𝐺ଵ − ∠𝐺ଶ

 For transfer function of the form:

𝐺 = 𝐺ଵ. 𝐺ଶ. 𝐺ଷ

𝐺 = 𝐺ଵ . 𝐺ଶ . 𝐺ଷ

𝑙𝑜𝑔 𝐺 = 𝑙𝑜𝑔 𝐺ଵ + 𝑙𝑜𝑔 𝐺ଶ + 𝑙𝑜𝑔 𝐺ଷ

∠𝐺 = ∠𝐺ଵ + ∠𝐺ଶ + ∠𝐺ଷ

Getting frequency response
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 In general for the transfer function of the form:

𝐺 𝑠 =
𝐺௔ 𝑠 𝐺௕ 𝑠 𝐺௖ 𝑠 … … .

𝐺ଵ 𝑠 𝐺ଶ 𝑠 𝐺ଷ 𝑠 … …

𝐺 𝑗𝜔 =
𝐺௔ 𝑗𝜔 𝐺௕ 𝑗𝜔 𝐺௖ 𝑗𝜔 … … .

𝐺ଵ 𝑗𝜔 𝐺ଶ 𝑗𝜔 𝐺ଷ 𝑗𝜔 … …

𝐺 𝑗𝜔 =
𝐺௔ 𝑗𝜔 𝐺௕ 𝑗𝜔 𝐺௖ 𝑗𝜔 … … .

𝐺ଵ 𝑗𝜔 𝐺ଶ 𝑗𝜔 𝐺ଷ 𝑗𝜔 … …

∡𝐺 𝑗𝜔 = ∡𝐺௔ 𝑗𝜔 +∡𝐺௕ 𝑗𝜔 + ∡𝐺௖ 𝑗𝜔 … … . −∡𝐺ଵ 𝑗𝜔 −∡𝐺ଶ 𝑗𝜔 −∡𝐺ଷ 𝑗𝜔 … …

Getting frequency response
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First order transfer function: 𝐺 𝑠 =
ଵ

ఛ௦ାଵ

𝐺 𝑗𝜔 =
1

1 + 𝜏𝑗𝜔
.
1 − 𝜏𝑗𝜔

1 − 𝜏𝑗𝜔

𝐺 𝑗𝜔 =
1

1 + 𝜔ଶ𝜏ଶ
−

𝜏𝜔

1 + 𝜔ଶ𝜏ଶ
𝑗

𝐺 = 𝐴𝑅 = 𝐾ଵ
ଶ + 𝐾ଶ

ଶ 
→ 𝐺 =

1

1 + 𝜔ଶ𝜏ଶ 

𝜙 = ∠G=arctan
𝐾ଶ

𝐾ଵ
→ 𝜙 = −arctan 𝜔𝜏

𝑎𝑠 𝜔 → ∞, 𝜙 → −90°

Example: 

8



Bode plots show the frequency response, that is, the changes in

magnitude and phase as a function of frequency.

 Bode diagram is a plot of:

– log AR vs. log() or log()  log-log plot

–  vs. log  or log()  semi-log plot

 Bode diagram is useful to

 Illustrate frequency response characteristics.

 Design and analyze the stability of the closed-loop system.

Bode diagram
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Draw Bode diagram for first-order t TF

𝐺 𝑠 =
K

𝜏𝑠 + 1

𝐺 = 𝐴𝑅 =
𝐾

1 + 𝜔ଶ𝜏ଶ 

The normalized amplitude ratio ARN is:

𝐴𝑅ே =
𝐴𝑅

𝐾
=

1

1 + 𝜔ଶ𝜏ଶ 

𝜙 = −arctan 𝜔𝜏

𝑎𝑠 𝜔 → ∞, 𝜙 → −90°

Example 1
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If a feed is pumped by 3 plades peristaltic pump to a CSTR. The rpm of the

peristaltic pump is 10 rpm. V= 50 cm3, the time-averaged feed flow rate is

94 cm3/min. Will  5% fluctuation in the feed flow appear in the output?

 Process average-time constant: 𝜏 =
௏

௤
=

ହ଴

ଽସ
= 0.53𝑚𝑖𝑛

 Input frequency; 𝜔 = 2𝜋𝑃 = 2𝜋 × 𝑟𝑝𝑚 × 3 ← 3 𝑝𝑙𝑎𝑑𝑒𝑠 = 188.6 𝑟𝑎𝑑 𝑚𝑖𝑛⁄

𝜔𝜏 = 100 𝑟𝑎𝑑

Example 2
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 For fluctuation in qi of U(t) = 5% of nominal flow rate, the

fluctuation in the output concentration will be about

𝐶஺ = 𝐴𝑅 × 𝑈 𝑡 = ±5% × 0.01 = ±0.05%

which is almost unnoticeable.

 From first-order transfer function Bode diagram at 𝜔𝜏 = 100 𝑟𝑎𝑑:

 𝐴𝑅ே 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑟𝑎𝑡𝑖𝑜 = 0.01 ;  𝜙 = −90° = −
గ

ଶ

𝑢 𝑡 = 𝑞௜ − 𝑞ത௜ + 𝐴𝑠𝑖𝑛 188.6 𝑡 → 𝑈 𝑡 = 𝐴𝑠𝑖𝑛 188.6 𝑡

𝐶஺ 𝑡 → ∞ = 𝐴መ𝑠𝑖𝑛 188.6 𝑡 −
𝜋

𝑡
;  𝐴መ = 𝐴𝑅 𝐴

𝑐஺ 𝑡 → ∞ = 𝑐஺̅ + 𝐴መ𝑠𝑖𝑛 188.6 𝑡 −
𝜋

𝑡
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 Note that for this unstable process,
the phase angle is positive.

 The physical interpretation of
frequency response is not valid for
unstable systems, because a sinusoidal
input produces an unbounded output
response instead of a sinusoidal
response.

Bode diagram of unstable pole TF: 

𝐺 𝑠 =
1

−𝜏𝑠 + 1

𝐺 𝑗𝜔 =
1

1 − 𝑗𝜏𝜔
=

1

1 + 𝜏ଶ𝜔ଶ
1 + 𝑗𝜏𝜔

𝐴𝑅 = 𝐺 𝑗𝜔 =
1

1 + 𝜏ଶ𝜔ଶ 

𝜙 = ∡𝐺 𝑗𝜔 = 𝑡𝑎𝑛ିଵ
𝐼𝑚 𝐺 𝑗𝜔

𝑅𝑒 𝐺 𝑗𝜔
= 𝑡𝑎𝑛ିଵ 𝜔𝜏
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Example 3: 



Bode diagram of pure time delay TF:

ିఏ

ି௝ఏఠ

ିଵ
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Example 4:



Bode diagram of integrating TF:

𝐺 𝑠 =
1

A𝑠

𝐺 𝑗𝜔 =
1

𝑗𝐴𝜔
= −

1

𝐴𝜔
𝑗

𝐴𝑅 = 𝐺 𝑗𝜔 =
1

𝐴𝜔

𝜙 = ∡𝐺 𝑗𝜔 = 𝑡𝑎𝑛ିଵ −
1

0. 𝜔
= −

𝜋

2
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Example 5:



Bode diagram of differentiator TF: 
𝐺 𝑠 = A𝑠

𝐺 𝑗𝜔 = 𝑗𝐴𝜔

𝐴𝑅 = 𝐺 𝑗𝜔 = 𝐴𝜔

𝜙 = ∡𝐺 𝑗𝜔 = 𝑡𝑎𝑛ିଵ
1

0. 𝜔
=

𝜋

2
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Example 6:



Draw Bode diagram for zero lead 

(lag) TF: 
𝐺 𝑠 = τ𝑠 + 1

𝐺 𝑗𝜔 = 1 + 𝑗𝜔𝜏

𝐴𝑅 = 𝐺 𝑗𝜔 = 1 + 𝜔ଶ𝜏ଶ 

𝜙 = ∡𝐺 𝑗𝜔 = 𝑡𝑎𝑛ିଵ 𝜔𝜏
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Example 7:



Draw Bode diagram for second-order TF:

𝐺 𝑠 =
௄

ఛమ௦మାଶకఛ௦
 

𝐺 𝑗𝜔 =
𝐾

1 − 𝜏ଶ𝜔ଶ + 2𝑗𝜉𝜏𝜔

𝐴𝑅 = 𝐺 𝑗𝜔 =
𝐾

1 − 𝜏ଶ𝜔ଶ ଶ + 2𝑗𝜉𝜏𝜔 ଶ 

𝜙 = ∡𝐺 𝑗𝜔 = 𝑡𝑎𝑛ିଵ
𝐼𝑚 𝐺 𝑗𝜔

𝑅𝑒 𝐺 𝑗𝜔

= 𝑡𝑎𝑛ିଵ
2𝜉𝜏𝜔

1 − 𝜏ଶ𝜔ଶ
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Example 8:
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Bode diagram of a process with TF:

𝐺 𝑠 =
5 0.5𝑠 + 1 𝑒ି଴.ହ௦

20𝑠 + 1 4𝑠 + 1

G 𝑠 = 5𝐺ଵ 𝑠 𝐺ଶ 𝑠 𝐺ଷ 𝑠 𝐺ସ 𝑠

𝐺ଵ 𝑠 = 0.5𝑠 + 1 → 𝐺ଵ = 1 + 0.25𝜔ଶ 
 ; 𝜙ଵ= 𝑡𝑎𝑛ିଵ 0.25𝜔 → 𝑍𝑒𝑟𝑜 𝑙𝑒𝑎𝑑 𝑇𝐹

𝐺ଶ 𝑠 = 𝑒ି଴.ହ௦ → 𝐺ଶ = 1 ; 𝜙ଶ= −0.5𝜔 → 𝑃𝑢𝑟𝑒 𝑑𝑒𝑙𝑎𝑦 𝑇𝐹

𝐺ଷ 𝑠 =
ଵ

ଶ଴௦ାଵ
→ 𝐺ଷ =

ଵ

ଵାସ଴଴ మ  ; 𝜙ଷ= −𝑡𝑎𝑛ିଵ 20𝜔 → 1𝑠𝑡 − 𝑜𝑟𝑑𝑒𝑟 𝑇𝐹

𝐺ସ 𝑠 =
ଵ

ସ௦ାଵ
→ 𝐺ସ =

ଵ

ଵାଵ଺ఠమ  ; 𝜙ସ= −𝑡𝑎𝑛ିଵ 4𝜔 → 1𝑠𝑡 − 𝑜𝑟𝑑𝑒𝑟 𝑇𝐹

𝐴𝑅 = 𝐺ଵ 𝐺ଶ 𝐺ଷ 𝐺ସ = 5
1 + 0.25𝜔ଶ

1 + 400𝜔ଶ 1 + 16𝜔ଶ

 

𝜙 = 𝜙ଵ+ 𝜙ଶ+ 𝜙ଷ+ 𝜙ସ= 𝑡𝑎𝑛ିଵ 0.25𝜔 − 0.5𝜔 − 𝑡𝑎𝑛ିଵ 20𝜔 −𝑡𝑎𝑛ିଵ 4𝜔
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Example 9: 
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Controllers

1- Proportional, 𝐺 𝑠 = 𝐾௣

2- Integral Controller,  𝐺 𝑠 =
௄಺

௦

3- Proportional Integral, 𝐺 𝑠 = 𝐾௣ +
௄಺

௦

4- Derivative Controller, 𝐺 𝑠 = 𝐾஽𝑠

5- Proportional derivative, 𝐺 𝑠 = 𝐾௣ + 𝐾஽𝑠

6- Proportional Integral Derivative, 𝐺 𝑠 = 𝐾௣ +
௄಺

௦
+ 𝐾஽𝑠
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Controllers



The Bode plot for a PI controller is shown in next slide.

Note: ௕
ଵ

ఛ್
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Frequency response characteristics of controllers

A.Proportional Controller
𝐺௖ = 𝐾௖         ∴ 𝐴𝑅 = 𝐾௖ ,   𝜙 = 0

B.PI Controller

𝐺௖ = 𝐾௖ 1 +
1

𝜏ூ𝑠

𝐴𝑅 = 𝐾௖

1

𝜔ଶ𝜏ூ
ଶ + 1

 

𝜙 = 𝑡𝑎𝑛ିଵ −
1

𝜏ூ𝜔
= 𝑡𝑎𝑛ିଵ 𝜏ூ𝜔 − 90°
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𝐺௖ 𝑠 = 2 1 +
1

10𝑠



D. PD Controller with filter: 𝐺 𝑠 = 𝐾௖
ଵାఛವ௦

ଵାఈఛವ௦

E. Ideal (Parallel) PID Controller:    𝐺 𝑠 = 𝐾௖ 1 +
ଵ

ఛ಺௦
+ 𝜏஽𝑠

F. Actual (Series) PID Controller without filter:    𝐺 𝑠 = 𝐾௖
ଵାఛ಺௦

ఛ಺௦
𝜏஽𝑠 + 1

G. Actual Series PID Controller (Series PID Controller) with filter:

𝐺 𝑠 = 𝐾௖

1 + 𝜏ூ𝑠

𝜏ூ𝑠

𝜏஽𝑠 + 1

1 + 𝛼𝜏஽𝑠
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C. Ideal PD Controller:  𝐺 𝑠 = 𝐾௖ 1 + 𝜏஽𝑠

𝐴𝑅 = 𝐾௖ 𝜔𝜏஽
ଶ + 1

 
𝜙 = 𝑡𝑎𝑛ିଵ 𝜔𝜏஽
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Bode plots of an ideal PD

controller and a PD controller

with derivative filter

𝐼𝑑𝑒𝑎𝑙:    𝐺௖ 𝑠 = 2 4𝑠 + 1

𝑊𝑖𝑡ℎ 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝐹𝑖𝑙𝑡𝑒𝑟:

𝐺௖ 𝑠 = 2
4𝑠 + 1

0.4𝑠 + 1
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Bode plots of an ideal parallel PID

controller and series PID

controller with derivative filter

(=1)

𝐼𝑑𝑒𝑎𝑙 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙:    𝐺௖ 𝑠 = 2 1 +
1

10𝑠
+ 4𝑠

𝑆𝑒𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝐹𝑖𝑙𝑡𝑒𝑟:

𝐺௖ 𝑠 = 2
10𝑠 + 1

10𝑠

4𝑠 + 1

0.4𝑠 + 1



Open and Closed Control System

Types of control systems

1- Open loop control system (non

feedback system)

 Output is directly

controlled by input.

 Does not have feedback

system.

2- Closed loop control system

 Output has an effect on the

control action of the input.

 Output is feedback to the

input (feedback system)
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Manipulate the system input to counteract the effects of disturbances.

30

Regulator problem: 

Servo Problem (i.e. tracking problem):

Manipulate the system input to keep the output close to a given

reference trajectory



Stability of closed-loop frequency response (FR)

GOL  GmGcGvGp

GOLY (s) 
YSP (s) 1 GOL

Y (s)  Gd  

D(s) 1GOL

Characteristic equation:
1 GOL  0

s2  2

or
s2  2

Y (s)  A
SP

“Servo”

D(s)  A   “Regulatory”
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Stability of closed-loop frequency response

 Stability margins: as mentioned early the roots of closed-loop

characteristic equation must be negative:

Characteristic equation: 1 GOL  0

 Thus, the margin values for stability of closed-loop system is

determined from : ை௅

 This means that the stability margin value for amplitude ratio of

the open-loop TF GOL must be:

ை௅ ௠௔௥௚௜௡ ை௅

and the corresponding stability margin value of phase angle of GOL is:

ை௅ ௠௔௥௚௜௡
ିଵ
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Where the critical frequency (c) is the value of  where the open-loop phase

angle is 𝜙ை௅ = −𝜋

 Bode stability criterion provides info on closed-loop stability from open-

loop frequency response information.

Bode stability criterion: A closed-loop frequency response (FR) is unstable if

the GOL has an amplitude ratio, AROL, greater than one at the critical

frequency (c). Otherwise the closed-loop system is stable:

𝐴𝑅ை௅|ఠ೎
< 𝐴𝑅ை௅ ௠௔௥௚௜௡ = 1

∴ 𝐼𝑓𝐴𝑅ை௅|ఠ೎
< 1 → "𝑠𝑡𝑎𝑏𝑙𝑒 𝐹𝑅"
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A process has 𝐺௣ =
ଶ

଴.ହ௦ାଵ య , Gv = 0.1, Gm= 10. All signals in the closed-loop

control system are electrical and time is in minutes. A proportional

controller is used, what is the ultimate controller gain, Kcu, below which the

frequency response is stable?

𝐺ை௅ = 𝐺௩𝐺௠𝐺௖𝐺௣ = 0.1 10 𝐾௖

2

0.5𝑠 + 1 ଷ
=

2𝐾௖

0.5𝑠 + 1 ଷ

𝐺ை௅ = 2𝐾௖𝐺ଵ𝐺ଶ𝐺ଷ

where 𝐺ଵ = 𝐺ଶ = 𝐺ଷ =
ଵ

଴.ହ௦ାଵ

𝐺ଵ = 𝐺ଶ = 𝐺ଷ =
1

1 + 𝜏ଶ𝜔ଶ  =
1

1 + 0.25𝜔ଶ 

𝜙ଵ = 𝜙ଶ = 𝜙ଷ = −𝑡𝑎𝑛ିଵ 𝜔𝜏 = −𝑡𝑎𝑛ିଵ 0.5𝜔

34

Example:



35

𝐴𝑅ை௅ = 2𝐾௖ 𝐺ଵ 𝐺ଶ 𝐺ଷ = 2𝐾௖

1

1 + 0.25𝜔ଶ 

ଷ

= 2𝐾௖ 1 + 0.25𝜔ଶ ିଵ.ହ

𝜙ை௅ = 𝜙ଵ + 𝜙ଶ + 𝜙ଷ = −3𝑡𝑎𝑛ିଵ 0.5𝜔

 Let us find the critical frequency, c, at 𝜙ை௅ = −𝜋

−𝜋 = −3𝑡𝑎𝑛ିଵ 0.5𝜔௖ →
𝜋

3
= 𝑡𝑎𝑛ିଵ 0.5𝜔௖ ⇒ 𝜔௖ = 3.467 𝑟𝑎𝑑/𝑚𝑖𝑛

 The open-loop amplitude ratio, AROL, at this critical frequency, is:

𝐴𝑅ை௅|ఠ೎
= 2𝐾௖ 1 + 0.25𝜔௖

ଶ ିଵ.ହ = 0.25𝐾௖

 To achieve stable FR:

𝐴𝑅ை௅|ఠ೎
< 1 ⇒ 0.25𝐾௖ < 1

∴ 𝐾௖ < 4 → 𝐾௖௨ = 4
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A process has 𝐺௣ =
ସ௘షೞ

ହ௦ାଵ
, Gv= 2, Gm= 0.25, Gc = Kc. All signals in the closed-loop

control system are electrical and time is in minutes. Find the Kcu of P

controller for stable frequency response. Find the corresponding ultimate

period of oscillation.

𝐺ை௅ = 𝐺௩𝐺௠𝐺௖𝐺௣ = 2 0.25 𝐾௖

4𝑒ି௦

5𝑠 + 1
=

2𝐾௖𝑒ି௦

0.5𝑠 + 1

Let 𝐺ை௅ = 2𝐾௖𝐺ଵ𝐺ଶ

where 𝐺ଵ = 𝑒ି௦ → 𝐺ଵ = 1   ;     𝜙ଵ = −𝜔   → 𝑃𝑢𝑟𝑒 𝑑𝑒𝑙𝑎𝑦 𝑇𝐹

𝐺ଶ =
1

5𝑠 + 1
→ 𝐺ଶ =

1

1 + 25𝜔ଶ      ; 𝜙ଶ = −𝑡𝑎𝑛ିଵ 5𝜔
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𝐴𝑅ை௅ = 2𝐾௖ 𝐺ଵ 𝐺ଶ =
2𝐾௖

1 + 0.25𝜔ଶ 

𝜙ை௅ = 𝜙ଵ + 𝜙ଶ = −𝜔 − 𝑡𝑎𝑛ିଵ 5𝜔

 Let us find the critical frequency, c, at 𝜙ை௅ = −𝜋

= −𝜔 − 𝑡𝑎𝑛ିଵ 5𝜔

 Solve to obtain wc = 1.69 rad/min

𝐴𝑅ை௅|ఠ೎
= 2𝐾௖ 1 + 0.25𝜔௖

ଶ ିଵ.ହ = 0.25𝐾௖

 To achieve stable FR:

𝐴𝑅ை௅|ఠ೎
=

2𝐾௖

1 + 25𝜔ଶ  =
2𝐾௖

1 + 25 1.69 ଶ 
= 0.235𝐾௖

∴ 0.235𝐾௖௨ = 1 → 𝐾௖௨ = 4.25

If 𝐾௖௨ < 4.25 (stable)

Ultimate period of oscillation:  𝑃௖௨ =
ଶగ

ఠ೎
=

ଶగ

ଵ.଺ଽ
= 3.72 𝑚𝑖𝑛
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 Gain Margin (GM): According to the Bode stability criterion,

𝐴𝑅ை௅|ఠ೎
< 1 → 𝐺𝑀 =

1

𝐴𝑅ை௅|ఠ೎

> 1

 Phase Margin(PM): Let g is the frequency at which AROL = 1.0 and the

corresponding phase angle is 𝜙ை௅|௚.

 According to the Bode stability criterion,

𝜙ை௅|ఠ௖ = −180

When 𝜙ை௅|ఠ௖ > −180°→ 𝐴𝑅ை௅|ఠ೎
< 1

𝜙ை௅|ఠ೒
+ 180° > 180° − 180° → 𝜙ை௅|ఠ೒

+ 180° > 0

𝜙ை௅|ఠ೒
+ 180° Phase Margin

Thus, for stability PM > 0 and GM > 0
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 The greater the Gain Margin (GM), the greater the stability of the

system.

 The gain margin refers to the amount of gain, which can be increased

or decreased without making the system unstable. It is usually

expressed as a magnitude in dB.

 The greater the Phase Margin (PM), the greater will be the stability of

the system.

 The phase margin refers to the amount of phase, which can be

increased or decreased without making the system unstable. It is

usually expressed as a phase in degrees.
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Proportional Gain and Phase Margins



Rules of thumb:

A well-designed FB control

system will have:

1.7    GM   2.0

30    PM  45 
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Nyquist stability criterion

 The Nyquist stability criterion is similar to the Bode criterion in that it determines

closed-loop stability from the open-loop frequency response characteristics.

 The Nyquist stability criterion is based on two concepts from complex variable

theory, Contour Mapping and the Principle of the Argument.

 Nyquist Stability Criterion. Consider an open-loop transfer function GOL(s) that is

proper and has no unstable pole-zero cancellations. Let N be the number of times that

the Nyquist plot for GOL(s) encircles the -1 point in the clockwise direction. Also let P

denote the number of poles of GOL(s) that lie to the right of the imaginary axis. Then, Z

= N + P where Z is the number of roots of the characteristic equation that lie to the

right of the imaginary axis (that is, its number of “zeros”).

 The closed-loop system is stable if and only if Z = 0.
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Some important properties of the Nyquist stability criterion

1. It provides a necessary and sufficient condition for closed-loop stability based

on the open-loop transfer function.

2. The reason the -1 point is so important can be deduced from the characteristic

equation, 1 + GOL(s) = 0. This equation can also be written as GOL(s) = -1, which

implies that AROL = 1 and , as noted earlier. The -1 point is referred to as the

critical point.

3. Most process control problems are open-loop stable. For these situations, P = 0

and thus Z = N. Consequently, the closed-loop system is unstable if the Nyquist

plot for GOL(s) encircles the -1 point, one or more times.

4. A negative value of N indicates that the -1 point is encircled in the opposite

direction (counter-clockwise). This situation implies that each countercurrent

encirclement can stabilize one unstable pole of the open-loop system 0.
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Some important properties of the Nyquist stability criterion

5. Unlike the Bode stability criterion, the Nyquist stability criterion is

applicable to open-loop unstable processes.

6. Unlike the Bode stability criterion, the Nyquist stability criterion can be

applied when multiple values of c or g occur.

Nyquist stability Criterion:

Let N be the number of times the Nyquist plot for GOL(s) encircles the (-1,0)

point in the clockwise direction. Also let P denotes the number positive

poles of GOL(s). Then, Z = N+P is the number of positive roots of the

characteristic equation (GOL(s) + 1 = 0). Thus, the closed-loop system is stable

if and only if Z = 0

45



Nyquist stability criterion:
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A process has 𝐺௣ =
ସ௘షೞ

ହ௦ାଵ
 ,Gv= 2, Gm= 0.25, Gc = Kc. all signals in the closed-

loop control system are electrical and time is in minute. Draw Nyquist

plots for Kc = 4, 6.38, and 50.

𝐺ை௅ =
2𝐾௖𝑒ି௦

5𝑠 + 1
⇒ 𝐺ை௅ 𝜔𝑗 =

2𝐾௖𝑒ିఠ௝

5𝜔𝑗 + 1
=

2𝐾௖ 𝑐𝑜𝑠𝜔 − 𝑗𝑠𝑖𝑛𝜔

5𝜔𝑗 + 1
×

1 − 5𝜔𝑗

1 − 5𝜔𝑗

=
2𝐾௖

25𝜔ଶ + 1
𝑐𝑜𝑠𝜔 − 𝑗𝑠𝑖𝑛𝜔 1 − 5𝜔𝑗

=
2𝐾௖

25𝜔ଶ + 1
𝑐𝑜𝑠𝜔 − 5𝜔𝑠𝑖𝑛𝜔 − 𝑠𝑖𝑛𝜔 + 5𝜔𝑐𝑜𝑠𝜔 𝑗

=
2𝐾௖ 𝑐𝑜𝑠𝜔 − 5𝜔𝑠𝑖𝑛𝜔

25𝜔ଶ + 1
−

2𝐾௖ 𝑠𝑖𝑛𝜔 + 5𝜔𝑐𝑜𝑠𝜔

25𝜔ଶ + 1
𝑗

Now prepare a polar plot of 𝐺ை௅ 𝜔𝑗 for every Kc in the direction of

increasing value.
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Nyquist plot for Kc= 6.38

Nyquist plot for Kc= 50
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Nyquist plot for Kc = 4



Use the Nyquist stability criterion for a closed-loop system of the previous
example.

𝐺ை௅ 𝑠 =
2𝐾௖𝑒ି௦

5𝑠 + 1

Poles of GOL: 5𝑠 + 1 = 0 → 𝑠 = −
ଵ

ହ
 “one negative pole”

 This means that there is no positive poles of GOL → P = 0

 See previous plots to count the number of times, N, that Nyquist plot

encircles the point (-1, 0):

 At Kc= 6.38: N =1 → Z = N+P = 1+0 = 1 → Not stable FR

 At Kc= 50 : N = 3 → Z = N+P = 3+0 = 3 → Not stable FR

 At Kc= 4 : N = 0 → Z = N+P = 0+0 = 0 → stable FR

 For Kc < 4.25: Z = N+P = 0+0 = 0 → stable FR
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