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Introduction

= Frequency response concepts and techniques play an important role in
1. Stability analysis
2. Control system design

3. Robustness assessment



JIrequency Response

Definition of frequency response

= For a linear system: the ultimate output response of a process for a sinusoidal

input of certain frequency will show amplitude change and phase shift at the

same frequency depending on the process characteristics.

Input Output
_ *  Process ~ >
Asmor Asin(of + @)
Aw
U(s) = 1P After all transient
ol effects are decayed out.

|,y

=  Amplitude ratio (AR): attenuation of amplitude, AR =

=  Phase angle (¢): phase shift compared to input

= These two quantities are function of frequency.



Definition of frequency response
= Input: u(t) = Asin(wt)

Aw

s2 + w?

L(u(t)) - U(s) =

= ‘Ultimate Output:

Y (s) = G(s) s > y(t) = L1

s?+w?
Ultimate Output (frequency response):
y(t = o) = Asin(wt + ¢)

= AR=A/A is the normalized amplitude ratio

= ¢ is the phase angle (PA) or vesponse angle (RA)
= AR and ¢ are functions of o.

Chapter 5
0
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v, (t)=lim————(wze """ —wrcoswt +sin wr)
=0 @°7" +1
KA

=———(-orcos ot +sinwr)

o't +1
- sin(wt (¢ =—tan"' w7)
% Pngle
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Getting frequency response

= Without calculating transient response Y(t), the frequency response

can be obtained directly as follows:

v' For a given transfer function G(s) let:
S=jw G(w) = K; + K,j j=v-1

|G| = AR = /K12+K22

K;
¢ = £LG=arctan—
K1

Note that unstable transfer function (TF) does not have a frequency

response because a sinusoidal input produces an unstable output response.



Getting frequency response

= For transfer function of the form:
G =Gq.G,.G3
|G| = G1].1G2|.1G3]
log|G| = log|G,| + log|G,| + log|Gs]
LG S

= For transfer function of the form:

G

G =—
G
G

G| gl
|G|

log|G| = log|G,| — log|G,]
LG - LGl — LGZ



Getting frequency response

= In generval for the transfer function of the form:

G(s) = G,(s)Gy(s)G.(5) ... ....

" G1(5)G5(5)G5(5) ... ...
G(]'a)) b Ga(iw)Gb(iw)Gc(iw)
T Gl 0)G ()G (o) e

1Ga()IGp )G (w)] ... ...
1G1(w)||G2(w)|Gs ()] ... ..

4G(Jw) = 46G,(jw) +4G, (jw) + 4G.(jw) ... ....—4G,(Jw) —4G, (jw) —4G3 (jw) ... ...

G(w)| =



Example:

1
7s+1

First order transfer function: G(s) =

G(jw) = 1 l1—-7jw
. 1+t go 1l -tjw

. 1 Tw
GUQ)= 1+ w22 1+ w2r?’

1
G| = AR = [KZ +KZ > |G| =
: - V1 + w?t?

K
¢ = 4G=arctan72 — ¢ = —arctan(wrt)
1

as w — o0,¢p - —90°



Bode diagram

Bode plots show the frequency vresponse, that is, the changes in

magnitude and phase as a function of frequency.

» Bode diagram is a plot of:
— log AR vs. log(®) or log(t®) — log-log plot

— ¢ vs. log o or log(t®w) — semi-log plot

» Bode diagram is useful to

v Illustrate frequency response characteristics.

v Design and analyze the stability of the closed-loop system.



Example 1

Draw Bode diagram for first-ordev t TF

G —
(s) s+ 1

K
IG| = AR =
V1 + w?t?

The normalized amplitude ratio AR, is:

N ]
K 1+ w272

¢ = —arctan(wrt)

ARy

as w — oo, —» —90°

AR
o
=

corner frequency
Ak

o,=1/1
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Example 2

If a feed is pumped by 3 plades peristaltic pump to a CSTR. The rpm of the
peristaltic pump is 10 ypm. V= 50 cm3, the time-averaged feed flow rate is

94 cm3/min. Will+ 5% fluctuation in the feed flow appear in the output?

Cas 9

r

= Cilyg
q.(s) Vs+q [V/ig)s+l

A=

C,(s) o &)

%4 5

. 0 -
= Process average-time constant: t = i 0.53min

= Input frequency; w = 2nP = 2m X rpm X 3 « 3 plades = 188.6 rad/min
wt = 100 rad

11



= From first-order transfer function Bode diagram at wt = 100 rad:

= ARy (normalized amplitude ratio) = 0.01; ¢ = —90° = _g

u(t) = q; — q; + Asin(188.6 t) » U(t) = Asin(188.6 t)

A 1T n
e AT (188.6 ‘- ?); A= (AR)A
a 1T
cy(t » ) = C4 + Asin (188.6 = ?)

» For fluctuation in q; of U(t) = +5% of nominal flow rate, the
fluctuation in the output concentration will be about
Ca =AR X U(t) = £5% x 0.01 = +0.05%

which is almost unnoticeable.

12



Example 3:

Bode diagram of unstable pole TF:
1

G(jw) =

¢ =46G(w) = tan

1—jTa)=1+Tza)2

1
AR = |G(jw)| =

(1+4+jtw)

s Im(G(]'a)))

Re(G(iw))

V1 + t2w?

= tan™ Y (wt)

= Note that for this unstable process,

the phase angle is positive.

The

physical

interpretation

of

corner frequency
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Example 4:

Bode diagram of pure time delay TF:
G(s)=e""
G(jw) = e 9% = cos(w) — jsin(Bw)
AR = |G(jw)| =1
¢ =46(w) = tan"tan(fw) = —bw

AR

o degrees
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Example 5:

Bode diagram of integrating TF:
!

G(S)=E
A R
Vo) =1~ " 4w
1
AR =|G(jw)| =~
¢ = 46G(jw) = tan™t <__a)

Yousef Mubarak,

100-‘\
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Chemical ®Process Control
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Example 6:

Bode diagram of diffeventiator TF:

G(s) = As 100 /
G(jw) = jAw ’
AR 1
AR = IG(]a))I = Aw A i /
1 = 0.0I-MW
. St S e Ty 0.01 0.1 10 100
U GUQ)= an (O. a)) 2 100 -
o 03
e
0.01 0.1 10 100

Yousef Mubarak, Chemical Process Control
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Example 7:

Draw Bode diagram for zero lead
(lag) TF:
G(s)=1s+1
G(jw) =1+ jort

AR = |G(jw)| =1+ w?T?

¢ = 46(jw) = tan"(wT)
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Example 8:

Draw Bode diagram for second-ovder TF:

K
G(S) T (t2s2+2&ts )
K
G(jw) =

(1-1%w?) + 2jétw

K

AR = |G(jw)| = \/(1 — 12w2)2 + (2jé1w)?

- Im(G(ja)))

¢ =4G6G(Jw) = tan Re(G ()

2¢éTw
(1 =72w?)

1

= tan

18
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Example 9:

Bode diagram of a process with TF:
N 5(0.5s + 1)e~%>s
&)= Zos T D@s 1 1)

G(s) = 5G1(s)G(s)G3(s)Gy(s)

G,(s) =055+ 1> |G| =V1+0.25w?%;¢;=tan"1(0.25w) - Zero lead TF

G,(s) = e % - |G,| = 1;¢,= —0.50w = Pure delay TF

G;(s) = 20;1 - |G3| = \/ﬁ; ¢3= —tan 1 (20w) - 1st — order TF
Gyu(s) = 451“ — |Gy = \/ﬁ; ¢,= —tan 1(4w) - 1st — order TF

1+ 0.25w?
(1+400w?)(1+ 16w?)

b =1+ Pyt 3+ = tan 1(0.25w) — 0.5w — tan" 1 (20w) —tan~! (4w)

AR = |G1||Gz||G3||G4| = 5\/

20
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Controllers

Error

detector

Actuating signal
R(s)

Input

m(s) C(s)

e | CONtrol logic
Sicn | System

Feedback (Plant)
signal

output

Feedback

1- Proportional, G(s) = K,

2- Integral Controller, G(s) = -

S
3- Proportional Integral, G(s) = K, + .
S
4- Derivative Controller,G(s) = Kps

5- Proportional derivative, G(s) = K, + Kps

6- Proportional Integral Derivative, G(s) = K, + % + Kps

22



Controllers

Set i

Point . .
O

Yousef Mubarak,

PID Controller

...................................................................................

—DI. Integration
—FI Differentiation

Output
Process |—+

Feedback

Chemical Process Control
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Frequency response characteristics of controllers

A.Proportional Controller

G = K, ~ AR = [K,|, ¢ =0
B. PI Controller
1
ey o [
- 1
AR =K, 2t 1

1 o
¢ = tan™? (——) = tan™ Y (t;w) — 90

T/
The Bode plot for a PI controller is shown in next slide.

1
Note: wp = -
b

24



G.(s) =2
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C. Ideal PD Controller: G(s) = K.(1+ 1ps)

AR = K./(wtp)2 + 1 ¢ = tan Y (wtp)

D. PD Controller with filter: G(s) =K, ( 1+‘L'Ds)

1+atps

E. Ideal (Parallel) PID Controller: G(s) =K, (1 + ;15 + rDs)

F. Actual (Series) PID Controller without filter: G(s) =K, (1”’5) (tps+1)

TIS

G. Actual Series PID Controller (Series PID Controller) with filter:
. 1+ 7S TpS + 1
Gl K ( ;8 ) (1 + aTDs)

Yousef Mubarak, Chemical ®Process Control
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[ e ideal
——= Derivative filter

Bode plots of an ideal PD 10?
controller and a PD controller s

with derivative filter

"lll'lr £ 13 l'lllll

LLAD L

A A lllllll lllll

Ideal: G.(s) =2(4s+1) 109 s v auiul Ay
102 107! 10° 10! 102

With Derivative Filter:

C.(s) = 2 4s + 1
SIS 0dst 1

1 [ | llllll i L1 Llllll T‘:‘rﬁﬂ:
1072 107! 10° 10! 10?
w (rad/s)
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IIIII Ll Ll L] !"l'!l L L | L | lll'l
— without derivative filter
— —— with derivative filter

102 ¢

Bode plots of an ideal parallel PID
controller and  series PID AR 101 L

controller with derivative filter

(a=1)

1
Ideal parallel: G.(s) = 2 <1 + T + 45)

Series with Derivative Filter:

G.(s) = 2 10s+ 1 4s + 1
e\ = 10s  J\04s +1

28



Open and Closed Control System

Types of control systems

1- Open loop control system (non Jos)
feedback system) f _
» Output is directly — Ysels) - B — - S _,®_.Y(s)
controlled by input.
= Does not have feedback
system.

2- Closed loop control system

= Qutput has an effect on the v E(s)
P J’(f ﬂr —*I G(s) —>{ Gu(s) | G.ls)

Ym(s) |ﬂm_IEL|4 Y(s)

control action of the input.
= Output is feedback to the

input (feedback system)

25



Regulator problem:

Manipulate the system input to counteract the effects of disturbances.

Yse(s)

— e X

—>{ G.(s) —>{ G,(s)

L e

Servo Problem (i.e. tracking problem):

Manipulate the system input to keep the output close to a given

reference trajectory

Yse(s)
—_

Grn(s)

E(s)
—_

Ge(s) >

Cy(s) >

Gyls)

pY(s)

Yr(S)

G, (s) |«

Y(s)

30



Stability of closed-loop frequency response (FR)

Yse(s) E(s)
—| Gn(s) | —»| G (s) |
Yml(s)
Y(s) _ Gy Y(s) _ Gy
Yo(s) 1+G,, || D(s) 1+Gy,

GOL - Gm Gc Gva

Characteristic equation:
1 =2 GOL = O

Gumls) Lil
Yo (s) =— 22— “Servo”
ST+ o
or
D(s) = 2Aa) “Regulatory”
S+ o

31



Stability of closed-loop frequency response

= Stability margins: as wmentioned early the vroots of closed-loop

characteristic equation must be negative:
Characteristic equation: 1+ Gy, =0

» Thus, the margin values for stability of closed-loop system is
determined from : Gy (s) = -1+ 0j

» This means that the stability margin value for amplitude ratio of
the open-loop TF Gor must be:

(AROL)margin = |GoL ()| =1
and the corresponding stability margin value of phase angle of Gy, is:
0
(¢0L)margin = tan™" <_> =T

32



Bode stability criterion: A closed-loop frequency response (FR) is unstable if
the Gy, has an amplitude ratio, AR, greater than one at the critical

frequency (o.). Otherwise the closed-loop system is stable:

AROLle < (AROL)margin =1
~IfARoL|,, <1 - "stable FR"

Where the critical frequency (o) is the value of » where the open-loop phase

%.fao Bn\

= Bode stability criterion provides info on closed-loop stability from open-

angle is = —77
g oL

loop frequency response information.

33



Example:

A process has G, =m, G, = 0.1, G,= 10. All signals in the closed-loop

control system are electrical and time is in minutes. A proportional

controller is used, what is the ultimate controller gain, XK., below which the
frequency response is stable?

2K,

Gov = GyGmGeGp = (0-DUOK) 5333 = (055 1 13

Gor = 2K.G,G,G3 :

G(jw) = — = (1+ jrw)
— . " 1—jrow 14 ttw?
WhHeHE G, = G, = G3 = —— AL 1
1+ 12w?
Im(G(j
Gl = 1621 = 165] = e = —— b = 36G0) = tan TEID) i
VI+72w? 1+ 02502 e(G(j))

¢1 = ¢, = Pp3 = —tan"H(wr) = —tan"1(0.5w)

34



3
1
ARy, = 2K,|G{||G,]|G3| = 2K < ) = 2K.(1+ 0.25w?)7 1%
b e T \VT 1 0.25w2 ‘

boL = 1+ P2 + ¢35 = —3tan™'(0.5w)
= Let us find the critical frequency, o, at ¢,, = -n

—m = =3tan"1(0.5w,) - g = tan™! (0.5w,) = w, = 3.467 rad/min
= The open-loop amplitude ratio, AR, at this critical frequency, is:
ARopje, = 2K (1 + 0.25w,%)~° = 0.25K,
= TJo achieve stable FR:

AR o et t™=") 25|
“K,<45|K,, =4
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Example:

=5

A process has G, = %, G,= 2, G,,= 0.25, G. = K. All signals in the closed-loop

control system are electrical and time is in minutes. Find the XK. of P
controller for stable frequency response. Find the corresponding ultimate
period of oscillation.

dichu s uaR MCECRE
55+1 05s+1

Gor = GmaGpo = (2)(0.25)(K,)

Let GOL — ZKCGlGZ

where Gy=e - |G| =1; ¢;=-w - PuredelayTF

s, = —tan" 1 (5w)

1 1
Gy = G| = :
2SR T Vit 75

37



2K,
V1 + 0.25w?2

$oL = $1 + P2 = —w — tan"' (Sw)

= Let us find the critical frequency, o, at ¢, =-n

ARpp, = 2Kc|G1||G2| =

= —w — tan" ' (5w)
= Solve to obtain w, = 1.69 rad/min

ARoLjw, = 2K.(1 + 0.25w,*) 71> = 0.25K,

G
= TJo achieve stable FR: VRN Frequency
7 \
AR = e 0.235K T
OLlw, = = = 0. ime
0 " VI+ 2502 \[1+25(1.69)2 :
From the duration of One full /
0-235Kcu =1- Kcu = 4.25 one oscillation T the \ oscillation T /
frequency f (number of ; ]
.Zchu < 4.25 (St&lb[e) oscillations per second) \ //
is calculated: 1/T=f \\\//
Ultimate period of oscillation: P., == =2 =3.72 min
we  1.69
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Proportional Gain and Phase Margins

= Gain Margin (GM): According to the Bode stability criterion,

> 1

AR <1->GM =
OLla)C = AROLle

= Phase Margin(PM): Let o, is the frequency at which AR, = 1.0 and the

corresponding phase angle is ¢oy,-
» According to the Bode stability criterion,
¢0L|wc = —180
When ¢opmc > —180"= ARy, < 1

boLjwg T 180° > 180" — 180° — boLjw, + 180° > 0

PoLjw, T 180" Phase Margin

Thus, for stability PM > o and GM > o

40



Proportional Gain and Phase Margins

» The greater the Gain Margin (GM), the greater the stability of the
system.

= The gain margin refers to the amount of gain, which can be increased
or decrveased without making the system unstable. It is usually

expressed as a magnitude in dB.

= The greater the Phase Margin (PM), the greater will be the stability of
the system.

» The phase margin refers to the amount of phase, which can be
increased or decreased without making the system unstable. It is

usually expressed as a phase in degrees.

41



Proportional Gain and Phase Margins

AR
Rules of thumb: o ; \
A well-designed FB control { \
’ ; AROL|w - |
system will have: . GM N .
Wgl 0,
17 < GM <20 | .
[ I
30° < PM < 45° 0 { i
doL | :
[ I
R
| Phase| | :
margin i :
-180 J: §\
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Nyquist stability criterion

= The Nyquist stability criterion is similar to the Bode criterion in that it determines

closed-loop stability from the open-loop frequency response characteristics.

= The Nyquist stability criterion is based on two concepts from complex variable

theory, Contour Mapping and the Principle of the Argument.

= Nyquist Stability Criterion. Consider an open-loop transfer function G,.(s) that is
proper and has no unstable pole-zevo cancellations. Let N be the number of times that
the Nyquist plot for Go.(s) encircles the -1 point in the clockwise direction. Also let P
denote the number of poles of Gy.(s) that lie to the right of the imaginary axis. Then, Z
= N + P where Z is the number of roots of the characteristic equation that (ie to the

right of the imaginary axis (that is, its number of “zeros”).

» The closed-loop system is stable if and only if Z = o.
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Some important properties of the Nyquist stability criterion

1. It provides a necessary and sufficient condition for closed-loop stability based

on the open-loop transfer function.

2. The reason the -1 point is so important can be deduced from the characteristic
equation, 1 + Gy.(s) = o. This equation can also be written as G,.(s) = -1, which
implies that AR, = 1 and , as noted earlier. The -1 point is referred to as the

critical point.

3. Most process control problems are open-loop stable. For these situations, P = o
and thus Z = !N. Consequently, the closed-loop system is unstable if the Nyquist

plot for G,.(s) encircles the -1 point, one or more times.

4. A negative value of N indicates that the -1 point is encircled in the opposite
direction (counter-clockwise). This situation implies that each countercurrent

encirclement can stabilize one unstable pole of the open-loop system o.
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Some important properties of the Nyquist stability criterion

5. ‘Unlike the Bode stability criterion, the Nyquist stability criterion is
applicable to open-loop unstable processes.

6. ‘Unlike the Bode stability criterion, the Nyquist stability criterion can be

applied when multiple values of o, or o, occur.

Nyquist stability Criterion:

Let N be the number of times the Nyquist plot for Go.(s) encircles the (-1,0)
point in the clockwise dirvection. Also let P denotes the number positive
poles  of Gop(s). Then, Z = N+P is the number of positive roots of the
characteristic equation (Gyp(s) + 1 = o). Thus, the closed-loop system is stable
if and only if Z = o

45



Nyquist stability criterion:

‘Im

46



Example:

A process has G, = :j—;i .Gy= 2, G= 0.25, G, = K. all signals in the closed-

loop control system are electrical and time is in minute. Draw Nyquist

plots for Kc = 4, 6.38, and 5o.

2K .e™S ZKCe_wj 2K (cosw — jsinw) 1—5wj
G = = G ) = s >
oL = 551 = Gl =5 5wj + 1 1—5wj
2K,
R RV (cosw — jsinw)(1 — 5wj)
2K,
o [(cosw — Swsinw) — (sinw + S5wcosw)j]

= 2K .(cosw — S5wsinw) 2K (sinw + Swcosw)
- 2502 + 1 P

Now prepare a polar plot of Gy (wj) for every Kc in the direction of

increasing w value.
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Imaginary

Real

Nyquist plot for K .= 50

15—

Imaginary

24
=)

Real

Nyquist plot for K .= 6.38

Imaginary

Real

Nyquist plot for X, = 4
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Use the Nyquist stability criterion for a closed-loop system of the previous

example.
2K e

5s+1

Gop(s) =
: . - _1 “« P 9
Poles of Gor: 55 +1=0-s=—: "one negative pole

= This means that there is no positive poles of Go, > P =0
= See previous plots to count the number of times, N, that Nyquist plot

encircles the point (-1, 0):

At K.=6.38: N=1-> Z=N+P=1+0 =1- Not stable TR

At K.=50 :N=3->2Z=N+P=3+0 =3 - Not stable FR

At K=4 :N=0->2Z=N+P=0+0=0 - stable TR

= For K, < 4.25: Z = N+P = 0+0 = 0 - stable FR
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