Topic 1

Introduction To Process Control

The University of Jordan
Chemical Engineering Department
Spring 2023
Prof. Yousef Mubarak

Chemical Process Control

> Goal of Plant Operation

- Safety
- Production schedule
- Product quality
- Maximum profit

> Industrial Perspectives

- Accidents should be avoided (human, properties)
- Exploit the opportunities
- Enterprise image, loyal customers, competitiveness
- Game of survival

> Classification of Processes

- Based on time: Steady-state (no variations with time) and unsteady state (variations with time).
- Based on flowing streams: continuous, non-continuous, batch, and semibatch.
- Examples:

Yousef Mubarak.

• Examples:

- What is Process Control?
 - Monitor the process status
 - To drive the process to desired condition
 - By manipulating adjustable handles
- How to Monitor Process Status?
 - Measure important process variables by sensors
 - Estimate the important variable through indirect measurements
- · What are Adjustable Handles?
 - Process variables manipulated by actuators
 - Example: flow rate by control valve, motor speed by inverter

Example: refinery

> Some Important Issues:

- Measure product quality
- Adjust energy input and product distribution
- Make more valuable products with least energy
- Not to violate any process constraints

- > Specific Objectives of Control:
 - Increase product throughput
 - Increase yield of higher valued products
 - Decrease energy consumption
 - Decrease pollution
 - Decrease off-spec product
 - Increase safety
 - Extend life of equipment
 - Improve operability
 - Decrease production labor

- > Justifications of Process Control
 - Stronger competition
 - Tougher environment regulation
 - Tougher safety regulation
 - Rapidly changing economic conditions
 - Highly integrated plants
 - Strict quality control
 - Due to the uncertainties:
 - o Imperfect process design
 - o Disturbances and changes in operating conditions
 - Difficulties in startup and shutdown

- > Through Control, We Can Achieve
 - Safe operation
 - Satisfying environmental constraints
 - Economic benefits
 - Increased production level
 - Reduced raw material cost
 - Enhanced product quality
 - Extended equipment life
 - Potential benefits of improved process control

> Process Control Terminology

- Controlled variables (CV's): important process variables to be controlled at some desired values (set points).
- Manipulated variables (MV's): adjustable variables to keep the controlled variables at their set-points.
- Disturbance variables (DV's): also called "load" variables and represent input variables that can cause the controlled variables to deviate from their respective set points.

Remarks:

- All important variables to be controlled (CV) must be identified and measurable. (CVs
 are usually direct or indirect quality variables).
- Manipulated variables (MV) to be adjusted must have significant impacts on controlled variable. (MV's are usually affect the CV's)

> Process Control Terminology

- Set-point change: implementing a change in the desired operating conditions. The set-point signal is changed, and the manipulated variable is adjusted appropriately to achieve the new operating conditions. Also called servomechanism (or "servo") control.
- Disturbance change: when a disturbance enters, also called regulatory control or load change. A control system should be able to return each controlled variable back to its set-point.

> How to Control a Process?

Control Objective:

Maintain controlled variable at its set point, despite disturbances.

> How to Control a Process?

- Manual control:
 - Read the sensors, then decide the amount of change in adjustable variable, then adjust the variable by changing the knob, or dialing and so on.
 - See if the controlled variable is moving toward the desired set point (SP) fast enough.
 - Repeat this procedure perpetually unless you are 100% sure that the process will not deviate from set points.

Example (crude oil furnace):

- Operator has to change two MV's for one CV
- Operator relies on the observations and prior experiences
- · Corrected by trial-and-error, inconsistent, unreliable

- Automatic Control: Different Control Strategies

- A. Feedback (FB) control
- B. Feedforward (FF) control
- C. Combined FF/FB control
- D. Advance control...

A. Feedback (FB) Control

- Widely used (e.g., PID controllers)
- Controller will adjust the fuel valve somehow until T is settled at set point
- The fuel valve will be adjusted only after some change happen at the measurement.

- Distinguishing feature: measure the controlled variable and transmit its value to the controller
- Advantages:
 - > Corrective action is taken regardless of the source and type of the disturbance.
 - > Reduces sensitivity of the controlled variable to disturbances and changes in the process (shown later).
 - > Requires little knowledge about the process.

Dísadvantages:

- FB control takes no corrective action until a deviation in the controlled variable.
- FB control is incapable of correction a deviation from set point at the time of its detection.
- Theoretically not capable of achieving "perfect control".
- Very oscillatory responses, or even instability (process may not settle out) for frequent and severe disturbances.

B. Feedforward (FF) Control

- If there is a change in feed flow, controller will change fuel flow and exit temperature will not deviate too much
- But the correction is based on the estimated effect of feed flow rate on T
 and if it is not accurate, the exit T will not be at set point.
- Distinguishing feature: measure a disturbance variable and transmit its value to the controller.

- Advantages:
 - Correct for disturbance before it upsets the process.
 - Theoretically capable of "perfect control".
 - Does not affect system stability.
- Dísadvantages:
 - Must be able to measure the disturbance.
 - No corrective action for unmeasured disturbances.
 - Requires more knowledge of the process to be controlled (process model).

C. Combined FF/FB Control

Obtain combined advantages of FF and FB control:
 <u>FF control:</u> attempts to eliminate the effects of measurable disturbances.
 <u>FB control:</u> Corrects for unmeasurable disturbances, modeling errors, etc.

 But if there is a change in fuel pressure, this strategy will act only after the effects appears at exit temperature.

D. Advanced Control

Example: Cascade control

"Cascade Control of an exothermic chemical reactor"

> Cascade Control (multí-loop)

- Distinguishing features:
 - 1. Two FB controllers but only a single control valve (or other-final control element).
 - 2. Output signal from the "master" controller is the set-point for "slave" controller.
 - 3. Two FB control loops are "nested" with the "slave"(or "secondary") control loop inside the "master" (or "primary") control loop.
- Terminology:

Slave vs Master Secondary vs Primary Inner vs Outer

> FF/FB + Cascade Control

- Better than the others (Best so far).
- There can be other requirements to enhance the control performance.
- Need to design controllers based on the objectives given.

- Identification letters in instrumentation and process control:

Instrument description examples

- TT: Temperature Transmitter
- LT: Level Transmitter
- LC: Level Controller
- FC: Flow Controller
- PI: Pressure Indicator
- TAH/L: Temperature Alarm High/Low, (Normal)
- TI: Temperature Indicator
- TR: Temperature Recorder
- TIRC: Temperature Indicator, Recorder, and Controller.

Etc....

Illustrative example: Stirred-Tank blending system

Notation:

- w₁, w₂ and w are mass flow rates
- x_1 , x_2 and x are mass fractions of component A

Assumptions:

- 1. w_1 is constant
- 2. $x_2 = constant = 1$ (stream 2 is pure A)
- 3. Perfect mixing in the tank

Control Objective: keep x at a desired value (or "set point") x_{sp} , despite variations in $x_1(t)$. Flow rate w_2 can be adjusted for this purpose.

Terminology:

- Controlled variable (or "output variable"): x
- Manipulated variable (or "input variable"): w₂
- Disturbance variable (or "load variable"): x_1

Design Question. What value of \overline{w}_2 is required to have $\overline{x} = x_{SP}$? (the overbar denotes nominal steady-state design values.)

Overall balance:

$$O = \mathcal{W}_1 + \mathcal{W}_2 - \mathcal{W} \tag{1}$$

Component A mass balance:

$$w_1 x_1 + w_2 \overline{x}_2 - w \overline{x} = 0 \qquad (2)$$

- At the design conditions: $\bar{x} = x_{SP}$ but $\bar{x_2} = 1$
- Solve Eqns.(1) and (2) for $\overline{w_2}$ to have:

$$\overline{w}_2 = \overline{w}_1 \left[\frac{x_{SP} - \overline{x}_1}{1 - x_{SP}} \right] \tag{3}$$

- Eq. (3) is the design equation for the blending system.
- If our assumptions are correct, then this value of \overline{w}_2 will keep \overline{x} at x_{SP} .

 But what if conditions change?

Control question. Suppose that the inlet concentration x_1 changes with time. How can we ensure that x remains at or near the set point x_{SP} ?

As a specific example, if $x_1 > \bar{x_1}$ and $w_2 = \bar{w_2}$, then $x > x_{SP}$

Some possible control strategies:

Method 1. Measure x and adjust w_2 manually.

• Intuitively, if x is too high, we should reduce w_2 ;

Method 2. Measure x and adjust w₂ automatically:

"Feedback control of composition (x) in Stirred-Tank blending system"

Method 3. Measure x_1 and adjust w_2 automatically

- Thus, if x_1 is greater than \bar{x}_1 , we would decrease w_2 so that $w_2 < \bar{w}_2$
- One approach: Consider Eq. (1-3) and replace \bar{x}_1 and \bar{w}_2 with $x_i(t)$ and $w_2(t)$ to get a control law:

$$\bar{w}_2(t) = \bar{w}_1 \frac{x_{SP} - \bar{x}_1(t)}{1 - x_{SP}}$$
 (4)

· Remark:

Because Eq.(3) applies only at steady state, it is not clear how effective the control law (Eq.4) will be for transient conditions.

Measure x_1 and adjust w_2 automatically

"Feedforward control of composition (x) in Stirred-Tank Blending System"

Method 4: Measure x_1 and x, and adjust w_2 .

• This approach is a combination of methods 1 and 2.

Method 5. Use a larger tank

- If a larger tank is used, fluctuations in x_1 will tend to be damped out due to the larger capacitance of the tank contents.
- · However, a larger tank means an increased capital cost.

Table 1: Control strategies for the blending system

Method	Measured Variable	Manipulated Variable	Category
1	x	w ₂	Manual
2	x	w_2	FB
3	$\mathbf{x_1}$	w_2	FF
4	x_1 and x	\mathbf{w}_2	FF/FB
5	-	-	Design change

- More illustrative examples:
- The level of the boiling liquid is measured and used to adjust the feedwater flow rate.
- This control system tends to be quite sensitive to rapid changes in the disturbance variable, steam flow rate, as a result of the small liquid capacity of the boiler drum.
- Rapid disturbance changes can occur as

 a result of steam demands made by

 downstream processing units
 materials
 made by
 materials
 made by
 materials
 materials

"Feedback control of liquid level in a boiler drum"

More illustrative examples:

- The feedforward control scheme in the Figure can provide better control of the liquid level.
- Here the steam flow rate is measured, and the feedforward controller adjusts the feedwater flow rate

"Feedforward control of liquid level in a boiler drum"

More illustrative examples:

- In practical applications, feedforward control is normally used in combination with feedback control.
- Feedforward control is used to reduce the effects of measurable disturbances, while feedback trim compensates for inaccuracies in the process model, measurement error, and unmeasured disturbances.

"Feedforward-feedback control of liquid level in a boiler drum"

- Classification of control strategies
- Based on the decision:
 - Feedback control: based on measurement of CV
 - Feedforward control: based on measurement of \mathcal{DV}
 - Open-loop control (manual): based on predetermined scenario
- · Based on set point type:
 - Regulatory control: follow constant set point overcoming the disturbance
 - Servo control: follow the changing set point

- > Classification of variables
- Input
 - MV (manipulated Var.): Operator can adjust it.
 - DV (disturbance Var.): Decided by external reasons (feed flow, fuel press.) (measured DV and unmeasured DV)
 - Fixed inputs.
- Output
 - CV (Controlled Var.): Decided by the changes in input variables (assumed to be measured)
 - Measured and unmeasured outputs.

- In this course we will focus on the feedback control
- > Elements of process control loop;
- Process
- Sensors
- Transmitters
- Controller
- Actuator

> The block diagram of feedback control system is:

- In this course we will visit all the block elements of the control system, first.
- · Then, analyze the whole system all together.
- Then, consider the variations of the elements.

Illustrative examples:

Closed-loop artificial
 Pancreas:

Artificial pancreas: how does it work?

- 1 A sensor under the skin automatically measures blood sugar (glucose) levels
- Readings are sent wirelessly to a pump which calculates the amount of insulin required
- 3 Users can monitor readings on a smartphone, which also allows them to input the amount of carbohydrates being eaten at meals

44

> *Illustrative examples:*

- To keep the tank temperature T at the desired value T_R by adjusting the rate of heat input Q from the heater.
- Basic components in the feedback control loop.
 - ✓ Process being controlled (stirred tank).
 - ✓ Sensor and transmitter.
- ✓ Controller.
- ✓ Silicon controlled rectifier (SCR) and final control element (electrical heater) ← Actuator.
- ✓ Transmission lines (electrical cables) between the various instruments.

> *Illustrative examples*:

"Block diagram for temperature feedback control system"

> Major steps in control system development:

- > Performance assessment of process control:
 - Closeness to set points
 - Short transient from one set point to other set points
 - Smaller overshoot and less oscillation (stable control system)
 - Smooth and minimum changes of variable manipulation
 - Minimum usage of materials and energy