

Lywhord Lywhord

النرىء

The University of Jordan School of Engineering

Chemical Engineering Department Chemical Engineering Laboratory (1)

Experiment Number: (1)
Experiment title:

Vapor-Liquid Equilibrium

Type of the report: Short Report

Abstract

The main purpose of this experiment was to obtain the vapor liquid equilibrium data for Hexane and Toluene to generate a T_{xy} diagram and calculate the activity coefficient of the two components.

Activity coefficient was calculated by three models: modified Raoult's law, Van Laar model and Two-Suffix margules model, and the data was scattered. A theoretical models were used to compare with the values of activity coefficients that obtained by experimental data. The consistency of data test indicates poor consistency of data with thermodynamics.

Sample of main results: The composition of hexane in liquid mixture X hexane (Vol%)=0.78 and its composition in vapor Y hexane (vol%)=0.83.

T	ab	le	of	Con	tents
			VI.	CUL	uems

Results	
Discussion	
Conclusion	7
References	7
Appendix	8

Table of figures

Figure 1: TXY-diagram, represent bubble and Dew curvesof Hexane-Toluene system, X-axi	s represent
composition of hexane while Y-axis is temperature in °C	Rault's Law 4 Van laar
modelFigure 4: Ln γ1 (hexane) and ln γ2 (toluene) with hexane composition that calculated from margules model	1 I WO-Sullix
margules model Figure 5: The consistency of data using integral form of Gibbs-Duhem equation states	5

Table of tables

Table 1: final result of data collected from experiment	
Table 2: Activity Coefficient of Normal Antoine equation of toluene calculated from experimental Table 3: Activity coefficient and values of Antoine equation	2
data by modified Raoults law and Antonie equation Table 4: Activity coefficient of toluene and hexane calculated by Van Laar model	3
Table 4: Activity coefficient of toluene and nexalle calculated by Vall Laar Model. Table 5: Activity coefficient calculated by Two suffix margules.	3

Results

A. T_{XY} -diagram of Hexane and Toluene system.

Table 1: final result of data collected from experiment.

Table	1: final re	sult of d	ata collect	ed from e	xperimen			200 15-10 15	16,327	/ 图 图 图			T192
runs	Tempe rature(0 c)	densit y of n- hexan e (kg/m	density of toluene (kg/m3)	RF (Vapor)	Vapor Hex (%vol)	Vapor Toluene (Vol%).	Y Hexane	Y Toluene	RF liquid	L-Hex (vol%)	L-Tol. (vol%)	X Hexane	X Toluene
		3)				0	1	0	-	0	1	1	
1	56.3	659	-	•	1	0		0.2	1.4	0.78	0.22	0.74	0.26
2	61.5	659	828.42	1.397	0.83	0.17	0.8	2.00	1.42	0.62	0.38	0.57	0.43
	65.4	659	825.66	1.409	0.73	0.27	0.68	0.32		0.32	0.68	0.27	0.73
3			821.15	1.41	0.72	0.28	0.67	0.33	1.46		0.48	0.47	0.53
4	69.4	659			0.81	0.19	0.77	0.23	1.43	0.52			0.73
5	72.7	659	818.12	1.4		0.38	0.57	0.43	1.46	0.31	0.69	0.27	
6	76.7	659	814.43	1.422	0.62		Managaran and American	0.54	1.47	0.19	0.81	0.16	0.84
7	83	659	808.64	1.436	0.51	0.49	0.46	2016		0.16	0.84	0.13	0.87
			804.47	1.462	0.29	0.71	0.25	0.75	1.48				0.95
8	87.53	659			0.18	0.82	0.15	0.85	1.49	0.06	0.94	0.05	
9	95.6	659	797.04	1.475			0	1	-	1	0	0	1
10	106	-	785.74		0	1	V						

Ln(v hexane)		0.17	0.15	0.73	0.24	0.37	0.48	-0.08	0.20	ustrium virginis (
y hexane		1.18	1.16	2.08	1.27	1.45	1.62	0.92	1.23	
P sat (pure hexane)		623.08	707.14	802.36	888.22	1,001.71	1,202.92	1.365.90	224.87 1,697.67	
B C P sat (Antione (Antione (pure equation) equation) hexane)	Pure hexane	3 224.87	224.87		224.87	224.87	224.87	224.87		Pure toluene
	Pur	5	1,171.53	1,171.53	Part Pa	1,171.53	1,171.53	CC)	1,171.53	Pur
A (Antitone equation)		68.9	6.89	6.89	6839	6839	6839	68.9	68.9	
<u>F</u> .		680.00	680.00	680.00	680.00	680.00	680.00	680.00	680.00	
X Heven	00.1	100		027	19 13 19 13 19 13	270	91.0		0.05	0.00
Y X Hevene Hevene	1.00	0.80	0.68	0.67	0	0.57	94.0	0.25	0.15	000
Temperature	36.30	61.50	65.40	69.40	72.70	76.70	83.00	87.53	95.60	106.00

3: Activity coefficient and values of Antoine equation of toluene calculated from experimental data by modified is law and Antoine equation.

Y toluene Ln(y toluene)	
P sat (pure	/ with the
C (Antione	
B (Antione equation)	
A (Antione equation)	
FI	
X toluene	
N Solucine	
recieve	

Scanned by CamScanner

		Van L	Van Laar Model			
Temperature	X Hexane	X Toluene	y hexane	Ln(; hexane)	Ln(7 toluene)	y toluene
56.3	1.00	0.00		Pure hexane	ехапе	960
61.5	0.74	0.26	1.09	60.0	1.30	0.11
65.4	0.57	0.43	1.19	0.17		0.00
69.4	0.27	0.73	1.34	0.29	6	20.0
72.7	0.47	0.53	1.24	0.22	1.06	0.00
76.7	0.27	0.73	1.34	0.29		0.01
83	0.16	0.84	1.39	0.33	3	30.00
87.53	0.13	0.87	1.40	0.34	1.00	0.00
95.6	0.05	0.95	1.43	036	1.00	0.00
106	0.00	1.00		Pure toluene	luene	
A12(hexane-	0.374486	A21(toluene- hexane)(Ave.)=	uene- Ave.)=		1.02246	
a				,		

ctivity coefficient calculated by Two suffix margules.

Two suffix margules

	[anothor sur]	oluene	では、 一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一
Two suffix margules	I ney hexane)	7.1	
T		y hexane	
		X toluene	
eve		ane	

Figure 4: Ln γ 1 (hexane) and ln γ 2 (toluene) with hexane composition that calculated from Two-Suffix margules model .

5

Discussion

TXY diagram

To represent the vapor liquid equilibrium, Txy-diagram that has been drawn according to experimental equilibrium data for non-ideal mixture of hexane and toluene, show Figure 1: TXY-diagram, represent bubble and Dew curvesof Hexane-Toluene system, Xaxis represent composition of hexane while Y-axis is temperature in oc.. The system shows a positive deviation from Raoult's law since the bubble curve is above the Raoult's Law line, as shown in Figure 1: TXY-diagram, represent bubble and Dew curvesof Hexane-Toluene system, X-axis represent composition of hexane while Y-axis is temperature in °C., This means that the vapor pressure for the mixture is more high than the vapor pressure for each pure component which leads both components to escape from

Also, minimum boiling azeotropes (when x=y) were founded when x=y=(0.82-1) which is clear in Figure 1: TXY-diagram, represent bubble and Dew curvesof Hexane-Toluene system, X-axis represent composition of hexane while Y-axis is temperature in oc., so we can not separate these two liquids at these mole fractions.

From Table 1: final result of data collected from experiment.,the data shows that the boiling temperature of the mixture is between boiling temperature of pure hexane and toluene Tb(hexane) < Tb (mixture) < Tb(Toluene) which indicate a sign of reliability of data.

activity coefficient

The activity coefficient which is a factor to measure the deviations from ideal behavior in a mixture. has been calculated from 3 models:

1- Modified Raoult's law

As shown in figure 2 and table 3, when vapor mole fraction increase and liquid mole fraction decrease for the species, the mixture deviate from Raoult's law(non-ideality), the activity coefficient increase.

2- Van Laar

From figure 3 and table 4,the liquid mole fraction increase for hexane and the activity coefficient increase also.

When the liquid mole fraction =0.61, the activity coefficient for both toluene and hexane is the same.

3- Two suffix margules

From figure 4 and table 5, the liquid mole fraction increase for hexane and the activity coefficient also increases.

When the liquid mole fraction =0.50, the activity coefficient for both toluene and hexane is the same and are equal to 1.116.

The values of activity coefficient vary in the three models but it is nearly the same.

The parameter A can either be positive or negative A > 0 leads to $\gamma > 1$; A < 0 leads to $\gamma < 1$.

There were many errors that affect the data of this experiment:

- -Instrument errors in measuring the temperatures
- -personal errors

The consistency of data test indicates poor consistency since the area under the curve is 105.482 of data with thermodynamics, as shown in figure 5.

Conclusion

- If the activity coefficient is far from unity mixture is not ideal and not obey Raoult's law but modified Raoult's law or other model.
- The activity coefficient of a component in a mixture varies with temperature and composition
- -If there is a positive deviation in Txy diagram, the activity coefficients of at least one species in the mixture is greater than one.
- Azeotropes can appear in Txy diagram, when vapor and liquid compositions are the same.

References

- 1- Chemical Engineering Laboratory (1) (6th ed.). (2016). Amman: University of Jordan.
- 2- Felder, R. M., & Rousseau, R. W. (2005). Elementary principles of chemical processes. John Wiley & sons.
- 3- A. M. (n.d.). Reading. Retrieved October 22, 2018, from http://www.mediafire.com/file/x3m5m7mn72bl4uw/152CHE323_L07_Modified_Raoult_Law.pdf/file.

Appendix

1-Sample of calculation:

A row from each table will be discussed as sample of calculations.

TXY diagram

At temperature =61.5 c

Refractive index of liquid phase of Hexane=1.4

L%Vol (hexane)=0.78

L%Vol(tolouee)=1-L%=1-0.78=0.23

Tol.)]

density of Hexane =659 kg/m³

density of toluene=828.42 kg/m^3

$$X(Hex)=[659*0.78]/[(659*0.78)+(828.42*0.23)]$$

X(Hex) = 0.74

X(Toluene.)=1-0.74

X(Toluene)=0.23

Refractive index of the condensate of the vapor phase of Hexane=1.397

V%Vol(Hexane)=0.83

V%Vol(Toluene)=1-0.83=0.17

Y(Hex.)=[density of Hex. * V% Hex]/[(density of Hex. * V% Hex) + (density of Tol. * V%

Tolene)]

Y(Hexane)=0.8

Y(Toluene)=0.2

Activity coefficient (Y)

-Modified Rault's Law

 γ Toluene = (Ptot * Y T)/(PT(saturation) * X T)

 γ Toluene = (680*.2)/(147.42 * .26)

 γ Toluene =3.61

 γ hexane= (Ptot * Y H)/(P H(saturation) * X H)

 γ hexane =(680*.8)/(623.08*.74)

 γ hexane =1.18

-Van Laar model

The average values of Parameters of Van Laar equation was obtained from THERMOSOLVER program

A12(Hexane-Toluene) =0.374486

A21(Toluene-Hexane)=1.02246

Van Laar equations are:

 $\ln \gamma_1 = A12/(1 + (A12/A21) * (X1/X2))^2$

 $=0.375/((1+(0.375/1.022)*(0.74/0.26))^2$

=0.08977

71(hexane)=1.0939

 $\ln \gamma 2 = A21/(1 + (A21/A12) * (X2/X1))^2$

 $=1.022/(1+(1.022/0.375)*(0.26/0.74))^2$

=0.2667

γ2(Toluene)=1.306

-Two-Suffix margules model

The average value of Parameter Of Two-Suffix margules equation was obtained from

V

THERMOSOLVER program

A12=0.432857

 $ln\gamma_{1=A12*X2^2}$

=0.432*0.26^2

=0.029

 $\gamma_1(\text{Hexane})=1.03$

 $ln \gamma 2 = A12 * X1^2$

=0.432*0.74^2

=0.237

γ2(Toluene)=1.27

Temperature	density of n-hexane	density of toluene (kg/m3)
56.3	-	-
61.5	659	828.42
65.4	659	
69.4	659	825.66
72.7	659	821.152
76.7	659	818.116
83		814.436
	659	808.64
87.53	659	804.4724
95.6	659	797.048
106	-	785.74

المثري

00

The University of Jordan
School of Engineering
Chemical Engineering Department
Chemical Engineering Laboratory (1)

Experiment Number: (2)
Experiment title:

Liquid-Liquid Equilibrium

Type of the report: Short Report

Done by

Abstract

The objective of this experiment is to study liquid-liquid equilibrium which means that a material dissolved (in this experiment it was acetone) in one liquid phase that usually polar (water) and it is transferred to a second immiscible or nearly immiscible liquid phase that usually non-polar organic solvent (Toluene). The driving force is chemical potential. The solvent that is enriched in solute is called extract, and the solvent that is enriched in feed liquid and small concentration of solute .But in this experiment the raffinate and extract are 50% percent 50% dissolving the acetone. The experiment was carried out at around 25°C, the ternary phase diagram. Ternary diagram was plotted according to data observed. Cloudiness was helpful in the observed transition from one phase mixture to two phases as well as turbidity.

Table of Contents Results
Solubility curve form Tie line determination Discussion
Conclusion

(大声) [2] [3]		
Tabl	e of f	igures

Figure 1: Ternary diagram of acetone, water and toluene. R	Represent solubility equilibrium curve2
Figure 2: Ternary diagram of acetone, water and toluene. R	Represent Tie-lines
Figure 3: Othmer - Tobias Correlation, where slope = 1.5368	8 and intercept = .5929

Sample of calculation: 6

2. Data sheet: ______9

Table of tables

Table 1: Data used in calculations	1
Table 2: Water rich phase results	
Table 3: Organic solvent rich phase results	2
Table 4: Tie- lines determination data	3
Table 5: Tie-line composition and Othmer - Tobias Correlation	
Ignic 2. 1.4	

Results

Table 1: Data used in calculations.

substance	Density (g/ml) _[2]
Water	1
Toluene	0.866
Acetone	0.791

1. Solubility curve formation:

A. Water rich phase

Table 2: Water rich phase results.

Acetone volume (ml)	Water volume (ml)	Toluene volume (ml)	Acetone mass (g)	Water mass (g)	Toluene mass (g)	Total mass (g)	Acetone fraction (by mass)	Water fraction (by mass)	Toluene fraction (by mass)
5.00	20.00	1.20	3.96	20.00	1.04	24.99	0.16	0.80	0.04
10.00	20.00	0.30	7.91	20.00	0.26	28.17	0.28	0.71	0.01
15.00	20.00	0.70	11.87	20.00	0.61	32.47	0.37	0.62	0.02
10.00	10.00	1.00	7.91	10.00	0.87	18.78	0.42	0.53	0.05
20.00	10.00	1.10	15.82	10.00	0.95	26.77	0.59	0.37	0.04
30.00	10.00	0.30	23.73	10.00	0.26	33.99	0.70	0.29	0.01

B. Organic solvent rich phase (Toluene phase)

Table 3: Organic solvent rich phase results.

Acetone volume (ml)	Toluene volume (ml)	Water volume (ml)	Acetone mass (g)	Toluene mass (g)	Water mass (g)	Total mass (g)	Acetone fraction (by mass)	Toluene fraction (by mass)	Water fraction (by mass)
5.00	20.00	0.10	3.96	17.32	0.10	21.38	0.19	0.81	0.00
10.00	20.00	0.25	7.91	17.32	0.25	25.48	0.31	0.68	0.01
15.00	20.00	0.15	11.87	17.32	0.15	29.34	0.40	0.59	0.01
10.00	10.00	0.30	7.91	8.66	0.30	16.87	0.47	0.51	0.02
20.00	10.00	2.50	15.82	8.66	2.50	26.98	0.59	0.32	0.09
30.00	10.00	5.00	23.73	8.66	5.00	37.39	0.63	0.23	0.13

2. Tie line determinations:

Table 4: Tie- lines determination data.

Sample no.	Water volume (ml)	Toluene volume (ml)	Acetone volume (ml)	Water mass(g)	Toluene mass(g)	Acetone mass(g)	Total mass (g)	Water mass fraction	Toluene mass fraction	Acetone nnass fraction
1.00	18.00	20.00	13.00	18.00	17.32	10.28	45.60	0.39	0.38	0.23
2.00	26.00	17.00	8.00	26.00	14.72	6.33	47.05	0.55	0.31	0.13
3.00	20.00	25.00	5.00	20.00	21.65	3.96	45.61	0.44	0.47	0.09

Table 5: Tie-line composition and Othmer - Tobias Correlation.

			Raffinate		Ext	Othmer-Tobias Correlation		
Sample no.	RI of water layer	RI of toluene layer	mass fraction of acetone in water layer	mass fraction of water in water layer	mass fraction of acetone in toluene layer	mass fraction of toluene in toluene layer	log((1- a)/a)	log((1- b)/b)
1	1.35	1.46	0.18	0.82	0.26	0.74	-0.65	-0.45
2	1.34	1.48	0.10	0.90	0.16	0.84	-0.93	-0.72
3	1.34	1.49	0.07	0.93	0.06	0.94	-1.10	-1.17

Figure 2: Ternary diagram of acetone, water and toluene. Represent Tie-lines.

Figure 3: Othmer - Tobias Correlation, where slope = 1.5368 and intercept = .5929.

Discussion

Phase diagrams use to introduce the phase and composition of one or multi component system. Type of it is called ternary diagrams which are a triangular diagrams that show a graphical representation of the phase behavior of the three component in a mixture at constant temperature and pressure, there are two types of them: equilateral triangles that are shown previously and the right triangle.

To form a ternary diagram a system of Acetone, Toluene and water was operated in laboratory to get experimental data needed.

As shown in Table 2: Water rich phase results., 6 samples of water rich phase were taken and titrated by toluene until cloudiness formed, this indicate that solution change from one phase region to two phase region, after that, data plotted on ternary diagram to produce a water rich side of solubility equilibrium curve.

On the other hand, 6 samples of toluene rich phase (solvent) prepared then titrated with water until turbidity occur, result shown in Table 3: Organic solvent rich phase results. . Plotting of this results formed the solvent side of solubility equilibrium curve.

Connection these two sides with one-line produce fully solubility line which separate the diagram of two regions: one phase and two phases. Show Figure 1: Ternary diagram of acetone, water and toluene. Represent solubility equilibrium curve.

As you notice, deviation present in sample 6 of water rich side (last row), this indicate an error was occurred which maybe a personal error in determining the cloudiness point or reading the burette.

A plait point which is the point where the composition in the water rich phase is equal to that of the solvent rich phase should be determine but due to sample composition range, it was hard to identify.

To form tie-lines three samples were taken as shown in data Table 4: Tie-lines determination data.. These samples indicate the nearly homogeneous mixture, after settling in the cells they separated into two nonhomogeneous phases: water, acetone and toluene, acetone.

the two phases were analyzed by reflect index meter (RI) to know the composition.

As shown in Table 5: Tie-line composition and Othmer - Tobias Correlation. 3 samples gave 3 tie-lines drown as best fit for the three points mentioned before which shown in Figure 2: Ternary diagram of acetone, water and toluene. Represent Tie-lines.

To check linearity Othmer-Tobias correlation was formed as shown in Table 5: Tie-line composition and Othmer - Tobias Correlation. and Figure 3: Othmer - Tobias Correlation, where slope = 1.5368 and intercept = .5929. with best fit line of slope=1.5368 and intercept=.5929 which indicate good linearity.

Conclusion

- Personal errors affect the experimental phase diagram.
- Large numbers of samples must be taken to determine the plait point.
- Cloudiness represent the observed transition from one phase mixture to two phases as well as turbidity.

References

[1] Felder, R. M., & Rousseau, R. W. (2005). Elementary principles of chemical processes. John Wiley & sons

[2] (n.d.). Lecture. Retrieved from https://youtu.be/vZZAWxgULAs

[3] (n.d.). Lecture. Retrieved from https://youtu.be/vZZAWxgULAs

[4] Chemistry LibreTexts. (2018). 13.3 Phase Diagrams: Ternary Systems. [online] Available at: https://chem.libretexts.org/Textbook_Maps/Physical_and_Theoretical_Chemistry_Textbook_Ma ps/DeVoe's_%22Thermodynamics_and_Chemistry%22/13%3A_The_Phase_Rule_and_Phase_D iagrams/13.3_Phase_Diagrams%3A_Ternary_Systems [Accessed 2 Oct. 2018].

Appendix

1. Sample of calculation:

A row from each table will be discussed as sample of calculations.

- 1. Solubility curve:
 - A) Water rich phase:
 - <u>Volume</u>: water =20 ml Toluene =0.3 ml Acetone =10 ml
 - Density: Water = 1 g/ml Toluene = 0.866 g/ml Acetone =0.791g/ml
 - Mass = density * volume

Mass of Water =20*1=20 g

Mass of Toluene =0.3*0.866=0.26 g

Mass of Acetone=10*0.791=7.91g

- <u>Total mass</u> = water mass + toluene mass + acetone mass =20+0.2598+7.91=28.17 g
- <u>Mass fraction</u> = mass of substance / total mass

Mass fraction of: Water = 20/28.17=0.71

Toluene =0.26/28.17=0.009

Acetone = 7.91/28.17 = 0.28

B) Organic solvent rich phase (Toluene phase)

<u>Volume</u>: water =0.3 ml Toluene =10 ml

Acetone = 10 m

<u>Density</u>: Water = 1 g/ml Toluene=0.866 g/ml Acetone=0.791 g/ml

Mass = density * volume

Mass of Water = 0.3*1=0.3 g

Mass of Toluene =10*0.866=8.66 g

Mass of Acetone=10*0.791=7.91g

<u>Total mass</u> = water mass + toluene mass + acetone mass

=0.3+8.66+7.91=16.87 g

Mass fraction = mass of substance / total mass

Mass fraction of: water =0.3/16.87=0.02

Toluene =8.66/16.87=0.51

Acetone = 7.91/16.87 = 0.47

Tie - lines determination:

A) Tie line determination:

Volume: water = 18ml Toluene = 20ml

Acetone = 13ml

Density: Water = 1 g/ml Toluene = .866 g/ml

Acetone = .791g/ml

Mass = density * volume

Mass of Water = 18*1=18g

mass of Toluene =20*.866=17.32g mass of Acetone=13*.791=10.28g

- <u>Total mass</u> = water mass + toluene mass + acetone mass =18+17.32+10.28=45.6g
- Mass fraction = mass of substance / total mass

Mass fraction of: Water = 18/45.6 = 0.39

Toluene =17.32/45.6=0.38

Acetone =10.28/45.6=0.23

RI of water layer =1.35

from calibration curve or by applying the calibration equation y = 0.00065x + 1.33520.

Mass fraction of acetone in water saturated with water x=(y-1.33520)/0.065, applying this:

x=(1.35-1.33520)/0.065=0.18

Since mass fraction of water in water layer is required instead of Acetone,

Mass fraction of acetone + mass fraction of water = 1

Mass fraction of water = 1- mass fraction of acetone = 1-0.18=0.82=a

As represented above, the same procedure is applied here.

x=(y-1.49950)/-0.135

x=(1.46-1.49950)/-0.135=0.26

Mass fraction of toluene in water =1-0.26=0.74=b

- B) Othmer Tobias Correlation:
- Checking reliability by Othmer-Tobias correlation using excel spreadsheet, where a represents water fraction in water layer, while b represents toluene fraction in toluene layer. Checking reliability by Othmer-Tobias correlation using excel spreadsheet, where a represents water fraction in water layer, while b represents toluene fraction in toluene layer.
- As a sample of calculation, x and f(x) can be found as below
- $x = \log ((1-b)/b) = \log (1-.74.74) = -0.45$
- $f(x) = \log ((1-a)/a) = \log (1-..82.82) = -0.65$

• The same calculation has been applied on the other points and plotted in order to find the linear expression for the resulting line.

2. Data sheet:

Liquid-Liquid Equilibrium Data Sheet

Tie-Lines Determination:

Volume of water (ml)	Volume of Toluene (ml)	Volume of Acetone (ml)	RI of water.	KI of I of uene
20	15	15		<u> </u>
18	20	13 .	1-347	1,464
26	17	8	1,342	1.478
20	25	5	1,34	1,491
19	29	3		

Solubility curve

A. Water rich phase:

Volume of Acetone (ml)	Volume of water (ml)	Volume of Toluene (ml)		
5	20	1.2		
10	20	0-3		
15	20	0.7		
10	10	l		
20	10	1-1		
30	10	0.3		

B. Organic solvent rich phase:

D. Organio sorrone men princip						
Volume of Acetone (ml)	Volume of Toluene (ml)	Volume of water (ml)				
5	20	·1 ± 0.05				
10	20	-25 ±				
15	20	-15 ^t				
10	10	,3 ±				
20	10	2.5 t				
30	10	5 ±				

16/2 1

The University of Jordan

School of Engineering

Chemical Engineering Department

Chemical Engineering Laboratory (1)

Experiment Number: (3)

Experiment title:

Digital Joulemeter

Type of the report: Short Report Done by:

Abstract

Physical properties such as specific heat capacity and latent heat was determined using the digital joulemeter, which is an electrical device that measures the electrical energy in joules and power in watts. The results showed that the specific heat of aluminum is 1159.91 J/(kg.K), and the latent heat of vaporization is 2326 J/g.

Also, the efficiency of devices (such as a motor in this experiment) was calculated by dividing the input and output energies, the input energy was determined due to the joulemeter. Parametric study is discussed in this report, changing the voltage and mass lifted by the motor effect its efficiency, the results represent that changing mass lifted or changing voltage have approximately the same effect.

Variation of values determined may be due to different types of errors, which are explained in details in this report.

So in of horal

Table of content

Contents	1
Results	
Experiment 1: Determination	of the specific heat capacity of a metal
Experiment 2: Dotorminate	set lead to f vaporization of many
with load and applied voltage	of the efficiency of a small electrical motor and state,
Discussion	
Experiment 1: Determination	of the specific heat capacity of a metal
Experiment 2: Determination	of the specific latent heat of vaporization of liquids
Experiment 3: Investigation	of the efficiency of a small electrical motor and study its variation 6
Conclusion	7
Experiment 1: Determination	of the specific heat capacity of a metal7
	of the specific latent heat of vaporization of liquids7
	of the efficiency of a small electrical motor and study its variation
References	8
Appendix	9
1- Sample of calculation	9
* Experiment 1: Determination	of the specific heat capacity of a metal9
* Experiment 2: Determination	of the specific latent heat of vaporization of liquids
* Experiment 3: Investigation of	f the efficiency of a small electrical motor and study its variation
2- Data sheet	9

Table of figures

Table 1: Specific heat result	1	
Table 2:Latent heat results		<u>,</u>
Table 3:parametric study when variating ma	ss lifted at constant voltage	3
1 able 4: parametric study when variating vol	tage at constant mass lifted	
Table of C		
Table of figures		2
Figure 1:T-V diagram	t voltage	2
Figure 2: parametric study when a saiding	ass lifted at constant voltage	1
Figure 3: parametric study when variating ma	oltage at constant mass lifted	4
Figure 4: comparis mass and make accomparis	oltage at constant mass lifted	. 4

Results

• Experiment 1: Determination of the specific heat capacity of a metal

Table 1: Specific heat result

Mass of (Al) block (g)	1012.2
Joule meter reading (J)	2348
Initial temperature (°C)	35.5
Final temperature(°C)	55.5
Temperature difference (K)	20
Specific heat (J/(kg.K))	1159.91

• Experiment 2: Determination of the specific latent heat of vaporization of liquids

Table 2:Latent heat results

Initial mass of liquid (g) Final mass of liquid(g)	408.36
Final mass of liquid(g)	6
	398.36
Temperature of liquid(C)	93
Pressure (mmHg)	660
Joule meter reading(J)	23260
Mass of vaporized water(g)	10
Latent heat (J/g)	2326

Experiment 3: Investigation of the efficiency of a small electrical motor and study its variation with load and applied voltage

Knowing that

change in height = 60 cm

Mass of hanger= 20.32 g

Table 3:parametric study when variating mass lifted at constant voltage

At constant voltage = 5 v						
mass lifted(g)	joule meter reading (J)	Inlet energy	output energy	efficiency%		
120.32	1.1	1.1	0.71	64.38%		
220.32	2.1	2.1	1.30	61.75%		
320.32	6.2	6.2	1.89	30.41%		
420.32	161.1	161.1	2.47	1.54%		

Table 4:parametric study when variating voltage at constant mass lifted

At constant mass = 320.32 g					
Voltage (V)	joule meter reading (J)	efficiency%			
5	6.2	30.41%			
6	4.3	43.85%			
7	3.2	58.92%			
8	3	62.85%			
9	3.6	52.37%			

Figure 2:parametric study when variating mass lifted at constant voltage

Figure 3: parametric study when variating voltage at constant mass lifted

Figure 4:comparig mass and voltage effect on efficiency of motor device

Discussion

• Experiment 1: Determination of the specific heat capacity of a metal

Specific heat is the heat needed to increase the temperature of a substance one degree Kelvin per unit mass, it is heat capacity of a substance per unit mass that depends on temperature as well as the identity of the substance.

To measure specific heat, Joule design an experiment to determine the mechanical energy equivalent of heat. In this experiment, electrical energy of 12 Volt and 7 ampere alternating current (a.c) was transformed to heat using a resistance, and joulemeter was used to measure energy.

As shown in table(1), specific heat of Aluminum was calculated to be equal to 1159.91 J/(kg.K) which is reliable for metal, but according to tabulated data, specific heat of aluminum is 903 J/(kg.K) with positive 28.5% percentage error.

This error mainly occurred because of heat losses to environment due poor insulation. Systematic error due to instrument precision limiting and personal error in reading thermometer also take place.

• Experiment 2: Determination of the specific latent heat of vaporization of liquids

Latent heat, also known as heat of vaporization ($\Delta H_{\text{\tiny MP}}$) or enthalpy of vaporization or evaporation, is the amount of heat energy (enthalpy) that is required to evaporate 1 unit mass or mole of a substance at constant temperature.

As shown in figure(1) that represents T-V diagram, the point f represents saturated liquid, while the point g represents saturated vapor, and the difference between enthalpy of point g and f represents heat of vaporization hfg =hg-hf. It is clear from the figure(1) that as pressure increases, as shown by different pressure lines such as 1.014 bar, 10 MPa, 22.09 MPa and 30 MPa, we move upward the graph and temperature increases, also points g and f become closer to each other, hence the heat of vaporization decreases.

Heat of vaporization decreases as pressure increases; because as pressure increases temperature increases, so that overcoming the intermolecular forces becomes easier, hence less energy is needed to vaporize.

In this experiment, the atmospheric pressure was about 680 mmHg, so it is expected that boiling point temperature of water will be less than 100 C, the measured boiling point was 93 °C.

As shown in table(2), the calculated latent heat according to the data of this experiment was 2326 J/g, the real value of latent heat at 93 C is 2275 J/g, leading to

It was 2326 J/g, une real lidert do it in lab
There is No mean to discuss
it here !!!!

Scarined by Carriscarine

relative error equals 2.24%. The possible sources of errors in this experiment are:

- Environmental for the possible sources of errors in this experiment are: - Environmental factors (systematic or random): errors that caused by uncontrollable

vicissitudes in variables that affects the experimental results. - Instrument resolution (random): every instrument has finite precision that limits the ability to resolve and ability to resolve small measurements differences

- Failure to calibrate or check zero of instrument (systematic).

- observer - Personal error: error that caused by a wrong adoption procedure by the such as making an error in reading the scale (in this experiment often the possibility for making this making this error is high when reading the temperature degrees from the thermometer).
- Experiment 3: Investigation of the efficiency of a small electrical motor and study its variation with load and applied voltage

As the first law of thermodynamics states that energy is conserved and the energy is transferred from form to another but never been created nor destroyed.

In our experiment we have applied the first law by many transforms that occur: electrical energy (exerted by power supply unit) was converted to mechanical energy (due to motor rotational motion) and then was converted to potential energy (by handling the lifted mass to certain height).

We have studied the ability of motor to transform energy without big losses of energy (efficiency) and the relation between it and mass and voltage. The energy that transformed through the motor has lost part from it because of the friction exerted. However, energy is still conserved since heat will be exerted from friction, but it did not appear as an output energy.

As shown in the figure (2), as the mass of the holder increases, more energy is needed to achieve the process (direct relation), but the efficiency has decreases. We can explain this that when we increase the load we need more energy and the loss of energy increases. Also, we can explain it mathematically; since efficiency is the ratio of output energy to input energy, more mass added means more energy needed to achieve the process, but the increase in energy is bigger (not linear relation) so more input energy mean less efficiency.

As shown in the figure (3) that at constant mass, if we increase the voltage we need less energy to achieve the process (inverse relation) leading to less input energy and high efficiency. We explain this that high voltage means high electrical energy that transforms to joule meter reading.

From figure (4), we see that if we increase voltage or decrease mass added we same effect on efficiency, then the variation of these parameters have the same input energy.

As seen in table 4, efficiency increases with increasing the voltage, but the last (systematic) error; most electronic devices have readings that drift over time, the amount readings; so it should to be considered in this experiment the electric device that was used is Digital Joulemeter).

Conclusion

- Experiment 1: Determination of the specific heat capacity of a metal Insulation on metal must be increased to achieve higher accuracy.
- Experiment 2: Determination of the specific latent heat of vaporization of liquids
 - 1- Latent heat is the amount of heat energy (enthalpy) that is required to evaporate 1 unit mass or mole of a substance at constant temperature.
 - 2- As pressure increases, latent heat decreases. Also ,as pressure decreases, boiling point temperature decreases.
- Experiment 3: Investigation of the efficiency of a small electrical motor and study its variation with load and applied voltage
 - 1- There is an inverse relationship between efficiency and the mass added to the hanger.
 - 2-there is a direct relationship between efficiency and the voltage by power supply unit.
 - 3-Voltage and mass added are parameters that have the same effect on efficiency of motor.

References

- 1- Chemical Engineering Laboratory (1) (6th ed.). (2016). Amman: University of Jordan.
- 2- (n.d.). Retrieved from https://www.engineeringtoolbox.com/water-properties-d 1573.html.
- 3- Patidar, L. (2016, May 23). What is the relationship between pressure and the latent heat of vaporization of water? Retrieved October 3, 2018, from https://www.quora.com/What-is-the-relationship-between-pressure-and-the-latent-heat-of-vaporization-of-water.
- 4- (n.d.). Retrieved from https://www2.southeastern.edu/Academics/Faculty/rallain/plab193/labinfo/Error Analysis/06 Sources of Error.html
- 5- (n.d.). Retrieved from http://faculty.sites.uci.edu/chem11/files/2013/11/RDGerroranal.pdf
- 6- (n.d.). Retrieved from https://www.citycollegiate.com/chapter1bXI.htm
- 7- Mortimer, R. G. (2000). Physical Chemistry (Vol. 2nd ed). San Diego: Academic Press. Retrieved from

http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=249069&site=eds-live

8- Bergman, T. L., Lavine, A. S., Incropera, F., & DeWitt, D. (2011). Fundamentals of heat and mass transfer (6th ed.). Hoboken, NJ: John Wiley & Sons.

Appendix

1- Sample of calculation

* Experiment 1: Determination of the specific heat capacity of a metal

*mass of (Al) block (m)= 1012.15g = 1.01215kg

Joule meter reading(Q)= 23480 J

Initial temperature $(T_i) = 35.5 \text{ } \cdot \text{C}$

Final temperature $(T_i) = 55.5 \cdot C$

*Temperature difference (ΔT)= T,-T,= 55.5-35.5=20 K

$$Q=m*C,*\Delta T \Rightarrow Cp=\frac{Q}{m*\Delta T}$$

*Specific heat (Cp)=
$$\frac{23480}{1.012*20}$$
 =1159.91 J/(kg.K)

* Experiment 2: Determination of the specific latent heat of vaporization of liquids

Initial mass of liquid = 408.36 g

Final mass of liquid = 398.36 g

Temperature of liquid = 93 °C

Pressure = 680 mmHg

Joule meter reading(Q) = 23260 J

* Mass of vaporized water
$$(m_{evap}) = 408.36 \text{ g} - 398.36 \text{ g} = 10 \text{ g}$$

* Latent heat =
$$\frac{Q}{\text{mevap}} = \frac{23260}{10} = 2326 \text{ J/g}$$

* Experiment 3: Investigation of the efficiency of a small electrical motor and study its variation with load and applied voltage

Taking the first raw as sample of calculation

• At constant voltage=5 v

Change in height = 60 cm

Mass of hanger=20.32 g

Mass added=100 g

* Total mass = 100+20.32=120.32 g= 0.12032 kg

Joule meter reading =1.1 J (input energy)

Potential energy=m *g*z (output energy)

* Potential energy=120.32*980.7*60cm *10^-7=0.71 J

Efficiency=output energy / input energy

* Efficiency=.71 J / 1.1 J = .6436 = 64.36%

• At constant mass=320.32 g= 0.32032 kg

Change in height = 60 cm

voltage= 6 V

Joule meter reading =4.3 J (input energy)

Potential energy=m *g*z (output energy)

* Potential energy=320.32*980.7*60cm *10^-7=1.88 J

* Efficiency=output energy / input energy= 1.88 J / 4.3 J = .4383 = 43.83%

Digital Joulemeter Data Sheet

1. Specific heat Capacity:

Mass of AL-Block	1012,15 9
Joule meter reading	23480 J
T	35.5°C
T_2	55.5°C

2. Specific latent heat of vaporization:

Z. Dpecial	
Initial mass of liquid	3 408.36 9
Final mass of liquid	398-36 g
Temperature of liquid	93°C
Joule meter reading	23260 5

3. Efficiency of a motor:

Change in height=....60......cm

Mass of hanger=....20..32......g

a. At constant Voltage=.....5.....V

Mass lifted (g)	Joule meter reading
100 + 20.32 = 120.329	1.1 J
200+20.32 = 220.329	2.13
300 + 20.32 = 320.329	6.2 ₹
400+20.32=\$20.329	161-17
500+20-32-520-329	

320.32

a. At constant mass=...300.....g

Voltage (V)	Joule meter reading
5	6.2 J
6	4.3 T
7	3.2 T
8	T 0.8
9	3.6 J

Instructor	signature:

Date:

2110118

recieve

70 Jose 100 Jose 100

The University of Jordan
School of Engineering
Chemical Engineering Department
Chemical Engineering Laboratory (1)

Experiment Number: (2)
Experiment title:

Compressible Fluid Flow

Type of the report: Short Report

Done by

Abstract

The experiment was divided into two parts: the first one was for simple pipe friction duct with bore of 13 mm and test portion length L=600mm to study the relation between friction loss and velocity for incompressible flow the calculated friction coefficient (f) is (0006) that is constant during the change of pressure measured using inclined manometer and mercury manometer for high range of pressure.

Part two was for sudden enlargement duct that have a different cross sectional area, this part study the relation between the pressure recovery and the upstream flow velocity assuming the incompressible flow using inclined and mercury manometer. Also correlations have applied to the data to investigate the validity of the assumptions for the pressure rise across the pipe which founded to be invalid.

Table of Contents

Results	1
Discussion	
Conclusion	
References	
Appendix	

Table of figures

Figure 1: the Blasius relation apply check.	2
Figure 2plotting to find f	
Figure 3: Nikuradse-Von-Karman relation apply check.	
Figure 4: plot of P2-P3 (kPa) and k (P0-P1).	
Figure 5: plot of (P3-P2)/(k*(P0-P1)) and [$a2.\rho0a3.\rho2 - a2a32\rho0\rho3$]	
1 iguic 5. piot of (1 5 1 2)/ (k (1 6 1 1)) und [u2. pous. p2	

Table of tables

Table 1:data needed for calculation	
Table 2: simple pipe result	. :
Table 3:sudden enlargement duct result	.:

7 What is this value

Results

Table 1:data needed for calculation.

Raw data								
Temperature	2.70E+01	d12(m)	1.90E-02					
ambient P	9.07E+01	viscosity(Ns/m²)	1.84E-05					
L0-L1(m)	2.00E-01	M.W air	2.91E-02					
L2-L3(m)	3.00E-01	a1 = a2	5.31E-04					
d01(m)	1.30E-02	а3	1.13E-03					

 $a_1 = a_2 ext{ (D=13 mm)} ext{ } a = 0.000B$ $a_1 = a_2 = 0.000B$ $a_3 = 0.0002B$

A. Simple pipe friction duct:

Table 2: simple pipe result

a3 = 0.00018	(D=19mm)
م برا ع في قانون ٩	العظاهو اخز

			Fo	r simple	pipe frict	ion du	uct			
Sample number	P0- P1	manometer used	position if inclined	Charles and the second of the second	P0-P1 (kPa)	P2- P3	manometer used	position if inclined	value of k	P2-P3 (kPa)
1	0.01	inclined manometer	buttom	0.8452	8.45E-03	년 0.03	inclined manometer	buttom	0.8456	0.03
2	0.49	inclined manometer	k∢ o.∖ middle	0.8598	4.21E-01	0.62	inclined manometer	middle	0.8648	0.54
3	1.68	inclined manometer	middle	0.88	1.48E+00	2.27	inclined manometer	middle	0.8854	2.01
4	2.08	inclined manometer	top	0.9	1.87E+00	2.35	inclined manometer	top	0.9	2.12
5	0.8	inclined manometer	vertical	0.911	7.29E-01	0.79	inclined manometer	vertical	0.9108	0.72
6	1.24	inclined manometer	vertical	0.9198	1.14E+00	1.16	inclined manometer	vertical	0.9182	1.07
7	5	mercury manometer	-	· 1	6.67E-01	12	mercury manometer	-	1	1.60
8	19	mercury manometer	-	1	2.53E+00	17	mercury manometer	-	1	2.27
9	23	mercury manometer	-	1	3.07E+00	24	mercury manometer	-	1	3.20
10	35	mercury manometer	-	1	4.67E+00	33	mercury manometer	-	1	4.40
		it bells	W				d			V

it beller to write the unit.

1

sk :: belle ve & recieve

Figure 2plotting to find f.

Figure 1: the Blasius relation apply check.

Figure 3: Nikuradse-Von-Karman relation apply check.

B. Sudden enlargement duct: Table 3:sudden enlargement duct result.

张 五天			Fo	r sudde	n enlargen	nent d	duct		Made H	
Sample number	P0- P1	manometer used	position if inclined	Star South Language Co. C.	P0-P1 (kPa)	P2- P3	manometer	position if inclined	value of k	P2-P3 (kPa)
1	0.01	inclined manometer	buttom	0.8452	8.45E-03	0.01	inclined manometer	buttom	0.8452	0.01
2	1.38	inclined manometer	buttom	0.8676	4.21E-01	0.48	inclined manometer	buttom	0.8546	0.41
3	1.72	inclined manometer	top	0.8944	1.48E+00	1.02	inclined manometer	middle	0.8704	0.89
4	0.81	inclined manometer	vertical	0.9112	1.87E+00	1.08	inclined manometer	top	0.8866	0.96
5	11	mercury manometer	-	1	7.29E-01	0.36	inclined manometer	vertical	0.8944	0.32
6	16	mercury manometer	-	1	1.14E+00 名・13	5	mercury manometer	-	1	0.67[
7	23	mercury manometer	-	1	6.67E-01 3. ぃ6	8	mercury manometer	_	1	1.07
8	30	mercury manometer	-	. 1	2.53E+00 ვ.৭৭	10	mercury manometer	_	1	1.33
9	41	mercury manometer	-	1	3.07E+00	15	mercury manometer	_	1	2.00
10	53	mercury manometer	-	1	4.67E+00	21	mercury manometer	-	1	2.80

Figure 4: plot of P2-P3 (kPa) and k (P0-P1).

Figure 5: plot of (P3-P2)/(k*(P0-P1)) and $[\frac{a2.\rho0}{a3.\rho2} - (\frac{a2}{a3})^2 \frac{\rho0}{\rho3}]$.

ask Precieve

Discussion

For simple pipe friction duct

1- Plotting (P2-P3) against k (P0-P1)

Losses of pressure are expected to happen in simple pipe due to effect of the fluid's viscosity near the surface of the duct.

It could be measured by calculating the friction coefficient (f) using darcy's equation. From figure (1), the value of f= (0.006) founded by taking the slope =4.f.L/d from linearized darcy's equation. As well as the slope is constant, the friction coefficient is constant since it is function of Re and relative roughness, if the cross sectional area and flow ratedoes not change the velocity and Re will be constant. The flocculation of point above and below linear line is due to instrumental error such leakage

2- Plotting log f against log Re.

After normalization of Blasius relation, the empirical correlation for flow of incompressible fluid, this equation must be valid log(f)=log(.079)-0.25*log(Re). As shown in figure (2), The slope of data is -0.373 which is differ from -0.25 by 49.2% which is high present indicate that the two relations are not consistent. So the Blasius relation can't apply and the fluid is compressible.

3- Plot against log.

Nikuradse-Von-Karman relation, empirical correlation for flow: $(1/f^{.5}) = 4*log(Re.f^{0.5}) - 0.396$ has been applied to data collected. As shown in figure (3), the slope is 0.093 which extremely differ. From this, Nikuradse-Von-Karman relation does not apply to the data.

For sudden enlargement duct

In this part of experiment, the pipe diameter changes from one size to another, this change means that the area changes; specifically, abruptly change.

The action of sudden enlargement leads to decrease the velocity and increase the pressure, by assuming no change in potential energy.

1- Plotting (P3-P2) against k (P0-P1)

It is clear from the figure (4) that the slope obtained equals 1.048 while the theoretical value equals 1.91 so the experimental value does not consist with theoretical value.

2- Plotting (p3-p2)/(k.(p0-p1)) against ((a2. ρ 0)/(a3. ρ 2)-(a2a3)^2*(ρ 0/ ρ 3))

This plot in figure (5) represents Kikuradse-Von Karman as a linear relationship.

The theoretical value of slope is 2 while the actual slope is -8.2 There is a big error as a result of personal and instrumental errors.

Conclusion

In the simple friction duct:

-The friction coefficient (f) along the duct is constant cause of the same velocity along the duct for fixed cross-sectional area for incompressible gas flow.

-For incompressible flow, the Blasius relation and Nikuradse-Von-Karman relation are not applicable with the data from the graphs, since there is a variation in the value of slope, So assuming that the gas is incompressible is wrong or the percentage of error in the experiment is large enough to say the data not correspondence with theoretical.

6

In the sudden enlargement duct:

- -Changing the cross-sectional area to large one decreases the velocity of the gas flow and increase the pressure.
- -The density increase, when (P0-P1) and (P2-P3) also increase.
- -For compressible flow, the pressure drop affect it in noticeable way than the incompressible gas flow.

References

- 1. GeanKoplis, "Transport Processes Momentum, Heat and Mass", Allyn and Bacon, 1983.
- 2. J.M. Coulson and JF Richardson," Chemical Engineering" Vol.1, third edition, 1980, pergamonprss.

ask : & recieve

Appendix

1. Sample of calculation:

A row from each table will be discussed as sample of calculations.

For simple pipe friction duct

To find friction factor using equation:

$$P2-P3=(4.f.L/d).k.(P0-P1)$$

L=600 mm

d=13 mm

T=27c

From tale 3.1 (from manual)

The value of k = 0.8452

f=(P2-P3)*d/(4.L.k.(P0-P1))

=0.0192 \

Mair =1.71*10^-5 (393/T+393)*((T+273)/273)^3/2

Where T is operating temperature and equal 27C

Mair = $1.843*10^{-5}$ N/m²

Density = (P0 * Mwt)/RT

Density = (90.7 *29)/(8.314*300)

Density = 1.057Kg/m³

To find Reynolds number, the following equation is used:

Re=86.68 🗸

log f = -1.43

 $1/(f)^{5} = 5.20$

Position 0.01 & 0.05 = 0.0005 KPa K(Po-Pi) = 0.0005 & 0.8452 = 0.0004 4.266 × 10-4 KPa

For sudden enlargement duct:

Density 0 = (P0 * Mwt)/RT, P0=90.7 Kpa

Density 0 = (90.7 *29)/(8.314*300)

Density $0 = 1.057 \text{ Kg/m}^3$

Density 2 = [Mwt of air*P2]/RT, P2=90.65 Kpa

Density 2 =[29.01*90.65]/((27+273)*.008314)

Density $2 = 1.0576 \text{ Kg/m}^3$

Density 3= [Mwt of air*P3]/RT, P3=90.66 Kpa

Density 3 =[29.01*90.66]/((27+273)*.008314)

Density $3 = 1.0577 \text{ Kg/m}^3$

anea= II d2

 $a1=a2=(22/7)*0.013^2=5.31*10^-4 m^2 \times 1.33 \times 16^{-1}$ $a3=(22/7)*0.019^2=1.13*10^-3 m^2 \times 2.83 \times 16^{-1}$ $2*[a2/a3 - (a2/a3)^2]$

=2*[5.31*10^-4/1.13*10^-3 -(5.31*10^-4/1.13*10^-3)^2]

=.498

[(a2 *Density 0)/(a3*Density 2) - (a2/a3)^2 * (Density 0 /Density 3)]

 $= (5.31*10^{-4}*1.057)/(1.13*10^{-3}*1.0576) - (5.31*10^{-4}/1.13*10^{-3})^2*(1.057/1.0577)$

=.249

3

						(
Table (1): data plotted for for simple pipe friction duct.								
			20.0101	wsar.	orgica			
Table (1): da	ata nlotted	for for si	nple pipe fric	Calcus				
Service Control	Charles also have	tor for si	nple pipe fric	tion duct.				
plot	AND DESCRIPTION OF THE PARTY OF			plot 2			pk	ot 3
P2-P3 (kPa)	k (P0-P1)	F/	log f	density	Re	log Re	1/(f)^.5	
0.03	8.45E-03	1.63E-02	-1.788941149	1.057198538	9.43E+01	1.97	7.842789783	1.079968515
0.54	4.21E-01	6.89E-03	-2.16155404	1.057198538	6.66E+02	2.82	12.04417397	1.742479086
2.01	1.48E+00	7.36E-03	-2.132894468			3.10	11.65325458	2.029408088
2.12			-2.213263362			3.15		2.040480586
0.72	7.29E-01	5.35E-03		1.057198538		2.94		1.806350457
1.07	1.14E+00	5.06E-03	-2.295987702			3.04		1.891523039
1.60	6.67E-01		-1.886056648			2.92		
						2.92	0.770580193	1.979867534
2.27			-2.314572569			3.21	14.36436012	2.055501371
3.20	3.07E+00	5.65E-03	-2.247784484	1.057198538	1.80E+03	3.25	13.30124344	2.130382531
4.40	4.67E+00	5.11E-03	-2.291821994	1.057198538	2.22E+03	3.35	13.99300525	2.19953388
					Ø.	X	d.	

Table (1): data plotted for for sudden enlargement duct.

	plot 1				plot 2			
								$\frac{a2.\rho0}{a}$
P2-P3 (kPa)	k (P0-P1)	(P3-P2)/(k*(P0- P1))	density 0	density 2	density 3	P2	P3	$-\left(\frac{a3.\rho2}{a3}\right)^2\frac{\rho0}{\rho3}$
0.01	0.0071436304	1.183151917	1.06E+00	1.06E+00	1.06E+00	90.6520669	90.66	2.49E-01
0.41	1.038767069	0.3948989262	1.06E+00	1.05E+00	1.05E+00	89.62044346	90.03	
0.89	1.375916339	0.6452485334	1.06E+00	1.04E+00	1.05E+00	89.28329419	90.17	2.55E-01
0.96	0.6725312064	1.423767389	1.06E+00	1.05E+00	1.06E+00	89.98667932	90.94	
0.32	1.466546053	0.2195526008	1.06E+00	1.04E+00	1.04E+00	89.19266447	89.51	
0.67	2.133157895	0.3125	1.06E+00	1.03E+00	1.04E+00	88.52605263	89.19	
1.07	3.066414474	0.347826087	1.06E+00			87.59279605		
1.33	3.999671053	0.3333333333	1.06E+00			86.65953947		
2.00	5.466217105	0.3658536585				85.19299342		
2.80	7.066085526	0.3962264151	1.06E+00		1.01E+00		86.39	
	1		,			13.000120	00.59	2.702-01

Compressible Fluid Flow Data Sheet

Atmospheric Pressure = ...680....mmHg.

For simple pipe friction duct:

enlargement

		(D. D.)	
		(P ₀ -P ₁)	(P_2-P_3)
	5.7	0-01 buttom	0.03 buttom
	2 / 3	0.49 middle	0.62 middle
	3	1-68 midde	2.27 middle
	Inclined manometer	2.08 bp	2.35 ЫР
	5 5	0.8 veltial	0.79 Vertical
	H 6	1.24 vertical	1.16 vertical
	17	5 mmHg	12 mmHg
	8	19 mmHg	17 mmHg
	रु १	23 mm Hg	24 mmHg
	A Mercury mano.	35 mm Hg	33 mm H9
	ا بر 🗗	0.01 buttom	o. o. buttom
nt.	. 2	1.38 buttom	0.48 bultom
	3	1.72 to most	1.02 middle
	E 4	0.81 vertical	1.08 top
	Sign 5	Ilmuly vertical	0.36 vertical
~ H	HAB	16 mm Hg	5 mm Hg
Roc	Tralined mano.	23 mm Hg	8 mm Hg
	8	30 mmHg	10 mm Hg
	Werrung mano.	41 mmHg	15 mmHg
	1 Jean 10	53 mmHg	21 mmHg
	→ .		

499

Instructor signature:

Date:

Page 36,0f 66

ask

recieve

26. A)/

A A DO

The University of Jordan
School of Engineering
Chemical Engineering Department
Chemical Engineering Laboratory (1)

Experiment Number: (4)
Experiment title:

Efflux Time for a Tank with Exit Pipe

Type of the report: Short Report

Done by

AccolAlcavah

0154679

Scanned by CamScanner

Abstract

The objective of this experiment is to show the dependence of the efflux time for a tank with exit pipe on pipe length and diameter. A cylindrical tank in a vertical position filled with fluid of glycerol and water mixture was drained through a pipe which is vertically attached to the bottom of the tank.

The affect of two parameters on efflux time were studied, length and diameter of the pipe, which shows that affected inversely by length, and directly by diameter of the pipe. The density of the mixture was calculated and it equals to 1.15 g/ml. The flow was laminar because Re less than 2100. The theoretical efflux time was calculated in both study cases, and it equals to 9.64 s at constant diameter 5.35mm and length 87.4mm.

4

Table of Contents

Results	1
Discussion	
Conclusion	
References	
Appendix	

Table of figures

Figure 1: Plot of tE/tC against L (m) for constant diameter = 5.35mm	2
Figure 2: Plot of tE/tC against DT/d for constant length = 623.4mm	3

Table of tables

Table 1: Raw data for the experiment
Table 2: Results for pipes with variating length and constant diameter = 5.35 mm
Table 3: Results for nines with variating diameter and constant length = 623.4 mm

Results

Table 1: Raw data of the experiment.

H _i (m)	0.134	viscosity (Pa.s)	0.01
H ₂ (m)	0.084	water density (g/ml)	9.99E-01
RT(⁰ C)	17	volume of bottle (ml)	49.92
mass empty(g)	29.981	density of mix(g/ml)	1.15
mass bottle+water(g)	79.843	g (m/s²)	9.81
mass bottle+mix(g)	87.611	volume in tank (m³)	0.001
viscosity (cp)	10	Area (m²)	0.02

Table 2: Results for pipes with variating length and constant diameter = 5.35 mm.

		const	ant D = 5.35	mm			
	constant D =	5.35	mm	Area =	2.25E-05	m ²	
Length (mm)	timel (s)	time2 (s)	average time	Q (m3/s)	velocity	Re	teff
87.4	114.12	118.1	116.11	8.61E-06	0.38	236.51	19.64
163.4	125.48	126.21	125.85	7.95E-06	0.35	218.22	26.41
318.4	134.23	141.63	137.93	7.25E-06	0.32	199.10	32.74

Figure 1: Plot of tE/tC against L (m) for constant diameter = 5.35mm.

Table 3:Results for pipes with variating diameter and constant length = 623.4 mm.

constant L=623.4 mm							
Diameter (mm)	timel (s)	Area(m ²)	Q (m ³ /s)	velocity	Re	teff	
8.4	19.35	5.54E-05	5.17E-05	0.93	903.90	6.15	
5.35	157.76	2.25E-05	6.34E-06	0.28	174.07	37.38	
2.1	2235	3.47E-06	4.47E-07	0.13	31.30	1,574.64	

Figure 2: Plot of tE/tC against DT/d for constant length = 623.4mm.

Confirming the dimensionality of equations (7) and (8) p.25 of chemical Engineering Laboratory (1)

1. Equation (7)
$$t_{eff} = \frac{32 \times \mu \times L \times DT^2}{\rho \times g \times d^4} \times \ln\left(\frac{L+H1}{L+H2}\right) \dots (1)$$

Units of expression must be in second, however, the ln is unitless

Units of expression must be in second, however, the second
$$\frac{Pa \cdot s \cdot m \cdot m^2}{\frac{kg}{m^3} \cdot \frac{m}{s^2} \cdot m^4} = \frac{Pa \cdot s^3 \cdot m}{kg} = \frac{\frac{N}{m^2} \cdot s^2 \cdot m}{kg} = \frac{\frac{kg \cdot m}{m^2 \cdot s^2} \cdot s \cdot m}{kg} = s \#$$

2. Equation (8)
$$t_{\text{eff}} = \frac{7}{3} \cdot \frac{DT^2}{d^2} \cdot \frac{1}{c} \cdot \left[(L + H1)^{\frac{3}{7}} - (L + H2)^{\frac{3}{7}} \right] \dots (2)$$

Where C =
$$\left[\frac{g \cdot d^{\frac{5}{4}} \cdot \rho^{\frac{1}{4}}}{(.079 \times 2) \cdot L \cdot \mu^{\frac{1}{4}}}\right] \wedge (4/7) = \left[\frac{g^{\frac{4}{7}} \cdot d^{\frac{5}{7}} \cdot \rho^{\frac{1}{7}}}{(.079 \times 2)^{\frac{4}{7}} \cdot L^{\frac{4}{7}} \cdot \mu^{\frac{1}{7}}}\right]$$

Units for C: [C] =
$$\frac{\frac{m^{\frac{4}{7}}}{\frac{8}{57}}.m^{\frac{4}{7}}.m^{\frac{1}{7}}.\frac{kg^{\frac{1}{7}}}{m^{\frac{3}{7}}}}{m^{\frac{4}{7}}.\frac{n^{\frac{1}{7}}.s^{\frac{1}{7}}}{m^{\frac{2}{7}}}} = \frac{m^{\frac{4}{7}}.kg^{\frac{1}{7}}}{s.N^{\frac{1}{7}}} = \frac{m^{\frac{4}{7}}.kg^{\frac{1}{7}}}{s.\frac{kg^{\frac{1}{7}}}{s^{2}}.m} = m^{-(3/7)}.s$$

Units for
$$t_{eff}$$
: $[t_{eff}] = \frac{m^2}{m^2} \cdot \frac{s}{m^{\frac{3}{7}}} \cdot m^{\frac{3}{7}} = s \#$

Discussion

The most important parameters should be taken in the consideration while designing tanks are the length and diameter of the pipe.

As shown in Table 2: Results for pipes with variating length and constant diameter = 5.35 mm. the area of constant diameter pipes is constant, where the flow is laminar (Re less than 2100). Reynolds number increase if the length decrease due to increasing of velocity, more the pipe is long more friction is carried in the pipe that will decrease the velocity then Reynolds number so that the flow is laminar.

The time required for draining out the vessel contents (efflux time) changed with the length, it is proportionally increasing because longer pip has lower velocity, so more time is needed to drain out the tank.

From Figure 1: Plot of tE/tC against L (m) for constant diameter = 5.35mm.) increasing the length of the pipe, increase the ratio of efflux time between time calculated and measured (experimental) while all data is bigger than one, this means that the measured value is higher than that calculated due to the equation (2). Also, the differences decrease while length increases because it is more easily to determine specific volume drain at lower velocity.

As shown in Table 3:Results for pipes with variating diameter and constant length = 623.4 mm. in constant length of pipe, the flow is also laminar while increasing the diameter of pipe increases the velocity due to large cross sectional area so that increase Re number, and decrease the head loss due to friction. The efflux time is changed with diameter proportionally decreased, because the velocity in small diameter is slower and need more time to drain out the contents in the tank.

4

From Figure 2: Plot of tE/tC against DT/d for constant length = 623.4mm. the relation is not linear as in Figure 1: Plot of tE/tC against L (m) for constant diameter = 5.35mm.when the ratio of the diameter of tank to diameter of pipe is increased (diameter of tank constant=.16m while diameter of pipe is changing) the ratio of experimental time to calculated time is increase then decrease.

Noticing that when diameter is much low the experimental time and calculated time are vigorously increased and the values come closer to each one that make the ratio low .this explains why the curve is coming down when decreasing the diameter of pipe with respect to the diameter of tank.

From figure (1) and figure (2), deviation between experimental time and calculated time is founded. This may be due to personal error in reading the scale and instrumental error like inaccurate scaling.

Conclusion

-The most important parameters that should take the consideration while designing tanks is the length and diameter of the pipe.

-Under experiment condition, the flow of the mixture is laminar in both study cases due to Re less than 2100.

-The velocity affected inversely by length, and affected directly by diameter of pipe.

-There is a deviation between experimental and theoretical efflux time.

References

Chemical Engineering Laboratory (1) (6th ed.). (2016). Amman: University of Jordan.

Appendix

SAMPLE OF CALCULATION

Finding the density of the mixture

Mass of empty bottle = 29.981 g.

Mass of bottle and water = 79.843 g.

 $\underline{\text{Mass of water}} = \text{Mass of bottle}$ and water - Mass of empty bottle = 79.843 - 29.981 =49.862 g.

Density of water = 0.998 g/ml.

 $\underline{\text{Water volume}} = \text{bottle volume} = \frac{\text{water mass}}{\text{water density}} = \frac{49.86}{.998} = 49.86 \text{ ml} = 49.86 * 10 ^-6 \text{ m}^3.$

 $\underline{\text{Mixture density}} = \frac{\text{mixture mass}}{\text{mixture volume}} = \frac{\text{mass of bottle and mixture-mass of bottle}}{\text{bottle volume}} = \frac{\text{mass of bottle volume}}{\text{bottle volume}}$

 $\frac{87.611 - 29.981}{1.15} = 1.15 \text{ g/ml}.$ 49.92

Finding the tank volume

Area (A) = tank volume / height = $.001 / (.134 - .084) = 0.02 \text{ m}^2$.

$$\underline{D_T} = \sqrt{4*A/\pi} = \sqrt{4}*.02/\pi = 0.16 \text{ m}.$$

Taking the first row from table2

Time 1 = 114.12 s

Time
$$2 = 118.1 \text{ s}$$

Average time = $\frac{\text{time 1+time 2}}{2} = \frac{114.12+118.1}{2} = 116.11 \text{ s.}$

Tank volume = .001 m³

Volumetric flow rate (Q) = $\frac{tank \ volume}{average \ time} = \frac{0.001}{116.11} = 8.61 * 10^{-6} \text{ m}^3/\text{s}$.

• <u>Pipe area</u> (A) = $\frac{d^2 \times \pi}{4} = \frac{\pi \times 0.00535^2}{4} = 2.25 * 10^{-5} \text{m}^2$. <u>Velocity</u> (u) = $\frac{Q}{A} = \frac{8.61*10^{-6}}{2.25*10^{-5}} = 0.38 \text{ m/s}$.

•
$$\underline{\text{Re}} = \frac{\rho \, u \, d}{\mu} = \frac{1160 * .38 * 0.00535}{0.01} = 236$$
. Since Re<2100 it is laminar flow.

•
$$t_{eff} = \frac{32 \times \mu \times L \times DT^2}{\rho \times g \times d^4} \times \ln\left(\frac{L + H1}{L + H2}\right) = \frac{32 \times .01 \times .0874 \times .16^2}{1150 \times 9.81 \times .00535^4} \times \ln\left(\frac{.0874 + .134}{.0874 + .084}\right) = 19.64 \text{ s}.$$
• $\frac{\text{tE (average time)}}{\text{tC}} = \frac{116.11}{19.64} = 5.91.$

•
$$\frac{\text{tE (average time)}}{\text{tC}} = \frac{116.11}{19.64} = 5.91$$
.

Taking the first row from table3

•
$$\underline{\text{Time}} = \frac{\text{time 1+time 2}}{2} = \frac{114.12+118.1}{2} = 116.11 \text{ s.}$$

• Tank volume = $.001 \text{ m}^3$

Volumetric flow rate (Q) =
$$\frac{tank \ volume}{time}$$
 = $\frac{0.001}{19.35}$ = $5.17 * 10^{-5} \text{ m}^3/\text{s}$.

Velocity (u) =
$$\frac{Q}{4} = \frac{5.17*10^{-5}}{5.54*10^{6}-5} = 0.93 \text{ m/s}$$

• Pipe area (A) =
$$\frac{d^2 \times \pi}{4} = \frac{\pi \times 0.0084^2}{4} = 5.54 * 10^{-5} \text{m}^2$$
.
• Velocity (u) = $\frac{Q}{A} = \frac{5.17 * 10^{-5}}{5.54 * 10^{-5}} = 0.93 \text{ m/s}$.
• Re = $\frac{\rho u d}{\mu} = \frac{1160 * .93 * 0.0084}{0.01} = 906$. Since Re<2100 it is laminar flow.

•
$$t_{\text{eff}} = \frac{\mu}{\rho \times g \times d^4} \times \ln\left(\frac{L+H1}{L+H2}\right) = \frac{32 \times .01 \times .0.6234 \times .16^2}{1150 \times 9.81 \times .0084^4} \times \ln\left(\frac{.6234+.134}{.6234+.084}\right) = 6.20 \text{ s}.$$

•
$$\frac{\text{tE}}{\text{tC}} = \frac{19.35}{6.14} = 3.15$$
.

TABLES USED FOR PLOTTING

Table A: Data used for plotting figure 1.

I doit					
Figure 1					
L (m)	tE/tC				
0.0874	5.91				
0.1634	4.77				
0.3184	4.21				

Table B: Data used for plotting figure 2.

Figure 2						
DT/d	tE/tC					
18.99	3.15					
29.82	4.22					
75.97	1.42					

Efflux Time for a Tank with Exit Pipe Data Sheet

	Pipe dimensions	Time (s) Trial number 1	Time (s) Trial number 2
ieter	D=5.35mm L=87.4mm	1:59.12	1:58.10
Same diameter	D=5.35mm L=163.4mm	2:05.48	2:06.21
Same	D=5.35mm L=318.4mm	2:14.23	2:21.63
c	D=8.4mm L=623.4mm	00: 19.35	_
Same length	D=5.35mm L=623,4mm	2:37.76	_
Same	D=2.1mm L=623.4mm	37:15,00	

	William III
HI	13.4 cm
H2	8-4 cm
Room Temperature	17°C
Mass of empty bottle	29.981 9
Mass of bottle+ water	79.843 g
Mass of bottle + mixture	87.6119
Viscosity	10 cf

Instructor signature:

Date:

Page 27 of 66

92 100

The University of Jordan

School of Engineering

Chemical Engineering Department

Chemical Engineering Laboratory (1)

Experiment Number: (6)

Experiment title:

Determination of Losses in Small Bore Piping System

Type of the report: Short Report

Done hy

Abstract

The head loss occurs due to friction in the pipe. The objective of this experiment was to study the effects of many parameters include length, pipe diameter, internal surface roughness, type of fitting, sudden contraction, sudden expansion, and friction factor on the head loss.

The relations between head loss and parameters was plotted according to experimental data, the head losses measured were compared to the calculated head losses by a plots too.

The main results was:

- The gate valve better than globe valve for a low loss piping system.
- The loss coefficient decreases as the flowrate increases.
- The radius of curvature of a pipe bend has inverse relation with head loss coefficient

i

Table of Contents
Table of Contents Results
Discussion
- L. Carladation
1. Sample of calculation:
Table of figures Figure 1: Head loss with volumetric flow rate for straight line of dark blue system. 1 Figure 2: The relation between Reynolds number and friction factor for straight line of dark blue system. 2
Figure 3: perecent volume flow rate (x-axis) with loss coefficient (y-axis) of gate valve for dark blue
system
system5 Figure 5: The head loss measured with head loss calculated for sudden expansion in light blue system5 Figure 6:The relation of head loss measured with head loss calculated for sudden contraction of light
blue system
Figure 8: changing of loss coefficient with reduced bend radius for bends in light blue system7
Table of tables Table 1: straight pipe data for dark blue system
Table 2: Gate valve data (dark blue system)
Table 3: Standard 90° elbow data of Dark blue system
Table 4:90° Miter data of Dark blue system
Table 5:Globe valve data (Light blue system)
Table 7:Sudden Contraction data for Light blue system
Table 9: radius bend 100 data for Light blue system
Table Totading Series 222 200

Results

Table 1: straight pipe data for dark blue system.

straight pipe	Q(m ³ /s)	u(m/s)	Re	f
264	0.0002473	1.6768	22972.255	0.0007037
246	0.0002346	1.5908	21793.823	0.0007285
224	0.0001923	1.3040	17865.346	0.0009872
200	0.0002027	1.3745	18831.041	0.0007934
175	1		15535.084	
		/		

Figure 1: Head loss with volumetric flow rate for straight line of dark blue system.

Figure 2: The relation between Reynolds number and friction factor for straight line of dark blue system.

Table 2: Gate valve data (dark blue system).

gate valve (2-1) mmHg	mass(kg)	time(s)	Q%	H2-H1 (mH2O)	k (gate valve)
10	7.5	30.33	100	0.136	0.9487
150	7.5	31.97	94.87	2.039	15.8106
85	7.5	39	77.77	1.156	13.3327
127	7.5	37	81.97	1.727	17.9299
165	7.5	44.85	67.63	2.243	34.2278

Figure 3: perecent volume flow rate(x-axis) with loss coefficient(y-axis) of gate valve for dark blue system.

Table 3: Standard 90° elbow data of Dark blue system.

std elbow 90 (r=12.7mm)	mass(kg)	time(s)	Q(m ³ /s)	u(m/s)	dalta H (mH2O)	k
and the state of t	7.5		0.0002473	1.6768	0.148	1.0327
412	7.5		0.0002346		0.139	1.0777
385			0.0001923		0.135	1.5576
359	7.5		0.0002027	1.3745	0.11	1.1423
310	7.5		0.0002027		0.095	1.4496
270	7.5	44.85	0.0001672	1.1333		

Table 4: 90° Miter data of Dark blue system.

miter bend 90 (r=0)	mass(kg)	time(s)	Q(m ³ /s)	u(m/s)	dalta H (mH2O)	k
507	7.5		0.0002473	1.6768	0.243	1.6957
	7.5	31.97	0.0002346	1.5908	0.222	1.7212
468	7.5		0.0001923		0.191	2.2037
415			0.0002027		0.173	1.7965
373	7.5				0.142	2.1667
317	7.5	44.85	0.0001672	1.1338	0,112	

Table 5: Globe valve data (Light blue system).

(s) Q% 100 72.3718		10.5427 28.2177
72.3718	2.0393	28.2177
78.2136	2.5423	30.1194
	2.0705	55.4805
/- /		143.5034
)	63.3531	63.3531 3.0725

Figure 4: perecent volume flow rate(x-axis) with loss coefficient(y-axis) of globe valve for light blue system.

Table 6: Sudden Expansion data for Light blue system.

sudden expansion (mmH2O)	mass (kg)	time (s)	u1(m/s)	u2(m/s)	Deltah (no loss) (mH2O)	hL (mH2O)	dalta H
	7.5	30.91	1.6453		- /	0.07367	0.05430
50	7.5	42.71	1.1908	0.3207	0.06703	0.03859	0.02844
37	-	39.52	1.2869	0.3466	0.07829	0.04507	0.03322
30	7.5	-	1.0424	0.2807	0.05136	0.02957	0.02179
25	7.5	48.79					0.01007
20	7.5	71.79	0.7084	0.1908	0.02372	0.01300	0.01007

Figure 5: The head loss measured with head loss calculated for sudden expansion in light blue system.

Table 7: Sudden Contraction data for Light blue system.

sudden	mass	time (s)	Q(m ³ /s)	u1(m/s)	u2(m/s)	delta h (no loss) (mH2O)	Hf (mH2O)	delta H
contraction	(kg)					0.4000	0.03153	0.15950
200	7.5	30.91	0.0002426			0.0070	0.02282	0.08985
190	7.5	42.71	0.0001756	0.3207		2.0702		0 10295
157	7.5	39.52	0.0001898	0.3466	1.2869	0.0783		
	7.5	48.79	0.0001537	0.2807	1.0424	0.0514		
110		+	0.0001045	0.1908	0.7084	0.0237	0.01358	0.03730
70	7.5	71.79	0.0001043	0.7000				

ask ;; be & recieve

Figure 6:The relation ofhead loss measured with head loss calculated for sudden contraction of light blue system.

Table 8: 50° radius bend data of Light blue system.

r/D		3.6496								
redius bend 50	mass (kg)	time (s)	Q(m³/s)	u(m/s)	Re	f	dalta hf (mH2O)	dalta H (mH2O)	k.	
240	7.5	30.91	0.0002426	1.6453	22541.200	0.006447	0.2374	0.0026	0.0188	
212	7.5	42.71	0.0001756	1.1908	16313.475	0.006990	0.1348	0.0772	1.0681	
180	7.5	39.52	0.0001898	1.2869	17630.276	0.006856	0.1544	0.0256	0.3030	
143	7.5	48.79	0.0001537	1.0424	14280.560	0.007227	0.1068	0.0362	0.6536	
110	7.5	71.79	0.0001045	0.7084	9705.370	0.007959	0.0543	0.0557	2.1764	

Table 9: 100º radius bend data for Light blue system.

r/D		7.2993								
redius bend 100	mass (kg)	time (s)	Q(m ³ /s)	u(m/s)	Re	f	dalta hf (mH2O)	dalta H (mH2O)	k	
214	7.5	30.91	0.0002426	1.6453	22541.200	0.006447	0.237401	-0.023401	- 0.1696	
206	7.5	42.71	0.0001756	1.1908	16313.475	0.006990	0.134812	0.071188	0.9850	
164	7.5	39.52	0.0001898	1.2869	17630.276	0.006856	0.154428	0.009572	0.1134	
128	7.5	48.79	0.0001537	1.0424	14280.560	0.007227	0.106801	0.021199	0.3828	
94	7.5	71.79	0.0001045	0.7084	9705.370	0.007959	0.054331	0.039669	1.5509	

Table 10: 150° radius bend data for Light blue system.

r/D		10.9489								
redius bend 150	mass (kg)	time (s)	Q(m ³ /s)	u(m/s)	Re	6	dalta hf (mH2O)	dalta H (mH2O)	k	
240	7.5	30.91	0.0002426	1.6453	22541.200	0.006447	0.2374	0.0026	0.0188	
205	7.5	42.71	0.0001756	1.1908	16313.475	0.006990	0.1348	0.0702	0.9712	
173	7.5	39.52	0.0001898	1.2869	17630.276	0.006856	0.1544	0.0186	0.2200	
130	7.5	48.79	0.0001537	1.0424	14280.560	0.007227	0.1068	0.0232	0.4189	
96	7.5	71.79	0.0001045	0.7084	9705.370	0.007959	0.0543	0.0417	1.6290	

Figure 7: The relation of friction factors for bends with Reynolds number for bends in light blue system.

Figure 8: changing of loss coefficient with reduced bend radius for bends in light blue system.

7

Discussion

"The laws of nature state if you want something you have to pay for it. If you want to move something, there will be resistance."

As seen in figure 1, as the flow rate increases, the head loss increases. Because the flow rate increase with pressure (the head loss is the difference of pressure / density * gravity constant).

Also, as Reynolds number, the friction factor decreases as shown in figure 2.friction affects when the velocity of liquid is increasing then Reynolds increase, so friction factor decrease at high velocity, and moody diagram shows that at laminar flow the relation between f and Re is: f=16/Re .However, all values show that the flow is turbulent, and (f) calculated from the head loss equation (that proportional inversely with u2).

The fittings such as elbows, tees, strainers, valves have a value of k in this experiment the value of k for the gate and globe valve are shown in tables 2 and 5. These values can be compared to the tabulated values.

For the first raw of the both tables, the tabulated values for the gate and globe valve are 0.2 and 10.0, while the values founded experimentally are 0.95 and 10.5 respectively.

From figures (3, 4) the comparison between gate and globe valves shows that globe valve have higher values of loss coefficient when changing the flow rate, making the gate valve a chose for less loss pipe system. Gate valve have very little fluid flow resistance in fully open position and also have small pressure drop across the valve. Globe valve on the other hand have a high pressure drop even in fully open conditions and remain a big resistance to fluid flow.

the percent volume flow rate changed with loss coefficient inversely for gate valve in the dark blue system, see figure (3). The loss coefficient is a function of total head loss and velocity (inverse relation), so when flow rate increase the velocity increase then loss coefficient decrease. That is clear when the velocity is faster the less friction occurs.

The loss coefficient (k) for elbows is represented in tables 3 and 4. For comparison for the first raw in the table, the tabulated values for Standard 90° elbow and 90° miter are 1.1 and 1.1, while the experimental values were 1.0 and 3.5.

8

Sudden expansion and contraction in piping system has two velocities: in inlet and outlet, that affect the pressure difference and head loss. A comparison between calculated and measured heat loss is shown in figures (5, 6).

As shown in tables (8, 9, 10), head losses of different diameter bends is examine. As Reynold increase the friction factor decrease for the three bends. Also, as the reduced radius increase the loss coefficient decrease. This shown in figure (7) and figure (8).

There are different between tabulated data and the data calculated of K this could be because of

- -personal error: because the time is small (in second) and the time calculated and recorded might be not precise that affect the values of velocity calculated.
- -The pipe consider as smooth pipe which is not precise.

Conclusion

- -The radius of curvature of a pipe bend has inverse relation with head loss coefficient.
- -The loss coefficient decreases as the flowrate increases.
- -The gate valve better than globe valve for a low loss piping system.

ask ;; selfa & recieve

References

- 1. Head Loss in Piping Systems. (n.d.). Retrieved December 4, 2018, from http://www.hydromatic.com/ResidentialPage techinfopage headloss.aspx
- 2. Chemical Engineering Laboratory (1) (6th ed.). (2016). Amman: University of Jordan.

Appendix

Sample of calculation:

A row from each table will be discussed as sample of calculations.

1. Dark Blue system:

For gate valve:

Δh=h₁-h₂=240-230=10 mmHg

10 mmHg * 10.333 mH₂O/760 mmHg=0.13596 mH₂O

- Q (Volumetric flowrate) = $m/(\rho *t)$
- \rightarrow Q=7.5 kg/(1000kg/m³*30.33s) =0.0002473m³/s
- u=Q/A, A= $\pi/4*d^2$, d=13.7*10-3 m
- $\rightarrow u=0.0002473/(\pi/4*(13.7*10-3)2)=1.6768$ m/s
- Q%=Q/Q fully open*100%=0.0002473/0.0002473*100%=100%
- $k=\Delta h^2 g/u_2=0.136^2 9.81/(1.6768)_2=0.9487$

For straight pipe

L=914*10⁻³m, d=13.7*10⁻³m

• $\Delta h = h_1 - h_2 = 630 - 366 = 264 \text{ mmH}_2O = 0.264 \text{ mH}_2O$

- \rightarrow Q=7.5 kg/(1000kg/m³*30.33s) =0.0002473m³/s
- u=Q/A, $A=\pi/4*d^2$, d=13.7*10-3 m
- \rightarrow u=0.0002473/(π /4*(13.7*10-3)2)=1.6768m/s
- $Re = \rho *d*u/\mu = (1000*13.7*10_3*1.6768)/(1*10^3) = 22972.255$
- $\bullet \ f = (\Delta h_f * d * g) / (2 * L * u_2) = (0.264 * 13.7 * 10^{.3} * 9.81) / (2 * 914 * 10_{.3} * (1.6768)^2)$
- \rightarrow f=0.0007037

For standard elbow 90

 $\Delta h = h_1 - h_2 = 780 - 368 = 412 \text{ mmH}_2O = 0.412 \text{ mH}_2O$

- \rightarrow Q=7.5 kg/(1000kg/m³*30.33s) =0.0002473m³/s
- u=Q/A, A= $\pi/4*d^2$, d=13.7*10-3 m
- $\rightarrow u=0.0002473/(\pi/4*(13.7*10-3)2)=1.6768$ m/s
- ΔH=Δh-Δh=0.412-0.264=0.148 mH2O
- $k=\Delta H^2^2g/u_2=0.148^2^9.81/(1.6768)^2=1.0327$
- r/d = (12.7*10-3)/(13.7*10-3) = 0.9270

For 90 miter bend

 $\Delta h = h_1 - h_2 = 1035 - 528 = 412 \text{ mmH}_2O = 0.507 \text{ mH}_2O$

- \rightarrow Q=7.5 kg/(1000kg/m³*30.33s) =0.0002473m³/s
- u=Q/A, $A=\pi/4*d^2$, d=13.7*10-3 m
- \rightarrow u=0.0002473/(π /4*(13.7*10-3)2)=1.6768m/s
- ΔH=Δh-Δhf=0.507-0.264=0.243 mH₂O
- $k=\Delta H^2 g/u_2=0.243^2 2^9.81/(1.6768)^2=1.6957$
- r/d= (12.7*10-3)/ (13.7*10-3) =0.9270

2. Light blue system:

Globe valve:

 $\Delta h = h_1 - h_2 = 305 - 198 = 107 \text{ mmHg}$

107 mmHg * 10.333 mH₂O/760 mmHg=1.4548mH₂O

- Q (Volumetric flowrate) =m/(ρ *t)
- \rightarrow Q=7.5 kg/(1000kg/m³*30.91s) =0.0002426m³/s
- u=Q/A, A= $\pi/4*d^2$, d=13.7*10-3 m
- $\rightarrow u=0.0002426/(\pi/4*(13.7*10-3)^2)=1.6453$ m/s
- Q%=Q/Q fully open*100%=0.0002426/0.0002426*100%=100%
- $k=\Delta h^22g/u_2=1.4548*2*9.81/(1.6768)_2=10.5427$

Sudden expansion

d1=13.7*10-3 m, d2=26.4*10-3 m

- $\Delta h_{exp} = h_1 h_2 = 520 570 = -50 \text{ mmH}_2O = -0.5 \text{ mH}_2O$
- Q (Volumetric flowrate) =m/(ρ *t)

\rightarrow Q=7.5 kg/(1000kg/m3*30.91s) =0.0002426m3/s

- $u_1 = Q/A_1$, $A = \pi/4 * d_1$, $d_1 = 13.7 * 10-3$ m
- \rightarrow u1=0.0002426/(π /4*(13.7*10-3)2) =1.6453m/s
- u₂=Q/A₂, A= π /4*d₂,d₂=26.4*10-3 m
- \rightarrow u₂=0.0002426/(π /4*(26.4*10-3)²) =0.4431m/s
- Δh (no loss, cal) = (u1- u2)/(2*g) = ((1.6453)² -(0.4431)²)/ (2*9.81) = 0.12797mH₂O
- Δh (loss, cal) = (u1- u2)2/(2*g) = (1.6453-0.4431)2/ (2*9.81) =0.07367mH2O
- $\Delta h_{(loss)} = \Delta h$ (no loss, cal)- Δh (loss, cal) =0.05430 mH2O

Sudden contraction

d1=26.4*10-3 m, d2=13.7*10-3 m

- $\Delta \text{hexp} = \text{h1-h2} = 565-365 = 200 \text{ mmH2O} = 0.200 \text{ mH2O}$
- Q (Volumetric flowrate) = $m/(\rho^*t)$
- \rightarrow Q=7.5 kg/(1000kg/m3*30.91s) =0.0002426m3/s
- ul=Q/A1, A= $\pi/4*d1^2$, d1=26.4*10-3 m
- \rightarrow u1=0.0002426/(π /4*(26.4*10-3)2) =0.4431m/s
- u2=Q/A2, A= π /4*d22, d2=13.7*10-3 m
- \rightarrow u2=0.0002426/(π /4*(13.7*10-3)2) =1.6453m/s
- Δh (no loss, cal) = (u2- u1)/(2*g) = ((1.6453)2-(0.4431)2)/ (2*9.81) = .1280 mH2O
- A2/A1=d2/d1= (13.7*10-3)/ (26.4*10-3) =.5189=.52

From table (A), making interpolation=.376

 $hf = k^*u^2^2/2 = .376^*1.6453^2/2 = .0315$

 $\Delta H = \Delta h + hf = .1280 + .0315 = .15950$

500 radius bend:

- $\Delta h = h1 h2 = 470 230 = 239 \text{ mmH2O} = 0.239 \text{ mH2O}$
- Q (Volumetric flowrate) =m/(ρ *t)
- \rightarrow Q=7.5 kg/(1000kg/m3*30.91s) =0.0002426m3/s
- u=Q/A, A= $\pi/4*d2$, d=13.7*10-3 m
- \rightarrow u=0.000203/(π /4*(13.7*10-3)2) =1.6453m/s
- Re= ρ *d*u/ μ = (1000*13.7*10-3*1.6453)/ (1*10-3) =22541.200

- f=0.079*(22541.200)-0.25=0.006497 • $\Delta h = \frac{(4*f^*L^*u^2)}{(2*d^*g)} = \frac{(4*6.74*10-3*914*10-3*(1.6453)^2)}{(2*13.7*10-3*9.81)}$
- →∆hf=0.2347 mH2O
- ΔH=Δh-Δhf=0.0026 mH2O
- $k=\Delta H^*2*g/u^2=0.065*2*9.81/(1.6453)^2=.0188$
- r/d = (50*10-3)/(13.7*10-3) = 3.650

1000 radius bend:

 $\Delta h = h1 - h2 = 534 - 320 = 214 \text{ mmH2O} = 0.214 \text{ mH2O}$

- Q(Volumetric flowrate)= $m/(\rho^*t)$
- \rightarrow Q=7.5 kg/(1000kg/m3*30.91s)= 0.0002426m3/s

- u=Q/A , A= $\pi/4$ *d2 , d=13.7*10-3 m
- \rightarrow u=0.000203/(π /4*(13.7*10-3)2)=1.377 m/s
- Re= ρ *d*u/ μ =(1000*13.7*10-3*1.6453)/(1*10-3)= 22541.200
- f=0.079*(22541.200)-0.25=0.006497
- $\bullet \Delta h f = (4*f*L*u^2)/(2*d*g) = (4*6.74*10-3*914*10-3*(1.6453)^2)/(2*13.7*10-3*9.81)$
- →∆hf=0.2374 mH2O
- ΔH=Δh-Δhf= -0.023 mH2O
- $k=\Delta H^*2^*g/u^2=-0.023^*2^*9.81/(1.6453)^2=-.1696$
- r/d=(100*10-3)/(13.7*10-3)=7.299

1500 radius bend:

 $\Delta h = h1 - h2 = 587 - 347 = 240 \text{ mmH2O} = 0.240 \text{ mH2O}$

- Q(Volumetric flowrate)= $m/(\rho^*t)$
- \rightarrow Q=7.5 kg/(1000kg/m3*30.91s)= 0.0002426m3/s
- u=Q/A , $A=\pi/4*d2$, d=13.7*10-3 m
- \rightarrow u=0.0002426/(π /4*(13.7*10-3)2)= 1.6453m/s
- Re= $\rho*d*u/\mu$ =(1000*13.7*10-3*1.377)/(1*10-3)= 22541.200
- f=0.079*(22541.200)-0.25=0.006497
- $\Delta hf = (4*f*L*u2)/(2*d*g)$
- = (4*6.74*10-3*914*10-3*(1.6453)2)/(2*13.7*10-3*9.81)
- →∆hf=0.2347mH2O
- ΔH=Δh-Δhf=0.0026 mH2O
- $k=\Delta H^*2*g/u^2=0.077*2*9.81/(1.6453)^2=0.0188$
- r/d=(150*10-3)/(13.7*10-3)=10.949

 $Table (A): Loss \, coefficient \, for \, sudden \, cotraction.$

A ₂ /A ₁	0	0.1	0.2	0.3	0.4	0.6	0.8	1.10
К	0.50	0.46	0.41	0.36	0.30	0.18	0.06	0

ask ;; belt & recieve

Determination of Losses in Small Bore Piping System Data Sheet

T 219°C

P= 1000mba

For	Gate	VS
-----	------	----

ope	~	" (20)	1 .	· · · · · · · · · · · · · · · · · · ·	Mass	Time (s)	
Full	H_2 - H_1	1-2	3-4	5-6	A STATE OF THE PROPERTY OF THE PARTY OF THE	44-16	
	Gate yalve	Std Elbow 90	Straight pipe			47 97	30.33
10 =	240-230	720 - 368	630 - 366	1035-528	1-5	3111-22	- /
			633-469	1032-564		4-1-18	31.97 31.00
		775-416	633-134	1020-608			
-	200 13		0 2	1012-639			37
	300-173		630 - 150	991 680			44.85
	320 -155	760~490	<i>℃</i> 30-389	114 - 6 -			1.0

For Globe valve

Time (s)
30.91
342.71
9.52 8.79
(1.79

27/11/2018

4905

Instructor	signature:

Date:

Fall

Page 44 of 66

015

The University of Jordan
School of Engineering
Chemical Engineering Department
Chemical Engineering Laboratory (1)

Experiment Number: (7)
Experiment title:

Pitot tube experiment

Type of the report: Short Report

Scanned by CamScanner

Abstract

The main objectives of this experiment is to measure and plot the radial velocity profile of airflow in pipe by pitot tube and check if the flow is laminar or turbulent, in this experiment the flow was turbulent. The average velocity was determined by two ways, the first one is by calculating the mass flow(W) from the orifice discharge equation and it equals 0.0416 kg/s, and the other way by calculating W from radial velocity profile and it equals 0.0121 kg/s, and according to mass flow the mean velocity was calculated by two ways from the orifice discharge equation and it equals 53.84 m/s, and the other way by calculating W from radial velocity profile and it equals 15.72 m/s. The Re was calculated by two ways from the orifice discharge equation and it equals 89083.46, and the other way from radial velocity profile and it equals 26003.67, the both values of Re are greater than 2100, so the flow is turbulent.

Table of Contents

Results	
Discussion	5
Conclusion and recommendation	
References	
Appendix	
1. Sample of calculation	
2. Data sheet	
Table of figures Figure 1: The velocity profile of laminar and turbulent flow in references. Figure 2: The velocity profile generated from pitot tube data Figure 3: Plot of r*v against r	3
Table of tables Table 1 : Parametric data of orifice	1
Table 3: The velocity of different position in pitot tube.	
Table 4 : Air mass flow rate calculated by two method. Table 5 : Data used for plotting v*r against r	

Results

Table 1: Parametric data of orifice

Atmospheric pressure (Pa)	89700 🗸
Air temperature(K)	302.15 V
Fan pressure (pa)	5021.01
Pressure drop across orifice (pa)	1333.70 L
Pressure drop over test length (pa)	1353.32
Orifice area(m2)	0.001257 L
Pressure at orifice(pa)	94721.01.
R(N.m/(kg.K))	287.05

Table 2 : Calculations of air density

Air density in pitot tube plane (kg/m3)	1.03704	1.
Air density at the orifice (kg/m3)	1.09211	
	~°	00

Table 4: Air mass flow rate calculated by two method.

	Radial velocity profile	Orifice discharge equation
W (kg/s)	0.0121	0.0416
Reynold's number	26003.67	89083.46
Average velocity (m/s)	15.72	53.84 45.16

Figure 1 : The velocity profile of laminar and turbulent flow in references.

The radial velocity profile

Figure 2: The velocity profile generated from pitot tube data.

ask ;; basis & recieve

Table 5 : Data used for plotting v*r against r

v*r	integrate of r*v dr (wrong)				
0.6904					
0.6396	0.35924				
0.5660	0.33924				
0.4825					
0.3898					
0.2802	0.13483				
0.1701	0.13403				
0.0570					
-0.0574					
-0.1711	-0.13565				
-0.2835	-0.15505				
-0.3875					
-0.4857					
-0.5701	-0.35665				
-0.6346	0.55005				
-0.6556					
sum	0.0018				

Figure 3 : Plot of r*v against r

Discussion

Pitot tube is a pressure measurement instrument used to measure fluid flow velocity, consists of a tube pointing directly into the fluid flow, commonly used to measure air flow in a duct. In this experiment the measurements of the pitot tube used to plot radial velocity profile.

The pitot tube measures two pressures: static pressure and stagnation pressure.

It is clear from the figure(2) that the velocity of the flow increases as get closer to the center, and decreases as get closer to the sides of the tube this because of the friction that occurs at the sides of the pipe by shear stress, so that the maximum velocity of the flow is at the center of the tube.

As shown in table(4)The mass flow rate of air (W) was calculated by two ways:

1-Radial velocity profile, The value of W is 0.0214 Kg/s was calculated by using 3/8 Simpson's rule.

2-Orifice discharge equation (measure pressure drop across the orifice) The value of W is 0.0416 kg/s.

The reason of this differences is because orifice measures the full flow stream while the pitot tube detects the flow velocity at only one point in the flow stream.

The main difference is that, while an orifice measures the full flow stream, the pitot tube detects the flow velocity at only one point in the flow stream.

(after reaching turbulent) the velocity profile tends to be flat enough so that the insertion depth is not critical.

As shown in table(4)

The average velocity was also calculated by the two ways:

1-Radial velocity profile, V_{avg}.=15.72

2-Orifice discharge equation, V_{avg}. =53.8363

As shown in table(4) Also, Reynold's number was also calculated by the two ways:

1-Radial velocity profile. The value of Re is 26003.67 .

2-Orifice discharge equation, The value of Re is 89083.46 .

The value of Re in both ways is greater than 2100 which means that the flow is turbulent. As shown in figure(1), the velocity profile for turbulent is similar to plate(turns to be flat) at the center while the velocity profile is quadratic for laminar, so that as shown in figure(2) the shape of velocity profile in this experiment is more closer to flat shape so it is more closer to turbulent flow.

Conclusion and recommendation

- From the velocity profile, the velocity is higher when the flow is at the center of the pipe and then it decreases away from center due to the frictions in the pipe.
- The mass flow rate in the orifice is little larger than the mass flow rate in the pitot tube that affect the average air velocity then Re.
- Reynold number is an indication for the type of flow in the pipe, the flow is turbulent since the two values of(Re) using the different values of average velocity is above 2000.
- Orifice measures the full flow stream, while the pitot tube detects the flow velocity at only one point in the flow stream.
- After some time, the temperature of the fan increasing due to over work, so that the
 density of the air will change and that's will affect the data, it is advised to turn off the fan
 until the temperature becomes lower to insure that the temperature is constant during
 experiment.

References

- 1. Chemical Engineering Laboratory (1) (6th ed.). (2016). Amman: University of Jordan.
- 2. OMEGA Engineering. (n.d.). Retrieved from https://www.omega.co.uk/literature/transactions/volume4/pitot-tube.html
- S. (2016, November 27). Orifice meter and pitot tube. Retrieved from https://www.slideshare.net/JaydrathSindhav/orifice-meter-and-pitottube?fbclid=IwAR1FcEBW5w7n8iSV06qP6LD0XVfNGv_YLh_H50YXTPCFiSjiyALm9DE6LU
- 4. T. (n.d.). What is the measure of a pitot tube? Retrieved November 13, 2018, from https://www.quora.com/What-is-the-measure-of-a-pitot-tube?fbclid=IwAR00i6-4wRy4vi6GvbiuQr3dlXjtAu92p9q1g-P66kEjiu1bScWW690guqQ

Appendix

1. Sample of calculation

All data represented in SI unit

- Air dnsity at the orifice(ρ) = pressure at the orifice/(R * temperature) =94721.01/(287.05*302.15)
- =1.092 kg/m3

 pressure at the orifice = Barometric pressure + Fan pressure

 pressure at the orifice = 89700 + 1333.7044 = 94721.0048 pa

$$\rho at \ orifice = \ 94721.0048/(287.05 * 302.15)$$

$$\rho$$
at orifice = 1.09211 kg/m3

- Air density in pitot tube plane(ρ) = $\frac{The \ static \ pressure \ in \ the \ pitot \ plane}{R*temperature}$ =89945.09/(287.05*302.15) =1.037 kg/m3
- The static pressure in the pitot plane =

 Barometric pressure + $\frac{276}{1524}$ test length pressure drop

The static pressure in the pitot plane =
$$89700 + \frac{276 * 1353.3177}{1524} = 89945.089$$
 pa

- ρ at pitot plane = 89945.08903/(287.05 * 302.15) ρ at pitot plane = 1.03704 kg/m3
- mass flow rate(W) = ρ * orificearea * Cd * $\sqrt{2\Delta p/\rho}$ where Cd = Orifice discharge coefficient (0.613)

 $\Delta p = pressure drop across the orifice (N/m^2)$

 $\rho = Air density at the orifice (Kg/m3)$

$$W = 1.09211 * 0.001257 * 0.613 * \sqrt{\frac{2 * 1333.7044}{1.09211}}$$

$$W = 0.0416 \,\mathrm{kg/s}$$

• Average air velocity in the pipe $=\frac{w}{\rho\pi R^2}$

8

$$\rho$$
 = Air density in the pipe (Kg/m3)

$$R = Pipe \ radius \ (m)$$

Average air velocity in the pipe =
$$\frac{0.0416}{1.09211*\pi*0.03^2} = 53.8363 \text{ m/s}$$

$$\text{Pipe } r \sim 80.63$$
Air velocity at a point in the pitot plane =
$$\sqrt{2(P_s - P)/\rho}$$

$$P_s = Stagnation \ pressure \ (N/m^2)$$

$$P = Static\ pressure(N/m^2)$$

 ρ = Air density in pitot tube plane (Kg/m3)

local velocity
$$for_{(r=0.015)} = \sqrt{2 * \frac{1098.3448}{1.03704}} = 46.02 \text{ m/s}$$

The static pressure

• To plot v*r vs. r, we calculate v*r at each radial position

Where v is the local velocity

v = 46.02

r=0.015

v*r=0.69036

• To calculate mass flow rate

w=density * volumetric flow rate = density *2*22/7 * (the integration of v*r wrt r)

Using the numerical integration (3/8 simpson rule) 4 times for 16 points in this formula:

$$3*h/8*(f(x0)+3*f(x1)+3*f(x2)+f(x3))$$

The sum of these integration was equal 0.0018

$$w=1.092*2*22/7*0.0018$$

$$-\infty$$
w=0.012136

Air average velocity = $w / (density * 22/7 * (pipe radius)^2)$

Air average velocity = $0.012136 / (1.092 * 22/7 * (0.03/2)^2)$

Air average velocity = 15.714

Re = density * air average velocity * diameter of pipe / viscosity

Re = 26003.67

Pitot tube Data Sheet

	mili
aspheric Pr	essure: 997-100 = 897 bar
Air Temperatur	e: 29.6°C
E- Pressure:	51.2 cm #2. H20
Pressure drop	neross the Orifice:
Pressure drop	over the Test length: 13.8 cm H20

•		Pressure Difference (Ps - P) (mythH ₂ O)
	· in	Pressure Difference $(P_s - P)$
Pitot Tube position	Vernier reading	(m/nH ₂ O)
(mm)	(mm)	H-t 11-2
Ò	6.6	41-1
2	6.8	12.8
11	7.0	14.0
6	47.2	15.2
	7.4	16.4
8	7.6	16-6
10	7.8	17.0
12	8.0	17.2
14	8.2	17.4
16	8.4	17-2
	8.6	17-0
20	1 8.8	16.217.2
2.2	9/9.0	7 15.4
24		14-2
26	9.2	12-6
28		
30	9.6	10-10
and the second s		
1 12	000	
611	1	
6		ask :: belleve &

95 100

The University of Jordan
School of Engineering
Chemical Engineering Department
Chemical Engineering Laboratory (1)

Experiment Number: (8)

Experiment title:

Positive Displacement Pumps Characteristics

Type of the report: Short Report

Abstract

The goal of this experiment is to demonstrate how pumps work, and show the performance of a selection of positive displace. selection of positive displacement pumps at constant and variable speed and pressure.

The rotary vane pumps at constant and variable speed and pressure. The rotary vane pump is a positive displacement pumps at constant and variable speed and pressure.

fluid with each revaluation of the constant and variable speed and pressure. fluid with each revaluation of the pump rotor or drive shaft, the pump performs differently for a range of delivery process. range of delivery pressure at constant speed.

The expected flow and overall pump and volumetric efficiencies was calculated, a sample of main results are.

At constant speed =400 rev/min expected flow=4.44E-05 m³3/s overall pump efficiency % = 37.83% Volumetric efficiency% = 106.45%

Table of Contents Results	1
Discussion	10
Conclusion	11
References	12
Appendix	12
Table of figures	
Figure 1: flow rate against pressure difference	3
Figure 2: shaft power against pressure difference and comparing different values of spec	ed4
Figure 3: volumetric efficiency against pressure difference and comparing different valu	es of speed4
Figure 4: overall efficiency against pressure difference and comparing different values o	f speed5
Figure 5: Flow rate against speed for 2 values of pressure: 3, 7 bar	8
Figure 6: Shaft power against speed for 2 values of pressure: 3, 7 bar	
Figure 7: Overall pump efficiency against speed for 2 values of pressure: 3, 7 bar	
Figure 8 : Overall volumetric efficiency against speed for 2 values of pressure: 3 , 7 bar	

Table of tables

Table 1: result of varying pressure at constant speed= 400 rev/min	1
Table 2: result of varying pressure at constant speed= 1100 rev/min	1
Table 3: parameters at constant speed=400 rev/min	2
Table 4: parameters at constant speed=1100 rev/min	2
Table 5: Results of varying speed at constant pressure = 3 bar	_
Table 6 :Results of varying speed at constant pressure = 7 bar	-
Table 7: Parameters of constant pressure = 3 bar	
Table 8 : Parameters of constant pressure = 7 bar	. 6
the state of the s	/

Results

Part (1): The Effect of Delivery Pressure at Constant Speed. Table 1: result of varying pressure at constant speed= 400 rev/min.

	PER Linux	Co	nstant speed				
ercent all	Spec	ed (rev/min)=			400		, a liberal
Trial num.	Torque (Nm)	Speed (rev./min)	Shaft Power (W)	P1 (bar)	P2 (bar)	T1 (C)	F (L/min
1	0.67	404	28	-0.05	2	18.2	3.1
2	0.80	405	33	-0.05	3	18.2	3.1
3	0.92	403	39	-0.05	4	18.1	3.1
4	1.07	401	45	-0.05	5	18.2	3.0
5	1.22	400	51	-0.05	6	18.2	3.0
6	1.35	398	56	-0.05	7	18.2	3.0
7	1.52	396	63	-0.04	8	18.1	2.9
8	1.66	402	70	-0.04	9	18.2	3.0
9	1.80	403	76	-0.04	10	18.2	3.0
10	1.94	401	80	-0.04	11	١٨.٢	2.9
11	2.06	399	86	-0.05	12	18.3	2.7
12	2.19	396	91	-0.05	13	18.4	2.3
13	2.32	400	97	-0.05	14	19.7	1.9

Table 2:result of varying pressure at constant speed= 1100 rev/min.

		Co eed (rev/min)=	onstant speed				
E Set Beil in Land		Speed (rev./min)					F (L/min
1	1.15	1096	133	-0.11	2	18.8	7.7
2	1.30	1107	150	-0.10	3	19.7	7.7
3	1.37	1103	158	-0.10	4	18,9	7.7
4	1.44	1101	167	-0.10	5	19.0	7,9

5	1.51						
6	1.66	1100	173	-0.10	6	19.0	7.6
7	1.78	1098	191	-0.10	7	19.1	7.5
8	1.91	1097	204	-0.10	8	19.2	7.4
9	2.00	1100	219	-0.10	9	19.8	7.4
10		1100	230	-0.10	10	20.0	7.5
11	2.12	1097	244	-0.10	11	20.0	7.3
12	2.24	1095	257	-0.10	12	0.0	7.1
13	2.33	1097	268	-0.10	13	22.0	6.7
10	2.43	1097	280	-0.10	14	22.0	6.2

Table 3: parameters at constant speed=400 rev/min.

			Adam day of	. t.	Tarangan 1944	ip special types
Trial-	P www.chroneologi	tiva si di Ca	un			Vs=
num.	delta P(Pa)	Wp(W)	Expected flow rate	overall pump efficiency %	efficiency	6.60E-06 (m3/rev)
1	2.05E+05	10.59	4.44E-05 54	37.83%	116.26%	6.60E-06
2	3.05E+05	15.76	4.46E-05	√ 47.75%	115.97% ✓	6.60E-06
3	4.05E+05	20.93	4.43E-05	53.65%	116.55%	6.60E-06
4	5.05E+05	25.25	4.41E-05	56.11%	113.35%	6.60E-06
5	6.05E+05	30.25	4.40E-05	59.31%	113.64%	6.60E-06
6	7.05E+05	35.25	4.38E-05	62.95%	114.21%	6.60E-06
7	8.04E+05	38.86	4.36E-05	61.68%	110.96%	6.60E-06
8	9.04E+05	45.20	4.42E-05	64.57%	113.07%	6.60E-06
9	1.00E+06	50.20	4.43E-05	66.05%	112.79%	6.60E-06
10	1.10E+06	53.36	4.41E-05	66.70%	109.57%	6.60E-06
11	1.21E+06	54.23	4.39E-05	63.05%	102.53%	6.60E-06
12	1.31E+06	50.03	4.36E-05	54.97%	88.00%	6.60E-0
13	1.41E+06	44.49	4.40E-05	45.87%	71.97%	6.60E-0

Check JOK

Table 4: parameters at constant speed=1100 rev/min

				program ()		
Trial num.	delta P (Pa)	Wp(W)	Expected flow rate m3/s	overall pump efficiency %	Volumetric efficiency%	Vs=6.60E-06 (m3/rev)
_ 1	2.11E+05	27.08	1.21E-04 ·/	20.36%	106.45%	6.60E-06
2	3.10E+05	39.78/	The same of the sa	26.52%	105.39%	6.60E-06
3	4.10E+05	52.62	1.21E-04	33.30%	105.77%	6.60E-06
4	5.10E+05	67.15	1.21E-04	40.21%	108.72%	6.60E-06
5	6.10E+05	77.27	1.21E-04	44.66%	104.68%	6.60E-06
6	7.10E+05	88.75	1.21E-04	46.47%	103.49%	6.60E-06
7	8.10E+05	99.90	1.21E-04	48.97%	102.21%	6.60E-06
8	9.10E+05	112.23	1.21E-04	51.25%	101.93%	6.60E-06
9	1.01E+06	126.25	1.21E-04	54.89%	103.31%	6.60E-06
10	1.11E+06	135.05	1.21E-04	55.35%	100.83%	6.60E-06
11	1.21E+06	143.18	1.20E-04	55.71%	98.24%	6.60E-06
12	1.31E+06	146.28	1.21E-04	54.58%	92.54%	6.60E-06
13	1.41E+06	145.70	1.21E-04	52.04%	85.63%	6.60E-06

Figure 2: shaft power against pressure difference and comparing different values of speed

Figure 3 :volumetric efficiency against pressure difference and comparing different values of speed

Figure 4: overall efficiency against pressure difference and comparing different values of speed

Part (2): The Effect of Speed at Constant Delivery Pressure.

Table 5: Results of varying speed at constant pressure = 3 bar.

THE RESIDENCE OF THE	errantementalistatum	Cor	stant pressure	It man on mil	erionistela.	ionalismires	and resident to the
	Pres	sure P2 (bar)=			3		
Trial num.	Torque (Nm)	Speed (rev./min)	Shaft Power (W)	P1 (bar)	P2 (bar)	T1 (C)	F (L/min)
1	0.66	200	14	-0.02	3.1	21.5	1.4
2	0.68	301	22	-0.03	3.0	21.4	2.2
3	0.79	405	33	-0.04	3.0	21.6	3
4	0.85	505	45	-0.05	3.0	21.5	3.7
5	0.91	605	57	-0.06	3.0	21.1	4.5
6	0.95	703	70	-0.07	3.0	21.4	5.2
7	1.01	803	85	-0.07	3.1	21.5	5.9
8	1.04	899	98	-0.08	3.0	21.5	6.5
9	1.06	998	111	-0.09	3.0	21.5	7.0
10	1.11	1103	128	-0.09	3.0	21.6	7.6
11	1.18	1201	149	-0.10	3.0	21.7	8.1

Table 6 :Results of varying speed at constant pressure = 7 bar.

	gt e was gestammente	Cor	nstant pressure				
	Pres	ssure P2 (bar)=	All the second s	Marie Park (1970)	menne prof	जाला - रका	STRUCK STATE
Trial num.	Torque (Nm)	Speed (rev./min)	Shaft Power (W)	P1 (bar)	P2 (bar)	T1 (C)	F (L/min
The same of the sa	1.31	197	27	-0.02	7.1	21.7	1.3
2	1.23	297	38	-0.03	7.0	21.6	2.1
3	1.38	395	57	-0.04	7.0	21.5	2.9
4	1.47	501	77	-0.05	7.1	21.6	3.7
5	1.52	604	97	-0.05	7.1	21.3	4.4
6	1.58	700	113	-0.06	7.0	21.4	5.1
7	1.58	800	133	-0.07	7.0	21.6	5.8
8	1.61	901	151	-0.08	7.0	22.0	6.4
9	1.61	1001	169	-0.08	7.0	22.0	6.9
10	1.65	1102	192	-0.09	7.0	21.8	7.5
11	1.69	1201	212	-0.10	7.1	22.1	8.0

Table 7: Parameters of constant pressure = 3 bar

er trafficar of	el -consumptible	steeper to the	司在《社经》	Established Control Control Control	e school (tenking) and school of	April Same Population
Trial num.	delta P (Pa)	Wp(W)	Expected flow rate m3/s	overall pump efficiency %	Volumetric efficiency%	Vs= 6.60E-06 (m3/rev)
1	3.12E+05	7:28/	2.20E-05 V	52106%	106.06%	6.60E-06
2	3.03E+05	11.11	3.31E-05 🗸	5 0.50%	110.74% 🗸	6.60E-06
3	3.04E+05	15.20	4.46E-05	46.06%	112.23%	6.60E-06
4	3.05E+05	18.81	5.56E-05	41.80%	111.01%	6.60E-06
5	3.06E+05	22.95	6.66E-05	40.26%	112.70%	6.60E-06
6	3.07E+05	26.61	7.73E-05	38.01%	112.07%	6.60E-06
7	3.17E+05	31.17	8.83E-05	36.67%	111.32%	6.60E-06
8	3.08E+05	33.37	9.89E-05	34.05%	109.55%	6.60E-06
9	3.09E+05	36.05	1.10E-04	32.48%	106.27%	6.60E-06
10	3.09E+05	39.14	1.21E-04	30.58%	104.40%	6.60E-06

Lendy 1887 - Pour Charles	ment has a seeman between the plant was	*Coming and				06
11	3.10E+05	41.85	A COMPANY OF THE PROPERTY OF T	Company of the contract of the	102.19%	6.60E-06
		11100	1.32E-04	28.09%	102, 1970	

Table 8 : Parameters of constant pressure = 7 bar

Private Partie	A STATE OF THE PARTY OF THE PAR	Change on the control of the control			and the second of the second o	TOVETT T.
Trial num.	delta P (Pa)	Wp(W)	Expected flow rate	overall pump	Volumetric efficiency%	Vs= 6.60E-06 (m3/rev)
1	7.12E+05	15.43	m3/s	efficiency %	99.98%	6.60E-06
2	7.03E+05	24,61	2.17E-05	57.14%	107.13%	6.60E-06
3	7.04E+05	34.03	3.27E-05	64.75%	111.24%	6.60E-06
4	7.15E+05	44.09	4.35E-05	59.70%	111.90%	6.60E-06
5	7.15E+05	52.43	5.51E-05 6.64E-05	57.26% 54,05%	110.38%	6.60E-06
6	7.06E+05	60.01	7.70E-05	53,11%	110.39%	6.60E-06
7	7.07E+05	68.34	8.80E-05	51.39%	109.85%	6.60E-06
8	7.08E+05	75.52	9.91E-05	50.01%	107.62%	6.60E-06
9	7.08E+05	81,42	1.10E-04	48.18%	104.44%	6.60E-06
10	7.09E+05	88.63	1,21E-04	46.16%	103.12%	6.60E-06
11	7.20E+05	96.00	1.32E-04	45.28%	100.93%	6.60E-06

ask ; belle & recieve

Figure 5: Flow rate against speed for 2 values of pressure: 3, 7 bar.

Figure 6 :Shaft power against speed for 2 values of pressure: 3, 7 bar.

Figure 7: Overall pump efficiency against speed for 2 values of pressure: 3, 7 bar.

Figure 8: Overall volumetric efficiency against speed for 2 values of pressure: 3, 7 bar.

Discussion

Part 1: The Effect of Delivery Pressure at Constant Speed.

The rotary vane pump is a positive displacement pump that is ideally deliver a fixed quantity of fluid with each revaluation of the control o fluid with each revaluation of the pump rotor or drive shaft, the pump performs differently for a range of delivery pressure at constant speed.

At constant speed =7 rev/s and 18 rev/s ,if the pressure difference increases then the flow rate starts to decrease that is also starts to decrease that is shown in the figure(1), but when the speed is higher the flow rate also raises at constant pressure difference.

From the figure(2), when the pressure difference increases the work done to rotate a shaft connected to the source of the source connected to the system(shaft power) increases. At constant high speed, the shaft power is much higher than low one.

From figure (3)

The best volumetric efficiency for the speed =7 rev/s is 116.55% when the pressure difference is 4.05*10^5 pa.

The best volumetric efficiency for the speed =18 rev/s is 108.72% when the pressure difference is 5.05*10^5 pa

The volumetric efficiency effect by flow rate so that the flow rate increase the volumetric efficiency increase with constant Vs. and constant speed ,then the pressure difference start to decrease. Also, the low speed values have a greater volumetric efficiency.

The overall pump efficiency affected by hydraulic power (that is affected positively by pressure difference between delivery and suction, and affected positively with flow rate) and shaft power. Increasing the flow rate will decrease the pressure difference, so that the most effective term is shaft power. If the shaft power is low then we get high overall pump efficiency From graph(4), low speed help the pump to have higher efficiency.

Part 2: The Effect of Speed at Constant Delivery Pressure.

At constant delivery pressure 3 bar and 7 bar, as shown in figure() and figure(), if the speed increases the flow rate also increases.

It is noticed form figure(5) that increasing of flow rate with increasing speed at constant delivery pressure (3 bar and 7 bar) is the same, so the value of delivery pressure does not affect very much when the increasing of flow rate is desired ,but the speed of the pump is important.

A shown in figure (6), as the speed increases, the shaft power also increases. As shown in table (7) and table (8) The hydraulic power is also increases with increasing speed, As snown in table (1) and the control of the relationship between hydraulic power and flow rate, hydraulic and that can be explained by the relationship between hydraulic power and flow rate, hydraulic power affected by delivery pressure-suction and volumetric flow rate, so when the delivery power affected by delivery pressure is constant and the speed is increasing, the flow rate will also increase so that the hydraulic power will increase.

hydraulic power will increase.

From figure (7), it is noticed that the major trend of Overall pump efficiency curve is decreasing.

with increasing speed.

The overall volumetric efficiency affected by flow rate (direct relationship) and speed of the pump (inverse relationship)

bar is 112 70% at a serial on ship)

bar is112.70% at a speed of 10.08 rev/s, And the best Overall and

And the best Overall volumetric efficiency achieved at P2=7 baris 111.90% at a speed of 8.35 rev/s.

Before these values the major trend of efficiency curve is increasing with increasing speed, but after these values the major trend of efficiency curve is decreasing with increasing the value of speed.

Conclusion

Part 1: The Effect of Delivery Pressure at Constant Speed.

-For the vane pump, increasing flow rate will affect the pressure difference between delivery and suction decreasingly.

-There is a lot of factors that help us to select a positive displacement pump at constant speed:

Flow rate, pressuredifference, volumetric and overall efficiencies.

- At constant speed, if working under low speed conditions is achieved then the overall pump efficiency will raise.

Part 2: The Effect of Speed at Constant Delivery Pressure.

- -The rate of increasing flow rate with increasing speed is the same at a different constant delivery pressure.
- -There is a lot of factors that help us to select a positive displacement pump at delivery pressure:

Flow rate, speed, volumetric and overall efficiencies.

-Increasing speed keeping higher constant value of delivery pressure yields to higher overall pump efficiency.

-Increasing speed keeping lower constant value of delivery pressure yields to higher overall

volumetric efficiency.

References

Chemical Engineering Laboratory (1) (6th ed.). (2016). Amman: University of Jordan.

Appendix

Taking the first row from each table:

At constant speed =400 rev/min

$$\Delta P = P_2 - P_1$$

= (2-(-0.05)) = 2.05 bar = 2.05*10^5 Pa

•
$$Q_v(m^3/s) = Q_v(L/min) * (\frac{1}{60*1000})$$

= $3.1*\frac{1}{60*1000} = 5.17*10^{-5}m3/s$ see you hable

•
$$W_p = \Delta P * Q_v$$

= 2.05*10^5 * 5.17*10^-5 = 10.59 W

• Expected flow rate =
$$V_S * N_P$$

 $V_S = 6.6*10^{-}6*6.73 = 4.44*10^{-}5m^3/s$

• Overall pump efficiency:
$$\eta p = (\frac{WP}{WD})*100$$

= $\frac{10.59}{28}*100\% = 37.83\%$

• Volumetric efficiency:
$$\eta v = (\frac{Qv}{VS * NP}) * 100$$

 $\frac{5.17*10^{-5}}{4.44*10^{-5}} * 100\% = 116.4\%$

At constant speed =1100 rev/min

$$\Delta P = P_2 - P_1$$

= (2-(-0.11)) = 2.11 bar = 2.11*10^5 Pa

1 16 W 12 is there any page missing

Expected Flow Rate = 404 of 6.6

= 2.67 Llmin

4.4U0×10-5315

Power P B To F.

200-1200 + 100

SKEN / 900

speed ±5

abol	e Car	£ 400	reu	min
Parin		Nm.		

istan	Shed 2 400	Lenimin	No.				
als)	Tarque Nm,	S Real Min	Powerw	P bar	1 Bar	T, °c	Fi 1/min
	0.67 Nm	404	28	-0.05	2	18-2	3.1
2	8.0	405	33	-0,05	3	18.2	3.1
3	0.92	403	39	-0.05	4	1.81	3-1
4	-Fo.1	401	45	- 0-05	5	18.2	3
State of the second state	1.22	400	51	-0.05	6	18.2	3
. 6	1.35	398	56	-0.05	7	18.2	3
1	1.52	394	63	-0,05	8	18-1	2.9
8	1.66986	39402	\$ 70	-01054	9	18.2	3
Species of species and design and	1.480	403	76	-0.05 1	16	18.2	3
10	1.94	401	80	-0.05	11	18.2	2-9
Commence of the same of the sa	2.06	399	86	+0.05	12	18.3	2.7
12	2.19	396	91	-0.05	١3	18.4	2-3
13	2.32	392 400	95 97/	-0.05	14	19.7	1-89
CONS	tant speed	1	/	3010	20 (8)		
1	1.15	1096	133	- 0.11	2	18.8	1877
2	1.30	1102.	150	0.10	3	17.2	77
3	1.34	11 03	158	-0.10	4.	18.9	1.7
4	1.44	1101	167	-0.10	5	19	7.9
5	1.51	1100	173	-0.16	6	19	7.6
6	1.66	1098	191	-0.10	7	19.1	
1	1.78	1097	264	-0.10	8		1.2
8	1.391	1100 1 00,3\$5	219	10-10	9	19.2	-
9	2.00	1100	230	-0.10	10	19.9	7
10	2.12	1097	244	-0.10	ask ;	20	+.45
11	2.24	1095	257	-0.10		So	7-3
12	2.353	10937	270 268	-0.10	12		1 + . 1
13	Contract of the last of the la	+089 1097	277 280	-0.10	13	20°	2 6.7
· · · · · · · · · · · · · · · · · · ·	, '- will		Z 1311	The state of the s		_	

P=3 bar variation of speed

	0.66	200 1	14	1021	2 . 1		1.4	
X 15	0.68	301	22	1	3,1	21.5	(,	
7			22	-0.03	3.0	21.4	2-2	
\ _	6.79	4005	33	-0.04	3 . 0	21.6	3.0	
4	0.85	505	45	-0.05	3.0	21.5	3.7	
	0.91	605	57	-0.06	3.0	21.1	4.5	
6	0.95	703	70	-0.07	3.0			_
7	1.01	863	85	-o· o7		21.4	5.2	
8					3.1	21.5	5.9	
9	1,04	४११	98	-6,08	3, 0	21.5	6,5	-
	1,06	998	111	-0.09	3 ⋅ c	21.5	7.0	
10	1.11	1103	128	-0.09	3.0	21.6	7-6	
11	1.18	1201	149	-0.10	3, 0	21.7	8.1	>
T. (E	3) P=7b	u					2.1	•

1 1	1			1			49
•	1.31	197	27	-0.05	7.1	21,7	1.3
2	1.23	297	38	-0.03	7.0	21,6	2.1
3	1,38	345	57	-0,04	7.0	21.5	29
4	1,47	501	17	-0.05	7.1	21,6	3.7
5	1.52	6034	97	-0.05	7,1	21.3	(1, 1)
6	1.58	700	113	-6.06	7.0	21,4	5.1
4	1,58	300 199	133	-0.07	7.0	21.6	5.8
8	1.61	901	151	-0.08	7,0	22.0	
9	1.61	1601	169	-0.08	7.0	27.0	6.4
10	1,65	1102	192	-0.09	7.0	21.8	7.5
11	1.69	1201	212	-6,10	7.1	22-1	8.0

30/2012018 ask

& recieve

100

The University of Jordan
School of Engineering
Chemical Engineering Department
Chemical Engineering Laboratory (1)

Experiment Number: (10)

Experiment title:

The Performance of a Radial Fan

Type of the report: Short Report

Done by

Abstract

Any pumping job can be done with roto-dynamic machines, having rotating elements called impellers. Roto-dynamic machines are classified as radial, mixed (centrifugal) or axial flow. Centrifugal machines are preferred when high pressure differences are required. Very high pressure may be produced by multi-stage radial flow machines. The air compressor for a jet engine is an example of multi-stage fan. The Objective of this experiment is to examine the performance of a radial flow rotor in air over a wide range of operating conditions for impeller with radial blades. The relationships between parameters was plotted. A sample of main results: At a speed of 1050 rpm and gate opening 100% Force(N)=1.8

Force(N)=1.8 Q (m3/s)= 0.04 delta Ps (Pa)= 9.41 Air power (W)= 3.47 Net efficiency= 0.22

Table of Contents

Results	
Results	7
Discussion	

Conclusion	
References	9
kererences	
A P	10
Appendix	

Results

Table 1: Raw data

T(K)	289.15
atm.p (pa)	99500
torque arm(m)	0.179
density	1.199

Table 2: Data and results from experimental work at speed = 1050 rpm

speed (rpm)	1050	revis =	17.5	N (rad./s)	110					
gate opening	h1(inlet) mmH2O	-h2 (suction) mmH2O	h3 (discharge) mmH2O	force (N)	h out - h In (cm H2O)	delta Ps (Pa)	Q (m3/s)	Alr power (VV)	Shaft power (W)	net efficiency
100	5	6	2	0.8	0,80	9.41	0.04	3.47	15.75	0.22
90	5	6	2	0.8	0.80	9.41	0.04	3.47	15.75	0.22
80	5	6	2	0.8	0.80	9.41	0.04	3.47	15.75	0.22
70	5	5	3	0.8	0.80	9.41	0.04	3.47	15.75	0.22
60	4	4	3	0.8	0.70	8.23	0.04	2.72	15.75	0.17
AND THE RESERVE OF THE PERSON NAMED IN COLUMN TO PERSON NAMED IN COLUM	4	4	3	0.8	0.70	8.23	0.04	2.72	15.75	0.17
50 40	3	3	4	0.8	0.70	8.23	0.03	2.35	15.75	0.15
	2	2	5	8.0	0.70	8.23	0.03	1.92	15.75	0.12
30	1	1	6	0.75	0.70	8.23	0.02	1.36	14.77	0.09
20 10	1	0	7	0.5	0.70	8.23	0.02	1.36	9.85	0.14

Table 3: Data and results from experimental work at speed = 1520 rpm

speed (rpm)	1520	rev/s =	25.33	N (rad./s)	159.24					
gate opening	h1(inlet) mmH2O	-h2 (suction) mmH2O	h3 (discharge) mmH2O		h out - h In (cm H2O)	delta Ps (Pa)	Q (m3/s)	Air power (W)	Shaft power (W)	net efficiency
100	16	18	2	1.1	2.00	23.52	0.08	15.52	31.35	0.49
90	17	18	2	1.1	2.00	23.52	0.08	16.00	31.35	0.51
80	16	17	3	1.1			0.08	15.52	31.35	0.49
70	15	16	4	1.1	2.00	23.52	0.08	15.03	31.35	0.48
60	13	15	6	1.1	2.10	23.52	0.08	14.69	31.35	0.47
50	11	12	9	1.1		24.70		13.51	31.35	0.43
40	8	9	12	1.1	2.10	24.70	0.07	11.52	31.35	0.37
30	6	7	15	1.1	2.10	24.70 25.88	0.06	10.45	31.35	0.33
20	3	4	17	1.1	2.10				31.35	0.23
10	1	2	19	1.1	2.10	24.70	0.03	7.06 4.07	31.35	0.13

Table 4 : Data and results from experimental work at speed = 2150 rpm

2150	rev/s =	35.83	N (rad./s)	225.24					
h1(inlet) mmH2O	-h2 (suction) mmH2O	h3 (discharge) mmH2O	force (N)	h out - h in (cm H2O)	delta Ps (Pa)	Q (m3/s)	Air power (W)	Shaft power (W)	net efficiency
29	30	2	2.7	3.20	37.64	0.11	33.43	108.86	0.31
28	29	3	2.6	3.20	37.64	0.10	32.85	104.83	0.31
27	28	4	2.4	3.20	37.64	0.10	32.26	96.76	0.33
25	26	6	2.2	3.20	37.64	0.10	31.04	1000	
21	23	9	2.1	3.20	37.64	0.09			0.35
18	19	14	2	3.30	38.82	0.08			0.34
14	15	16	1.9	3.10	36.46	0.07			0.34
9	11	23	1.6	3.40	39.99	0.06			0.29
5	6	26	1.5	3.20	37.64		A .	-	0.31
2	2	30	1.4	3.20					0.23
	h1(inlet) mmH2O 29 28 27 25 21 18 14 9	-h2 (suction) mmH2O 29 30 28 29 27 28 25 26 21 23 18 19 14 15 9 11 5 6	h1(inlet) mmH2O -h2 (suction) mmH2O h3 (discharge) mmH2O 29 30 2 28 29 3 27 28 4 25 26 6 21 23 9 18 19 14 14 15 16 9 11 23 5 6 26	h1(inlet) mmH2O -h2 (suction) mmH2O h3 (discharge) mmH2O force (N) 29 30 2 2.7 28 29 3 2.6 27 28 4 2.4 25 26 6 2.2 21 23 9 2.1 18 19 14 2 14 15 16 1.9 9 11 23 1.6 5 6 26 1.5	h1(inlet) mmH2O -h2 (suction) mmH2O h3 (discharge) mmH2O force (N) h out - h in (cm H2O) 29 30 2 2.7 3.20 28 29 3 2.6 3.20 27 28 4 2.4 3.20 25 26 6 2.2 3.20 21 23 9 2.1 3.20 18 19 14 2 3.30 14 15 16 1.9 3.10 9 11 23 1.6 3.40 5 6 26 1.5 3.20	h1(inlet) mmH2O -h2 (suction) mmH2O h3 (discharge) mmH2O force (N) h out - h in (cm Ps H2O) Ps H2O) 29 30 2 2.7 3.20 37.64 28 29 3 2.6 3.20 37.64 27 28 4 2.4 3.20 37.64 25 26 6 2.2 3.20 37.64 21 23 9 2.1 3.20 37.64 18 19 14 2 3.30 38.82 14 15 16 1.9 3.10 36.46 9 11 23 1.6 3.40 39.99 5 6 26 1.5 3.20 37.64	h1(inlet) mmH2O mmH2O force (N) h3 (discharge) mmH2O mmH2O mmH2O (N) h0 ut - h in (cm Ps (Pa) (m3/s)) 29 30 2 2.7 3.20 37.64 0.11 28 29 3 2.6 3.20 37.64 0.10 27 28 4 2.4 3.20 37.64 0.10 25 26 6 2.2 3.20 37.64 0.10 21 23 9 2.1 3.20 37.64 0.09 18 19 14 2 3.30 38.82 0.08 14 15 16 1.9 3.10 36.46 0.07 9 11 23 1.6 3.40 39.99 0.06 5 6 26 1.5 3.20 37.64 0.04	h1(inlet) (suction) mmH2O mmH2O (N) h3 (discharge) force (N) h2 (Pa) (m3/s) (W) 29 30 2 2.7 3.20 37.64 0.11 33.43 28 29 3 2.6 3.20 37.64 0.10 32.85 27 28 4 2.4 3.20 37.64 0.10 32.26 25 26 6 2.2 3.20 37.64 0.10 31.04 21 23 9 2.1 3.20 37.64 0.09 28.45 18 19 14 2 3.30 38.82 0.08 27.16 14 15 16 1.9 3.10 36.46 0.07 22.50 9 11 23 1.6 3.40 39.99 0.06 19.79 5 6 26 1.5 3.20 37.64 0.04 13.88	h1(inlet) mmH2O

Figure 1: (hout - hin), total air power, against (Q) at speed = 1050 rpm

Figure 2 : (hout - hin)/N2, total air power /N3, and (η) against (Q/N) at speed = 1050 rpm.

Figure 4: (hout - hin)/N2, total air power /N3, and (η) against (Q/N) at speed = 1520 rpm.

Figure 5: (hout - hin), total air power, against (Q) at speed = 2150 rpm.

Figure 6: (hout - hin)/N2, total air power /N3, and (η) against (Q/N) at speed = 2150 rpm.

Table 5:Calculated parameters for speed 1050 rpm

(h in - h out) / N/2	Air power / N/3	net efficiency	Q/N
6.49E-04	2.61E-06	0.22	4.02E-04
6.49E-04	2.61E-06	0.22	4.02E-04
6.49E-04	2.61E-06	0.22	4.02E-04
6.49E-04	2.61E-06	0.22	4.02E-04
5.68E-04	2.04E-06	0.17	3.60E-04
5.68E-04	2.04E-06	0.17	3.60E-04
5.68E-04	1.77E-06	0.15	3.11E-04
5.68E-04	1.44E-06	0.12	2.54E-04
5.68E-04	1.02E-06	0.09	1.80E-04
5.68E-04	1.02E-06	0.14	1.80E-04

Table6: Calculated parameters for speed 1520 rpm

(h in - h out) / N^2	Air power / N^3	net efficiency	Q/N
7.74E-04	3.84E-06	0.49	4.97E-04
7.74E-04	3.96E-06	0.51	5.12E-04
7.74E-04	3.84E-06	0.49	4.97E-04
7.74E-04	3.72E-06	0.48	4.81E-04
8.12E-04	3.64E-06	0.47	4.48E-04
8.12E-04	3.35E-06	0.43	4.12E-04
8.12E-04	2.85E-06	0.37	3.51E-04
	2.59E-06	0.33	3.04E-04
8.51E-04	1.75E-06	0.23	2.15E-04
8.12E-04	1.01E-06	0.13	1.24E-04
8.12E-04			

Table7: Calculated parameters for speed2150 rpm

(h in - h out) / N/2			
the distance of the 2	Air power / N/3	net efficiency	Q/N
6.19E-04	2.93E-06	0.31	4.73E-04
6.19E-04	2.87E-06	0.31	4.65E-04
6.19E-04	2.82E-06	0.33	4.56E-04
6.19E-04	2.72E-06	0.35	4.39E-04
6.19E - 04	2.49E-06	0.34	4.02E-04
6.38E-04	2.38E-06	0.34	3.72E-04
5.99E - 04	1.97E-06	0.29	3.28E-04
6.57E-04	1.73E-06	0.31	2.63E-04
6.19E-04	1.21E-06	0.23	1.96E-04
6.19E-04	7.68E-07	0.16	1.24E-04

Discussion

An impeller is a rotating component of a centrifugal pump which transfers energy from the motor,

Knowing the performance of the impeller in the fan depends on the operating parameters such as gate opening and flow rate, velocity, power,...

For speed 1050 rpm, the more value that affected with flow rate is air power, as shown in figure (1)

As flow rate increase the air power increase, while the change in height of manometer for discharge and suffer " for discharge and suction (hout-hin) is increasing slightly.

If the difference is small that will not driving the flow to increase highly.

Because the air power is function of (hout-hin) and Q. Increasing both of them will

The volume flow rate per angular velocity, at low velocity(1050 rpm) is a proptionaly parameter for the efficiency of fan that play a significant role in the performance of fan. See figure(2).

For speed 1520 rpm, also the air power and (hout-hin) is proportionally increasing with flow rate but the values is larger than speed 1050 rpm because increasing the velocity of impeller will increase the difference of (hout-hin), so the flow rate then increase and the air power follow up this increasing. See figure (3).

From figure(4),as a resulting of increasing the flow rate the efficiency of the fan increase much higher than speed 1050 rpm.

The speed of impeller is a proptionaly a parameter that control the performance of the fan.

Also the same results for velocity=2150 rpm, from figure (5, 6).

We cannot use this test to predict the performance of a geometrically similar pump, because pump is used for liquids not gases.

Conclusion

- As volumetric flow rate increases the total air power also increases.
- We cannot use this test to predict the performance of a geometrically similar pump, because pump is used for liquids not gases.
- The force (N) is approximately not affected by changing the gate opening for low speeds.
- -The net efficiency decreases as the gate opening decreases.

References

-Laboratory (1) (6th ed.). (2016). Amman: University of Jordan.

Appendix

Sample of calculation (10)

 ρ : The density of air $(\frac{kg}{m^3})$

Q: The volumetric flow rate $(\frac{m^3}{c})$

 $Pa = The atmospheric pressure \left(\frac{N}{m^2}\right)$

 $\Delta Ps = Fan total pressure (Pa)$

I = Torque = Load * r

N: Angular velocity

K: Brake constant, assuming k = 1

$$density = \frac{pa}{RT}$$

$$\rho = \frac{99500}{289.15 * 287} = 1.199 \ kg/m^3$$

$$\Delta PS = \rho. g. (h_{out} - h_{in})$$

$$\Delta Ps = \rho. g. (Row)$$

$$\Delta Ps = 1.199 * 9.81 * (2 - (-6)) * 9.80665 = 9.41 Pa$$

$$Q=1.16(\frac{hT}{Pa})^{\frac{1}{2}}$$

$$Q = 1.116 * \left(\frac{6 * 0.1 * 289.15}{99500}\right)^{\frac{1}{2}} = 0.04 \ m^3/s$$

$$Air Power = 9.81 (h_{out} - h_{in}) \times Q$$

Air Power =
$$9.81 (n_{out} - n_{th})$$

Air power = $9.81 * (2 - (-6)) * 9.80665 * 0.04 = 3.47 W$

$$Shaft\ power = I\frac{N}{K}$$

$$Shaft\ power = 0.179 * 110 * 0.8 = 15.75 W$$

The net efficiency =
$$\frac{Total\ air\ power}{Impeller\ power}$$

The net efficiency =
$$\frac{3.47}{15.75}$$
 = 0.22

$$\Delta Ps = \rho.g.(h_{out} - h_{in})$$

$$\Delta Ps = 1.199 * 9.81 * (2 - (-18)) * 9.80665 = 23.52 Pa$$

$$Q=1.16(\frac{hT}{Pa})^{\frac{1}{2}}$$

$$Q = 1.116 * \left(\frac{16 * 0.1 * 289.15}{99500}\right)^{\frac{1}{2}} = 0.08 \ m^3/s$$

$$Air Power = 9.81 (h_{out} - h_{in}) \times Q$$

$$Air\ power = 9.81 * (2 - (-18)) * 9.80665 * 0.08 = 15.52W$$

Shaft power =
$$I\frac{N}{K}$$

$$Shaft\ power = 0.179 * 159.24 * 1.1 = 31.35\ W$$

The net efficiency =
$$\frac{Total\ air\ power}{Impeller\ power}$$

The net efficiency =
$$\frac{15.52}{31.35}$$
 = 0.49

$$\Delta Ps = \rho.g.(h_{out} - h_{in})$$

$$\Delta Ps = 1.199 * 9.81 * (2 - (-30)) * 9.80665 = 23.52 Pa$$

$$Q=1.16(\frac{hT}{Pa})^{\frac{1}{2}}$$

$$Q = 1.116 * \left(\frac{2.9 * 289.15}{99500}\right)^{\frac{1}{2}} = 0.11 \, m^3/s$$

$$Air\,Power = 9.81\,(h_{out}-h_{in})\times Q$$

$$Air\ power = 9.81 * (2 - (-30)) * 9.80665 * 0.11 = 33.43W$$

Shaft power =
$$I\frac{N}{K}$$

$$Shaft\ power = 0.179 * 225.24 * 2.7 = 108.86\ W$$

The net efficiency =
$$\frac{Total\ air\ power}{Impeller\ power}$$

The net efficiency =
$$\frac{33.43}{108.86}$$
 = 0.31

The Performance of a Radial Fan Data Sheet

Speed: (2.5.6	
Temperature:	
Atmospheric pressure:	

Gate opening, %	h _i Inlet	h ₂ Suction	h ₃ Discharge	Force
100	5	6	2	0.8
90	5	6	2	0.3
80	5	6	2	0-9
70	5	5	3	0.8
60	Ч	ч	3	0.8
50	4	ч	3	0.8-
40	3.~~	3 mr	4 m	0-8
30	2 mm	2m.	B	0.95
20	lm	1 m	6m-	० चेर
10	1 m	٥	7	<i>⊳, 5</i>

21/12/18/18

Instructor signature:

Date:

ask ;; see & recieve

The Performance of a Radial Fan Data Sheet

Speed: 1520 rpm

Temperature:....

Atmospheric pressure:....

	1			
Gate opening, %	h ₁ Inlet	h ₂ — Suction	h ₃ Discharge	Force
100	16	13	2	1.1
90	17	18	2	1.1
80	16	14	3	J .J.
70	15	16	Ч	1.1
60	13	15	6	1.)
50	11	12	9	1-)
40	9	q	12	1,1
30	6	1	15	1,1
20	ğ	4	18	1.
10	21	2	19	

411212016

	•
Instructor	gronature.
monucion	oignature.

Date

The Performance of a Radial Fan Data Sheet

11.		Newstonsa	Rev In
walls	Z	53.3	

Speed: 2 150 /pm

Temperature:.....l.£....

Torque am 179 mm

Atmospheric pressure: 95

Gate opening, %	h _i Inlet	h ₂ – Suction	h ₃ Discharge	Force
100	29	30	2 3/10	2-3
90	28	29	3	2.6
80	23	28	Ч	2.4
70	25	26	6	2.2
60	21	23	9	2.1
50 .	18	19	ļч	2
40	14	15	16	1.9
30	þ	- 11	23	1.6
20	5	6	26	L5
10	2	2	30	1.4

4112/2016

Instructor	signature:

Date:

ask ;; believe & r