

Chemical Engineering Department

Chemical Engineering Laboratory (1) 0915361

Experiment Number (9)

Free and forced convection

Type of the report: short report

Instructor: prof. Ahmad Abu Yaghy

Performing Date: 15-8-2022

Submitting Date: 22-8-2022

Name	1d Number	** ** ** ** ** ** ** ** ** ** ** ** **
Laila Alameri	and the second resource of the second	
Noor Ghassan	and the state of t	
Saja Alqaisi		
Sara Albanna		-56,000

Abstract:

There are three modes for heat transfer: convection, conduction, and radiation. The convection heat transfer plays an important role in many industrial applications. The convection heat transfer is usually subdivided into free and forced convection. In the forced convection, the fluid is blown or pumped past the heated surface using a pump or a fan, while in the natural (or free) convection, fluid flow is naturally achieved by buoyancy effects, i.e., density variation in the fluid. The aim of this technical report is to comparing free and forced convection for different surfaces, determination of heat transfer coefficient (h), for free and forced convection in different geometries and comparison of heat transfer surface efficiency.

79

Table Of Content

Abstract	2
Results	4
Discussion	6
Conclusion:	7
References	.8
Calculations	.9

Table Of Tables

Table (1): Reference temperatures	4
Table (2): raw data for free convection (pinned surface)	
Table (3): raw data for forced convection	4
Table (4): properties of convection	5
Table (5): average temperature	5

Table Of Figures

Figure (1): Air velocity vs. temperature difference (V vs. (T _s -T _{in}))	۷.
Figure (2): position vs. (T P-T in)	.5

3

ask

recieve

Results:

Table (1): Reference temperatures

T ₁ (°c)	T ₂ (°c)	TD ()
24.9		T ₃ (°c)

Free convection

Table (2): raw data for free convection (pinned surface)

power	Ta	The second secon	
(w)	(Surface T _s (°c))	T ₁	Difference T _s -T _{in}
20.1	63.3	(Duct inlet (ambient) T in (°c))	(°C)
	03.3	26.7	36.6

Forced convection

Table (3): raw data for forced convection (power = 20 w)

Air velocity (m/s)	T ₂ (Surface T _s (°c))	T ₁ (Duct inlet (ambient) T _{in} (°c))	Difference T _s -T _{ir}
1.1	52.5	26.3	26.2
1.6	48	26.3	21.7
2	44.6	26.3	18.3
2.5	41.7	26.2	15.5
3	40.4	26.3	14.1

Figure (1): Air velocity vs. temperature difference (V vs. (T s - T in))

Heat transfer coefficient

Table (4): properties of convection (power = 20 w)

Duct transverse probe position (mm)	T 1 Ambient temperature (probe) T in (°c)	T 2 Heat transfer surface temperature T s (°c)	T ₃ Duct transverse probe T _p (°c)	Difference T _s -T _{in} (°c)	Difference T _p -T _{in} (°c)
0	26.7	39.7	27.9	13	1.2
1	26.7	39.6	27.9	12.9	1.2
2	26.8	39.6	27.9	12.8	1.1
3	26.7	39.5	27.6	12.8	0.9
4	26.7	39.4	27.4	12.7	0.7
5	26.7	39.4	27.2	12.7	0.5
2012 ALASTO	26.6	39.4	27.0	12.8	0.4
6	26.6	39.4	27.9	12.8	1.3
7 8	26.5	39.3	27.9	12.8	1.4

Table (5): average temperature (power = 20 w)

Tuoie (b). w. tuo		TOTAL STATE OF THE	T T ()		
Γ	T _{in} (°c)	T s (°c)	$T_{p}(^{\circ}c)$	T_{s} - $T_{in}(c)$	T _p -T _{in} (°c)
-	PARTICIPATION OF THE PARTICIPA	39.5	27.6	12.8	0.97
- 1	26.7	37.3	21.0	1 112	- NO. 1

Logarithmic mean temperature difference T_m = 53.76 C heat coefficient h_c =13.77 W/m^2 K

Figure (2): position vs. (T P-T in)

5

Discussion

Pinned surface was used since its surface area more that the flat plate or finned plate results to more efficient transfer heat.

In free convection the heated air moves naturally when buoyant force effecting on it is greater than the gravity force, that happen when the heated air density decrease, and that takes a lot of time.

On the other hand, there is air moving the heated air in force convection, as you can see in figure 1 as the air velocity increases the temperature different between inlet and surface temperature decreases, which means the air temperature didn't rise that much while moving through the pins resulting to higher driving force and higher efficiency for transferring heat.

The pins temperature decrease moving far from the base which means the heat transfer also decreases.

The heat coefficient calculated in this experiment h_c =13.7 W/m^2 K is in the forced convection range

Conclusion:

- The rate of heat transfer in forced convection is higher which can be controlled by external equipment.
- The system with forced convection has a higher overall heat transfer coefficient than free convection
- Extended surfaces enhanced rate of heat transfer, pin surface shows higher heat transfer than other surfaces

calculations

Sample of calculation

For free convection:

Difference(T_s-T_{in})=63.3-26.7=36.6°C

For force convection:

Difference(T_s-T_{in})=50.5-26.3=26.2°C

For Heat transfer coefficient:

 $Difference(T_s-T_{in})=39.7-26.7=13^{\circ}\mathrm{C}$

 $Difference(T_p-T_{in})=27.9-26.7=1.2^{\circ}\mathrm{C}$

 $T_m = (T_{out} - T_{in})/log((T_s - T_{in})/(T_s - T_{out})) = (0.97 - 26.7)/log((39.5 - 26.7)/(39.5 - 0.97)) = 53.76 \ C$

 $hc=Q/(A_s*T_m)=20/(0.27*53.76)=13.77 W/m^2 K$