

Combine Heat and Mass Transfer Operations

Lec 2: Liquid-Liquid Extraction-part 2

ContentExtraction Equipments

Prof. Zayed Al-Hamamre

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Content

Extraction Equipment

Principal references: Chapter 12 in C.J. Geankoplis book and Chapter 8 in Henley, Seader & Roper book

Extraction Equipment

- Different mechanical devices are used in liquid-liquid extraction such as:
 - 1. The simplest is a mixer/settler, or decanter, in which the two liquid phases are separated.
 - 2. Plate towers, packed towers, and mechanically agitated mixers (rotating disk contactors)
- Concept of operation: Batchwise or continuous operation
 - Feed liquid + solvent (put in agitated vessel) = layers (to be settled and separated)
 - Extract the layer of solvent + extracted solute
 - Raffinate the layer from which solute has been removed
 - Extract may be lighter or heavier than raffinate.

Tel. +962 6 535 5000 | 22888

Continuous flow – more economical for more than one contact process

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Major Types of Extraction Equipment **Mixer Settlers** Column Centrifugal Contactors Used primarily in the metals Used primarily in the industry due to: pharmaceutical industry due to: - Large flows Statio Agitated - Large flows - Intense mixing Intense mixing - Long Residence time - Long Residence time - Corrosive fluids - Corrosive fluids - History - History **Packed** Tray Pulsed Rotary Spra Reciprocating Used in: Rarely used Used in: Used in: Used in: - Refining - Refining - Nuclear - Chemicals - Petrochemicals - Petrochemicals Inorganics - Petrochemicals - Chemicals - Refining - Pharmaceutical Example: Example: Example: Example: Example: - Random - Packed Karr - Structured - Tray - Scheibel - Disc & Donut - SMVPTM Chemical Engineering Department | University of Jordan | Amman 11942, Jordan

Mix / Decant Tank

Characteristics

- Mix Settle Phase separate in a single tank
- · Batch Processing only
- Requires multiple solvent additions for more than one stage (crossflow operation)
- Typically used for small capacity operations or intermittent processing

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Mixer / Settlers

Mixing

Settling Chamber

Characteristics

- · Handle very high flowrates
- Good for processes with relatively slow reactions (residence time required)
- Provide intense mixing to promote mass transfer
- Require large amount of floor space
- Suitable when few theoretical stages required
- Large solvent inventory (and losses)

Mixer / Settlers

Figure 10.41 Flowsheet of three-stage countercurrent mixer-settler extraction cascade. Treybal (1980)

Figure 8.2 Compartmented mixing vessel with variable-speed turbine agitators.

[Adapted from R.E. Treybal, *Mass Transfer*, 3rd ed., McGraw-Hill, New York (1980).]

Seader & Henley (2006)

7

Centrifugal Extractor

Figure 10.56 Podbielniak centrifugal extractor (schematic). (Podbielniak, Inc.)

Characteristics

- Countercurrent flow via centrifugal force
- Low residence time ideally suited for some pharmaceutical applications
- Handles low density difference between phases
- Provide up to several theoretical stages per unit
- High speed device requires maintenance
- Susceptible to fouling and plugging due to small clearances

Packed Column

Characteristics

- High capacity:
 20-30 M³/M²-hr (Random)
 500-750 gal/ft²-hr (Random)
 40-80 M³/M²-hr (Structured)
 1,000-2,000 gal/ft²-hr (Structured)
- Poor efficiency due to backmixing and wetting
- Limited turndown flexibility
- Affected by changes in wetting characteristics
- Limited as to which phase can be dispersed
- Requires low interfacial tension for economic usefulness
- · Not good for fouling service

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Packed Column

Packed Column

Non-Structured

Structured

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Sieve Tray Column

Characteristics

- High capacity: 30-50 M³/M²-hr 750-1,250 gal/ft²-hr
- Good efficiency due to minimum backmixing
- Multiple interfaces can be a problem
- Limited turndown flexibility
- Affected by changes in wetting characteristics
- Limited as to which phase can be dispersed

Sieve Tray Column

Extractor Sieve Tray

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Sieve Tray Column

Spray column

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Spray column

Rotating Disk Contractor (RDC) Extractor

Characteristics

- Reasonable capacity: 20-30 M³/M²-hr
- Limited efficiency due to axial backmixing
- Suitable for viscous materials
- · Suitable for fouling materials
- Sensitive to emulsions due to high shear mixing
- Reasonable turndown (40%)

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Rotating Disk Contractor (RDC) Extractor

- (e) rotating-disk-contactor (RDC);
- (f) asymmetric rotating-disk contactor
- (ARD); (g) section of ARD contactor;

Scheibel Column

Characteristics

- Reasonable capacity: 15-25 M³/M²-hr 350-600 gal/ft²-hr
- High efficiency due to internal baffling
- Good turndown capability (4:1) and high flexibility
- Best suited when many stages are required
- Not recommended for highly fouling systems or systems that tend to emulsify

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Scheibel Column

Columns with Mechanically Assisted Agitation

Figure 8.7 Commercial extractors with mechanically assisted agitation:

- (a) Scheibel column—first design;
- (b) Scheibel column—second design;

Scheibel Column Internal Assembly

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Karr Reciprocating Column

Characteristics

- Highest capacity: 30-60 M³/M²-hr 750-1,500 gal/ft²-hr
- · Good efficiency
- Good turndown capability (4:1)
- · Uniform shear mixing
- Best suited for systems that emulsify

Karr Reciprocating Column

Figure 8.7 (Continued) (j) Karr reciprocating-plate column (RPC); (k) Graesser raining-bucket (RTL) extractor.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Karr Column Plate Stack Assembly

Pulsed Extractor

Characteristics

- Reasonable capacity: 20-30 M³/M²-hr
- Best suited for nuclear applications due to lack of seal
- Also suited for corrosive applications since can be constructed out or non-metals
- Limited stages due to backmixing
- Limited diameter/height due to pulse energy required

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Comparison Plot of Various Commercial Extractors

Graesser = Raining Bucket MS = Mixer Settler SE = Sieve Plate FK = Random Packed PFK = Pulsed Packed PSE = Pulsed Sieve Plate RDC = Rotating Disc Contactor RZE = Agitated Cell Karr = Karr Recipr. Plate Kuhni = Kuhni Column Scheibel = Scheibel Column

Column Selection Criteria Static Column

A static column design may be appropriate when:

- Interfacial tension is low to medium: up to 10-15 dynes/cm
- Only a few theoretical stages are required, and reduction in S/F is not an economic benefit
- No operational flexibility required
- There is a large difference in solvent to feed rates

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Column Selection Criteria Agitated Column

Agitated columns are generally more economical when:

- More than 2-3 theoretical stages are required
- Interfacial tension is moderate to high, although low interfacial tensions may also be economical
- A reduction in solvent usage is beneficial to the process economics
- The process requires a wide turndown as well as the ability to handle a range of S/F ratios

Column Selection Criteria Rotating Disc Contactor (RDC)

- Systems with moderate to high viscosity, i.e. > 100 cps
- Systems that are residence time controlled, for example, slow mass transfer rate with few theoretical stages required
- Systems with a high tendency towards fouling

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Column Selection Criteria Scheibel Column

- Systems that require a large number of stages due to either theoretical stage requirements or low mass transfer rates
- Low volume applications in which a relatively small column is required
- Systems that process relatively easily, without a tendency to emulsify and/or flood

Column Selection Criteria Karr Reciprocation Plate Column

- Difficult systems that tend to emulsify and/or flood easily
- Systems in which the hydraulic behavior varies significantly through length of the column
- Sometimes requiring non-metallic internals, such as Teflon due to wetting characteristics or corrosive materials
- Fouling applications that may have tars formations and/or solids precipitation

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

The Three Cornerstones of Successful Extraction Applications

Selection Based on:

- Sound thermodynamic principles
- Sound economic principles
 - Availability
 - Recoverability
- Sound environmental principles
 - Toxicity
 - Safety

Testing Based on:

- Actual feed stocks
- Full process including solvent recovery
- Wide range of operating conditions

Scale-Up Based on:

- Proven techniques
- Proper safety factors

Table 8.3 Advantages and Disadvantages of Different Extraction Equipment

Class of Equipment	Advantages	Disadvantages	
Mixer-settlers	Good contacting Handles wide flow ratio Low headroom High efficiency Many stages available Reliable scale-up	Large holdup High power costs High investment Large floor space Interstage pumping may be required	
Continuous, counterflow contactors (no mechanical drive)	Low initial cost Low operating cost Simplest construction	Limited throughput with small density difference Cannot handle high flow ratio High headroom Sometimes low efficiency Difficult scale-up	
Continuous, counterflow contactors (mechanical agitation)	Good dispersion Reasonable cost Many stages possible Relatively easy scale-up	Limited throughput with small density difference Cannot handle emulsifying system Cannot handle high flow ratio	
Centrifugal extractors	Handles low-density difference between phases Low holdup volume Short holdup time Low space requirements Small inventory of solvent	High initial costs High operating cost High maintenance cost Limited number of stages in single unit	

33

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Table 8.2 Maximum Size and Loading for Commercial Liquid–Liquid Extraction Columns

Column Type	Approximate Maximum Liquid Throughout, m ³ /m ² -h	Maximum Column Diameter, m
Lurgi tower	30	8.0
Pulsed packed	40	3.0
Pulsed sieve tray	60	3.0
Scheibel	40	3.0
RDC	40	8.0
ARD	25	5.0
Kuhni	50	3.0
Karr	100	1.5
Graesser	<10	7.0

Above data apply to systems of:

- 1. High interfacial surface tension (30 to 40 dyne/cm).
- 2. Viscosity of approximately 1 cP.
- 3. Volumetric phase ratio of 1:1.
- 4. Phase-density difference of approximately 0.6 g/cm³.

34

Possible Extraction Column Configurations

Factors Effecting which Phase is Dispersed

Flow Rate

- For Sieve Tray and Packed Columns disperse the higher flowing phase
- For all other columns disperse lower flowing phase

Viscosity

For efficiency – disperse less viscous phase

For capacity – disperse more viscous phase

Factors Effecting which Phase is Dispersed

Surface Wetting

 Want the continuous phase to preferentially set the internals – this minimizes coalescence and therefore maximizes interfacial area.

Importance of maintaining droplets

Assume – 30% holdup of dispersed phase in 1 M³ of solution

Droplet Diameter [µ]	Droplet Volume [M³]	Number Droplets	Droplet SA [M²]	Interfacial Area [M²/M³]
100	0.3	7.16x10 ¹⁰	1.26x10 ⁻⁷	9022
300	0.3	2.65x10 ⁹	1.13x10 ⁻⁶	2995
500	0.3	5.73x10 ⁸	3.14x10 ⁻⁶	1796

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Factors Effecting which Phase is Dispersed

Marangoni Effect

 Coalescence is enhanced by mass transfer from droplets —— continuous phase

Mass Transfer Direction

Dispersed \rightarrow Continuous (d \rightarrow c)

- Droplets tend to coalesce
- Must be counteracted by additional energy

Continuous
$$\rightarrow$$
 Dispersed (c \rightarrow d)

- Droplets tend to repel each other
- Less energy required to maintain dispersion

Interface Behavior

Actions to control unstable interface

As extraction proceeds, interface normally grows in thickness and forms a "rag" layer that stabilizes at some thickness

If rag layer continues to grow, some action must be taken

Rag Draw

Continuously withdraw a portion of the interface and pass through a filter to remove interfacial contamination

Reverse Phases

Often a stable interface can be controlled by reversing which phase is dispersed

Tel. +962 6 535 5000 | 22888

Entrainment

Entrainment involves carrying over a small portion of one phase out the wrong end of the column.

Entrainment is controlled by:

- 1.) Increased settling time inside the column
- 2.) Coalescer inside the column
- 3.) Coalescer external to the column

Flooding

Flooding – the point where the upward or downward flow of the dispersed phase ceases and a second interface is formed in the column.

Flooding can be caused by:

Increased continuous phase flow rate which increases drag on droplets

Flooding

Flooding can be caused by:

- Increased agitation speed which forms smaller droplets which cannot overcome flow of the continuous phase
- Decreased interfacial tension forms smaller drops same effect as increased agitation

Safety concerns

Liquid-liquid (solvent) extraction units safety concerns can be reduced by:

- Using a high-ash point solvent
- Avoid static electricity generation (sparking)
- Slow liquid ow rates in pipes < 1 m/s to avoid static build-up
- Use conductive piping, not plastics or rubbers
- Feed organic phase from the bottom of tank, not the side, to avoid splashing
- Avoid any areas for air pockets to form
- Avoid generating mists of solvent
- Electrical circuits must be rated explosion proof
- Strict rules related to mobile electronics, welding, etc in the neighbourhood
- Conduct full HAZOP and re assessment
- Do not allow trenches/dips for the solvent phase to accumulate, when spills occur