Combined Heat and Mass Transfer

Lec 7: Humidification-Part 3

Content

Theory and calculation of water cooling towers, Continuous countercurrent adiabatic water cooling, Design of water cooling tower using film mass transfer coefficients,

Prof. Zayed Al-Hamamre

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Content

- Theory and calculation of water cooling towers
- Continuous countercurrent adiabatic water cooling
- Design of water cooling tower using film mass transfer coefficients
- Energy Efficiency Opportunities

Principal references: Chapter 9 (Drying) and Chapter 10 (Gas-liquid separation Processes) in C.J. Geankoplis book;

Chapter 19 (Humidification operations) in McCabe et al. book; Chapter 7 (Humidification operations) in Treybal book;

Chapter 18 Seader & Roper book.

Theory and calculation of water cooling towers

In the figure:

- There is no driving force for mass transfer in the liquid phase, since water is a pure liquid.
- The bulk gas phase with a driving force in the gas phase of Δ H= (H₁- H₅) kg H₂0/kg dry air
- The temperature driving force is
 ΔT_L = T_L T_i; in the liquid phase
 and
 ΔT_G = T_i T_G K or °C in the gas
 phase.

Temperature and concentration profiles:

- o Latent heat also leaves the interface in the water vapor, diffusing to the gas phase.
- The sensible heat flow from the liquid to the interface equals the sensible heat flow in the gas plus the latent heat flow in the gas

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Theory and calculation of water cooling towers

- These profiles occur in the upper part of the cooling tower.
- In the lower part, the bulk water temperature (T_L) my be below the dry bulb temperature (T_G) . Then, the direction of sensible heat flow is reversed.

• Define the following:

L= water flow, kg water/s·m²

 T_1 = water temperature, °C or K

G = dry air flow rate, $kg/s \cdot m^2$

T_G = air temperature, °C or K

H = Humidity of air, kg water/kg dry air*

H_y = enthalpy of air-water vapor mixture, J/kg dry air

 λ_o =latent heat of water, J/kg

 c_S = humid heat = $c_I + c_G^*H$

The enthalpy, H_v given by:

$$|H_{y} = \overline{c_{s}(T - T_{o}) + H\lambda_{o}}|$$

$$= (1.005 + 1.88H)10^{3}(T - \theta) + 2.501 \times 10^{6} H$$

*Humidity, H can be retrieved from the humidity chart

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Continuous countercurrent adiabatic water cooling

- Assumptions
 - i. Flow rate of gas and liquid water is assumed constant since only a small water evaporated (1-5%).
 - ii. c_1 is assumed constant at $4.187 \times 10^3 \text{ J/kg} \cdot \text{K}$
- Perform the energy/heat balance:

Heat emitted=Heat absorbed

- 1) Heat balance for dashed line box making a heat balance for the dz column height :
 - → Total sensible heat transferred from bulk fluid to interface;

$Lc_LdT_L=GdH_y=h_L\cdot a\cdot dz(T_L-T_i)$

Considering the two terms to left, Integration

$$G(H_y-H_{y1})=Lc_L(T_L-T_{L1})$$

Rearrange the above Eq. to have the following operating line Eq.:

$$H_{y} = (H_{y1} - T_{LI} \frac{Lc_{L}}{G}) + \frac{Lc_{L}}{G} T_{L}$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Continuous countercurrent adiabatic water cooling:

When plotted on a chart of $H_{\scriptscriptstyle y}$ versus $T_{\scriptscriptstyle i}$, this Equation is a straight line

$$\int_{\text{Intercept}} \frac{1}{H_{y1}} - T_{L1} \frac{Lc_L}{G} \quad ; \quad \text{Slope} = \frac{Lc_L}{G}$$

Also, making an overall heat balance over both ends of the tower,

$$G(H_{y2}-H_{y1})=Lc_{L}(T_{L2}-T_{L1})$$

 \rightarrow To draw the operating line we need either two points or one point and slope (Lc₁/G).

1. Draw the equilibrium curve: the enthalpy of saturated air versus the dew point temperature T_L using:

$$H_{yi} = c_S(T_L - T_0) + H_i \lambda_0$$

where the T_0 is the base temperature:

 T_0 =0 °C : λ_0 =2502.3 kJ/kg water T_0 =32 °F : λ_0 =1075.8 Btu/lbm water

$$c_S = 1.005 + 1.88 H_i$$
; kJ/(kg dry air.K)
= $0.24 + 0.45 H_i$; btu/(lbm dry air.°F)

$$H_{yi} = (1.005 + 1.88 H_i)10^3 (T-0) + 2.501 \times 10^6 H_i$$
, J/kg air

 H_i is the saturated humidity picked up from the psychrometric chart at T_L .

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Continuous countercurrent adiabatic water cooling:

TABLE 10.5-1. Enthalpies of Saturated Air-Water Vapor Mixtures (0°C Base Temperature)

					$H_{\mathbf{y}}$		
T_L		btu	J	7	$\Gamma_{\!\scriptscriptstyle L}$	btu	J
°F	°C	lb, dry air	kg dry air	°F	°C	lb _m dry air	kg dry air
60	15.6	18.78	43.68×10^3	100	37.8	63.7	148.2×10^3
80	26.7	36.1	84.0×10^{3}	105	40.6	74.0	172.1×10^{3}
85	29.4	41.8	97.2×10^{3}	110	43.3	84.8	197.2×10^3
90	32.2	48.2	112.1×10^3	115	46.1	96.5	224.5×10^{3}
95	35.0	55.4	128.9×10^3	140	60.0	198.4	461.5×10^{3}

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Draw the operating line Eq.:

$$H_{y} = (H_{y1} - T_{LI} \frac{Lc_{L}}{G}) + \frac{Lc_{L}}{G}T_{L}$$

- Knowing the entering air conditions T_{G1} and H₁, the enthalpy of this air Hy1 is calculated
- o The point H_{y1} and T_{L1} (desired leaving water temperature) is plotted as one point on the operating line (T_{L1} and H_{y1})

Intercept =
$$H_{y1} - T_{L1} \frac{Lc_L}{G}$$
; Slope = $\frac{Lc_L}{G}$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Tel. +962 6 535 5000 | 22888

Continuous countercurrent adiabatic water cooling

We know from mass transfer course, that the flux, N_A, for species A (water vapor) diffusing through stagnant gas (air) is:

$$N_A = k_y (y_{A,i} - y_{A,G}) = k_G (P_{A,i} - P_{A,G})$$
 $k_y = k_G P$

where k_G is gas-phase film mass transfer coefficient in kgmol/(s.m².Pa), $P_{A,i}$ and $P_{A,G}$ is the water vapor partial pressure at the interface and in the bulk gas-phase, respectively. While y is water vapor mole fraction.

- The mass-transfer interfacial area between air and water droplets is not known.
- This film mass-transfer interfacial area is different from the surface area of packing. Here, a quantity (a_M), defined as interfacial area per volume of packing section, is combined with the gas-phase mass transfer coefficient, k_G, to give a volumetric film mass transfer coefficients defined as (k_G a_M) in kgmol/(s.m³.Pa).

Now the volumetric diffusion rate of water vapor, N_{A,vol} is:

$$N_{A,vol} = k_y a_M (y_{A,i} - y_{A,G}) = k_G a_M (P_{A,i} - P_{A,G})$$

The relationship between humidity and mole fraction is:

$$y = \frac{H/M_A}{1/M_B + H/M_A}$$

- \bullet where M_{A} and M_{B} is the molecular weight of water vapor and air, respectively.
- Since *H* is small, an approximation of the relationship is:

$$y \cong \frac{M_B H}{M_A} \xrightarrow{\left[N_{A,vol} = k_y a_M (y_{A,i} - y_{A,G})\right]} N_{A,vol} = \frac{M_B}{M_A} k_y a_M (H_i - H_G)$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Continuous countercurrent adiabatic water cooling:

Where;

 H_{i} is the humidity of the gas at the interface in kg water/kg dry air, and H_{G} is the humidity of the gas in the bulk gas phase in kg water/kg dry air

Temperature and concentration profiles

> The sensible heat flow from the liquid to the interface = the sensible heat flow in the gas + the latent heat flow in the gas

$$(a) = (b) + (c)$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Continuous countercurrent adiabatic water cooling:

> The latent heat in the water vapor being transferred over volume dv=Adz height column is:

$$dQ_{\lambda} = N_{A,vol} \lambda_0 M_A dV$$

$$dV = dzA$$

$$N_{A,vol} = M_B k_y a_M (H_i - H_G) / M_A$$

$$dQ_{\lambda} = M_B k_y a_M (H_i - H_G) \lambda_0 A dz$$

> Further, the rate of sensible heat transfer (convective heat transfer rate in gas phase) over volume dv =Adz is:

$$dQ_{Conv} = h_G \cdot a_{H,G} \cdot dz \cdot A (T_i - T_G)$$

$$dQ = dQ_{\lambda} + dQ_{Conv}$$

$$dq = \frac{dQ}{A} = \left[M_B k_y a_M (H_i - H_G) \lambda_0 + h_G a_{H,G} (T_i - T_G) \right] dz$$

➤ It is found that for water vapor-air mixture the experimental value of which is called the **psychrometric ratio** is closed to **humid heat** c_s:

$$(h_G a_{H,G}/M_B k_y a_M)$$

$$c_S \cong \frac{h_G a_{H,G}}{M_B k_y a_M} \xrightarrow{k_y = k_G P} c_S \cong \frac{h_G a_{H,G}}{M_B P k_G a_M} \text{ (Lewis relation)}$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Continuous countercurrent adiabatic water cooling:

• Using the above Lewis relation:

$$dq = \left[M_B k_y a_M (H_i - H_G) \lambda_0 + h_G a_{H,G} (T_i - T_G) \right] dz$$

$$c_S \cong \frac{h_G a_{H,G}}{M_B P k_G a_M}$$

$$dq = M_B P k_G a_M \left[H_i \lambda_0 + c_S T_i - (c_S T_G + \lambda_0 H_G) \right] dz$$

ullet adding and subtracting $c_{S}T_{0}$ inside the bracket of the above Eq.:

$$dq = M_B P k_G a_M [c_S (T_i - T_0) + H_i \lambda_0 - (c_S (T_G - T_0) + \lambda_0 H_G)] dz$$

$$H_y = c_S (T_G - T_0) + \lambda_0 H_G$$

 $|H_{_V} = c_{_S}(T_G - T_0) + \lambda_0 H_{_G}|$ Enthalpy of water vapor-air mixture at $T_{_{\mathbf{G}}}$

$$H_{yi} = c_S(T_i - T_0) + H_i \lambda_0$$
 Enthalpy of water vapor-air mixture at T_i

But

$$dq = GdH_y$$

$$Z = \frac{G}{M_B P k_G a_M} \int_{H_{y1}}^{H_{y2}} \frac{dHy}{H_{yi} - H_y}$$
 Design Eq. of the cooling tower

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Continuous countercurrent adiabatic water cooling

HTU ≡ Height of a transfer unit NTU

■ Number of transfer units

The enthalpy, H_{vi}, at the interface temperature T_i is determined from:

$$dq = M_B P k_G a_M \left[H_{yi} - H_y \right] dz$$

$$\downarrow \left[dq = h_L a_{H,L} (T_L - T_i) dz \right]$$

$$\frac{H_{yi} - H_y}{T_i - T_L} = -\frac{h_L a_{H,L}}{M_B P k_G a_M}$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

- > For getting small approach, cooling tower height must be increased.
- > To achieve zero (0) approach theoretically, infinite packing height is needed.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Continuous countercurrent adiabatic water cooling

Desired leaving water temperature

24

Design of water cooling tower using film mass transfer coefficients: Procedure

1. Draw the equilibrium curve:

o The enthalpy of saturated air H_{γ} is plotted versus T_i on an H versus T plot. This enthalpy is calculated using the equation

$$H_{vi} = (1.005 + 1.88 H_i)10^3 (T-0) + 2.501 \times 10^6 H_i$$
, J/kg air

 H_i is the saturated humidity picked up from the psychrometric chart for a given temperature.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Design of water cooling tower using film mass transfer coefficients: Procedure

2. Draw the operating line:

Use the operating line equation

$$H_{y} = (H_{y1} - T_{L1} \frac{Lc_{L}}{G}) + \frac{Lc_{L}}{G}T_{L}$$

and/or the overall steady-state heat balance over the entire cooling tower:

$$G(H_{y2} - H_{y1}) = Lc_L(T_{L2} - T_{L1})$$

 H_{y1} and H_{y2} is the gas mixture enthalpy at T_{G1} and T_{G2} , respectively. \rightarrow To draw the operating line we need either two points or one point and slope (Lc_I/G).

Design of water cooling tower using film mass transfer coefficients

3. Draw lines with slope:

$$\frac{H_{yi} - H_{y}}{T_{i} - T_{L}} = -\frac{h_{L} a_{H,L}}{M_{B} P k_{G} a_{M}} = \text{Slope} = \frac{H_{yi1} - H_{y1}}{T_{i1} - T_{L1}} = \frac{H_{yi2} - H_{y2}}{T_{i2} - T_{L2}}$$

- Select some value of T_i and read H_{vi} from the equilibrium curve.
- Select some value of T_L and calculate H_v from the above equation.
- Draw a line pass through the points (T_i, H_{vi}) and (T_L, H_v) this line must have slope of $h_i a_{H_i} / (M_B P k_G a_M)$.
- At 6 to 8 locations, draw parallel lines (slope= $h_L a_{H,L} / (M_B P k_G a_M)$ from T_{L1} to T_{L2} to read enthalpies H_{vi} from equilibrium curve.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Design of water cooling tower using film mass transfer coefficients

- 4. Calculate the number of transfer units (NTU):
- Use Enthalpy vs. T_L graph to find the driving force $H_{\gamma i}$ - H_{γ} for various T_L value from T_{L1} to T_{L2} .
- Calculate $1/(H_{vi}-H_{v})$ for various T_{l} value from $T_{l,1}$ to $T_{l,2}$.
- Perform graphical or numerical integration to calculate NTU:

$$NTU = \int_{H_{y1}}^{H_{y2}} \frac{dH_{y}}{H_{yi} - H_{y}}$$

5. Calculate the height of a transfer unit umber of transfer units (HTU):

$$HTU = \frac{G}{M_B P k_G a_M}$$

6. Calculate the height of the cooling tower: $Z = (H\overline{TU})(NTU)$

Example

A packed countercurrent water-cooling tower using gas flow rate of 1.356 kg dry air/(s.m²) and water flow rate of 1.356 kg (s.m²). The water is cooled from 43.3 to 29.4 °C. The entering air at 29.4 °C has a wet bulb temperature of 23.9 °C. The gas film mass-transfer coefficient is estimated as 1.207×10^{-7} kgmol/(s.m³.Pa). $h_{La_{H,L}}/(M_BPk_Ga_M)$ has a value of 41.87 kJ/(kg.K). The tower operates at 1 atm. Calculate the Range, The approach, the tower effectiveness, and the height of the packed tower.

Solution:
$$G = L = 1.356 \text{ kg/(s.m}^2)$$
 $T_{L1} = 29.4 \,^{\circ}\text{C}$ $T_{L2} = 43.3 \,^{\circ}\text{C}$

$$T_{G1} = 29.4 \,^{\circ}\text{C}; T_{WB1} = 23.9 \,^{\circ}\text{C}$$
 $k_G a_M = 1.207 \times 10^{-7} \,\text{kmol/(s.m}^3)$

Range =
$$T_{L2} - T_{L1} = 43.3 - 29.4 = 13.9$$
 °C

Approach =
$$T_{L1} - T_{WB,1} = 29.4 - 23.9 = 5.5$$
 °C

Effectivness =
$$100 \times \text{Range}/0(\text{Range} + \text{Approach}) = 71.6\%$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Solution

Height of the packed tower.

1. Draw the equilibrium curve: use saturated humidity curve in the psychrometric chart and enthalpy Eq. to get:

T_L	H_{vi} , kJ/kg
15.6	43.7
26.7	84.0
29.4	97.2
32.2	112.1
35.0	128.9
37.8	148.2
40.6	172.1
43.3	197.2
46.1	224.5

Chemical Engineering
Tel. +962 6 535 5000 | 22888

2. Draw the operating line:

Solution Cont.d

2. Draw the operating line:

$$c_S = 1.005 + 1.88H_1 = 1.005 + 1.88(0.0165) = 1.036 \text{ kJ/(kg dry air.K)}$$

$$H_{v1} = c_s(T_{G1} - T_0) + H_i\lambda_0 = 1.036(29.4 - 0) + (0.0165)(2502.3) = 71.7 \text{ kJ/kg}$$

Apply overall steady-state heat balance over the entire cooling to get H_{y2} :

$$G(H_{y2} - H_{y1}) = Lc_L(T_{L2} - T_{L1})$$

$$G = L = 1.356 \text{ kg/(s.m}^2)$$

$$T_{L1} = 29.4 \text{ °C}$$

$$T_{L2} = 43.3 \text{ °C}$$

$$H_{y1} = 71.7 \text{ kJ/kg}$$

$$H_{y2} = 129.9 \text{ kJ/kg}$$

We have two points enough to draw the operating line:

$$(T_{L1}, H_{y1}) = (29.4 \, ^{\circ}\text{C}, 71.7 \, \text{kJ/kg})$$
 $(T_{L2}, H_{y2}) = (43.3 \, ^{\circ}\text{C}, 129.9 \, \text{kJ/kg})_{32}$ Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

2. Draw the operating line:

$$(T_{L1}, H_{y1}) = (29.4 \text{ °C}, 71.7 \text{ kJ/kg})$$
 $(T_{L2}, H_{y2}) = (43.3 \text{ °C}, 129.9 \text{ kJ/kg})$

Chemical Engineering Department | Oniversity of Jordan | Aminan 11942, Jordan Tel. +962 6 535 5000 | 22888

Solution Cont.d

3. Draw lines with constant slope:

- For example, at $T_i = 35$ °C, from the equilibrium curve $H_{vi} = 128.9$ kJ/kg.
- at T_L= 36 °C, calculate H_y from:

$$\frac{H_{yi} - H_{y}}{T_{i} - T_{L}} = \frac{128.9 - H_{y}}{35-36} = -\frac{h_{L} a_{H,L}}{M_{B} P k_{G} a_{M}} = -41.87 \text{ kJ/(kg.K)}$$

$$H_{y} = 87.03 \text{ kJ/kg}$$

Draw a line passes through the points (35 °C, 128.9 kJ/kg) and (36 °C, 87.03 kJ).

3. Draw lines with constant slope:

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Solution Cont.d

4. Calculate the number of transfer units (NTU):

 \bullet At 6 to 8 locations, draw parallel lines as shown below from T_{L1} to T_{L2} to read enthalpies H_{vi} from equilibrium curve

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

4. Calculate the number of transfer units (NTU):

H _{vi} (kJ/kg)	H _v (kJ/kg)	H _{vi} -H _v (kJ/kg)	1/(H _{vi} - H _v); (kg/kJ)
94.4	71.7	22.7	0.0441
108.4	83.5	24.9	0.0402
124.4	94.9	29.5	0.0339
141.8	106.5	35.3	0.0283
162.1	118.4	43.7	0.0229
184.7	129.9	54.8	0.0182

• Using Trapezoidal rule of numerical integration:

$$NTU = \int_{H_{y1}}^{H_{y2}} \frac{dH_y}{H_{yi} - H_y} \cong 1.82$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Solution Cont.d

5. Calculate the height of a transfer unit (HTU):

HTU =
$$\frac{G}{M_B P k_G a_M}$$
 = $\frac{1.356}{(29)(101325)(1.207 \times 10^{-7})}$ = 3.82 m

6. Calculate the height of the cooling tower:

$$Z = (HTU)(NTU) = (3.82)(1.82) = 6.96 \text{ m}$$

Minimum value of air flow G_{min}:

Minimum air flow gives maximum slope of the operating line Eq.

$$H_{y} = (H_{y1} - T_{L1} \frac{Lc_{L}}{G}) + \frac{Lc_{L}}{G} T_{L}$$

$$Slope_{max} = \frac{Lc_{L}}{G min}$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Minimum value of air flow G_{min}

- Minimum value of air flow G_{min}:
- For actual cooling towers, a value of air flow rate greater than G_{min} must be used. **A reasonable value** of G is $(1.3-1.5)\times G_{min}$.

Example. Find the minimum air flow for previous example

Slope_{max} =
$$\frac{H_{y2} - H_{y1}}{T_{L2} - T_{L1}}$$

= $\frac{194 - 71.7}{43.3 - 29.4}$
= 8.8 kJ/(kg.K)
Slope_{max} = $\frac{Lc_L}{G_{\text{min}}}$
 $G_{\text{min}} = \frac{Lc_L}{\text{Slope}_{\text{max}}}$
= $0.64 \text{ kg/(s.m}^2)$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Design of water cooling tower using overall mass-transfer coefficients

 \triangleright Usually, the **overall volumetric mass-transfer coefficient** $K_G a_M$ is available and the design equation becomes:

$$Z = \underbrace{\frac{G}{M_B P K_G a_M}}_{\text{HTU}} \underbrace{\int_{H_{y1}}^{H_{y2}} \frac{dH_y}{H_y^* - H_y}}_{\text{NTU}} \equiv \text{(HTU)(NTU)}$$

HTU ≡ Height of a transfer unit NTU ≡ Number of transfer units

 \triangleright Use the same procedure as in film mass-transfer coefficient except that the values of H_y^* is determined by going vertically from the point H_y on the operating line up to equilibrium curve.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Design of water cooling tower using overall mass-transfer coefficients

• If the experimental cooling tower data with known height (Z) are available, then design equation can be used to determine the experimental value of the overall volumetric mass-transfer coefficient.

Design of water cooling tower using overall mass-transfer coefficients

Example. Use the data and result of previous cooling tower example to estimate the overall mass-transfer coefficient $K_G a_M$.

Solution:

H _v (kJ/kg)	H [*] _v (kJ/kg)
71.7	96.8
80.7	108.3
91.5	120.9
100.4	135.4
110.1	152.4
119.2	172.1
129.9	196.8

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Design of water cooling tower using overall mass-transfer coefficients

$H_v(kJ/kg)$	$H_{v}^{*}(kJ/kg)$	$H_{v}^{*}-H_{v}(kJ/kg)$	$1/(H_{v}^{*}-H_{v})(kg/kJ)$
[~] 71.7	96.8	^{25.1}	Ó.0398
80.7	108.3	27.6	0.0362
91.5	120.9	29.4	0.0340
100.4	135.4	35.0	0.0286
110.1	152.4	42.3	0.0236
119.2	172.1	52.9	0.0189
129.9	196.8	66.9	0.0149

Using Trapezoidal rule:
$$NTU = \int_{H_{y1}}^{H_{y2}} \frac{dH_y}{H_y^* - H_y} \cong 1.63$$

$$HTU = \frac{Z}{NTU} = \frac{6.96}{1.63} = 4.27 \text{ m} = \frac{G}{M_B P(K_G a_M)}$$

$$K_G a_M = \frac{G}{(M_B)(P)(HTU)} = \frac{1.356}{(29)(101325)(4.27)} = 1.08 \times 10^{-7} \text{ kmol/(s.m}^3.Pa)$$

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Dehumidification towers

- > To reduce the humidity and temperature of air that enters.
- > For dehumidifier, the operating line must be above the equilibrium line.
- > Similar calculation methods are used.

47

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888