Experiment 6 Redox Titration

Iodine Titrations

Objective:

Determination the concentration of Sn²⁺ in an unknown sample using back titration

**An oxidation-reduction (redox) reaction is a type of chemical reaction that involves a transfer of electrons between two species.

**An oxidation-reduction reaction is any chemical reaction in which the oxidation number of a molecule, atom, or ion changes by gaining or losing an electron.

1: lodide ion

10₃: lodate ion

1₃-: triiodide ion

$$l_2 + 2e^- \longleftrightarrow 2l^-$$

- The reaction is reversible
- I₂ is the oxidizing agent and I⁻ is the reducing agent
 - Analyte in iodine titration can be
 - ightharpoonup oxidizing agent: example Fe³⁺ + 2l⁻ \longrightarrow l₂ + Fe²⁺

$$I_2 + 2S_2O_3 \longrightarrow S_4O_6^{2-} + 2I^{-}$$

reducing agent: example $S^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^{-}$

a) Standardization of S₂O₃²⁻ using KIO₃ as primary standard

Reduction equation: $6 \text{ H}^+ + 10_3^- + 5e^- \longrightarrow 1/2 \text{ I}_2 + 3 \text{ H}_2\text{O}$

Oxidation equation: $5 I^{-} \longrightarrow 5/2 I_{2} + 5e^{-}$

Net equation: : $6 \text{ H}^+ + 10_3^- + 5 \text{ I}^- \longrightarrow 3 \text{ I}_2 + 3 \text{ H}_2\text{O}$

Reduction equation: $I_2 + 2e^- \longrightarrow 2I^-$ Oxidation equation: $2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2e^-$ Net equation $I_2 + 2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2I^-$

$$M \ KIO3 = \frac{\frac{m}{Mw}}{v}, \quad v = 0.1 L$$
Number of moles $I_2 = (M \times V) KIO_3 \times 3$
Number of moles $I_2 \times 2 = (M \times V) S_2 O_3^{2-}$

- Standard Solution: KIO₃
- Analyte: Sn²⁺
- Excess reactant: Iodine
- Titrant: Na₂S₂O₃
- Indicator: Iodine (self indicator) through the appearance or disappearance of color (deep brown orange yellow coloriess
- If [I₂] less than 4*10⁻⁵ M add starch to give dark blue color with iodine

End point detection:

Red-brown color due to I_3^- titration with $S_2O_3^{2-}$ yellow adding starch blue titration with $S_2O_3^{2-}$ colorless

❖ Starch is used to detect iodine concentration down to 2 x 10⁻⁵ mol/L

Reactions:

$$Sn^{2+} + I_2$$
 $Sn^{4+} + 2I^{-}$

KIO3+ 5KI + 6HCl
$$\longrightarrow$$
 3H₂O + 3 I₂ + 6KCl

b) Standardization of iodine using S₂O₃²:

$$I_2 + 2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2I^{-}$$

$$(M \times V) I_2 \times 2 = (M \times V) S_2 O_3^{2}$$

c) Determination of tin in an unknown sample (back titration):

$$l_2 + Sn^{2+} \longrightarrow Sn^{4+} + 2l^{-}$$

$$I_2 + 2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2I^{-}$$

Total number of moles iodine = number of moles iodine react Sn^{2+} + number of moles iodine react $S_2O_3^{2-}$

$$(M \times V) I_2 = (M \times V) Sn^{2+} + (M \times V) S_2O_3^{2-}/2$$

Back titration is used instead of direct titration because the reaction between I₂ and Sn²⁺ is slow